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Some univalent compositions of polynomials
with univalent functions
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Abstract. Let S denote the family of functions f, holomorphic and univalent
in the open unit disk U, and normalized by f(0) = 0, f'(0) = 1.

1
MacGregor has proved the following: If ¢ ¢ cof(U) and ¢(2) = f(2)— 2—f(z)"‘,
e

then g € § and ¢/2 ¢ g(U). This observation leads to the simplest proof of the 1/2-the-
orem for convex functions.

The present paper extends the MacGregor idea to compositions Po f, where f
is holomorphic and univalent (in some domain D), and where P is a polynomial of
degree 2. Under certain “inodified convexity conditions” on a parameter ¢ in the
I-expression, the composition Po fis also univalent in D and omits the value ¢/n.

Finally, some examples of application are briefly indicated.

1. Introduction. Let S denote the family of functions f,
(1.1) f(2) =21+ a,22+a52%+ ...,

holomorphic and univalent in the open unit disk U, and normalized by
F(0) =0, f(0) =1.

The following observation is due to MacGregor [2]:

If e¢cof(U) and

(12) 9(2) = f&) =5 =@

then g e S and ¢/2 ¢ g(U).

MaecGregor used this observation in combination with the 1/4-theorem
of Koebe-Bieberbach to give a new and very simple proof of the fact
that the disk |w| < % is contained in f(U) for any f e § with convex f(U).

This example indicates that it may be profitable to look for poly-
nomials P such that Pofe 8 for f e §. The purpose of the present paper is
to construct examples of such polynomials. The method is in a certain
sense a generalization of the MacGregor idea.

Following Schober [3] for notations, the MacGregor result may
(in a slightly more general setting) be expressed as follows:
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Let D be a domain in C, and let H,(D) denote the set of functions,
holomorphic and univalent in D. If fe H, (D) and P is the polynomial

1
(1.3) P (w) =fw—%w ,

where ¢ ¢ cof(D), then Pofe H, (D), and ¢/2 ¢ (Pof)(D).

2. The idea. For the MacGregor polynomial the following holds when
U Fv:

P(u)—P(v) _1_ U+ ‘

2.
(2.1) u—9o 2¢

If (u+v)/2 never takes the value ¢, the right-hand side 0, and hence
P(u) 7 P(»). This is in particular the case if f € H, (D), u = f(2,), v = f(2,),
2,2, € D, 2, # 2, and ¢ ¢ cof(D).

More generally, let P be a polynomial in one variable, with the

P(u)—P
property that for «# # v the two-variable polynomial Lu)—P(v)

is re-
presentable in the form U—
n—1
(2.2) MQ)_:K.H(I_ _ak'“‘i'(l—ak)”)’
U— o1 ok

where K e C, K # 0 and ¢, € C, ¢, # 0, 0 < q, < 1 for all natural numbers
k<n—1. If fe H,(D) and ¢, ¢ cof(D) for all natural ¥ < n—1, then
Pofe H,(D). Hence, if we can find such polynomials, we will be able
to construct new functions in H, (D) from a given f € H,(D) and hopefully
be able to obtain new information on H,(D) by using this technique.

The first thing to do is to attack the following problem:

ProOBLEM 1. Find corresponding to any natural number n a polynomial
P(w) of degree n, mormalized by P(0) = 0, P’'(0) =1, and such that the
P(u)—P(v)

expression ——————, U # 0, 18 representable in the form
n—1
P(u)—P(v) au+(1—a,)v
. ! N = 1 _ [
(2.2°) u— k[J ( ¢ )’

where ¢, € C, ¢, # 0 and 0 < a;, < 1 for all natural k < n—1.

Remark. The normalization is inessential, but saves us a few words
when the results are to be formulated.

3. A discouraging result. As it will soon be seen Problem 1 represents
a dead end in the sense that it does not produce any new polynomials
of the kind we are looking for. More precisely :
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ProrositioN 1. The only solutions of Problem 1 are the polynomials

1
w and w——w? ceC, ¢ #0.
2¢ '

Remark. It turns out that the proof, in addition to establishing
a useless result, also indicates a side-track, which to a certain extent
re-establishes the value of the problem (somewhat modified).

Proof of Proposition 1. Let P be a solution of Problem 1, and
assume that the degree of P is > 2,

(3.1) P(w) =w+A,w* 4 ... +4,w".
Then (for » # v)
(3.2) f(“u)——f(’”) =14+ A(u+v)+ ... +4, @ ' +u" 204 ... oY),

From (2.2") follows, by letting v —v = w:

n-1
(3.3) Pw) = n (1—1"—) =1 24,w 4 ... +nd W,

k=1 Ck
and hence

-1
(-1 17l

3.4 a,=—" []—.
(3.4) o .

On the other hand it follows from (2.2’) by putting v = 0, v = w:

n—1
a, w
(3.5) P(w) =w (1— )
1=
This yields
n—1
a
(3.6) A, = (=1~ [ | ==X
g1 Ok

Comparing the two cxpressions for 4, we find

n—1

(3.7) Hak - ;1%_

k=1
From (2.2’) and (3.2) it follows that

, n—1

(—l)n—l(”(}ik)g (a2 +(1—a)v] = A, (" ' o204 ... +0"71).

k=1
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Since a,, # 0 for all k¥ < n—1 it follows by using (3.6):

n—1

1 o )
l I [u—(l——)v] =ut 14w o+ ... 0"
ay

k=1
1

n_ -
T 2Jerci
:] % — CXP v .
n
k-1
From this we may co.aclude

1 ( 2k )
1——=cxp| — ,
ay

and hence

H kw
(3.8) o = -é—l.l —l—icot‘-:tn—q—b—],
k=1,2,...,n—1.

This shows that for any n > 3 there must be at least one g, with
Ima; # 0. Hence Problem 1 cannot have any solution with n > 3. For
n = 1 the polynomial P(w) = w is obviously the only solution (in fact
the only polynomial with correet normalization). For n = 2 we have,
with

P(w) = w+ 4,w?, A, #0,

that
P(u)—P
M =14+A,(u+v), u #0v.
uU—0
Hence P(w) is always a solution of Problem 1 with a;, = } and 4, = —1/2¢,

where ¢ # 0. This concludes the proof of Proposition 1.

4. Modification of Problem 1. If we drop the condition that the
numbers g, be real, there is still a possibility of finding polynomials of
arbitrary degree satisfying condition (2.2').

PrOBLEM 2. Problem 1 without the restriction 0 < a, < 1 on the num-
bers ay.

This modification has no effect in the cases » = 1 and n = 2, i.e. the
solutions of Problem 2 and Problem 1 are the same for » = 1 and » = 2.

For n» = 3 a straightforward computation shows that the poly-
nomials

(4.1) Pw) — %[1— (1~3)a], ¢ #0,

¢

are the only solutions of Problem 2, and that ¢;,= ¢, = ¢, a,, = $[1+¢ V3].
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In a similar manner it is easily proved that the only solutions of
Problem 2 in the case n = 4 are

¢ w\*
(4.2) P(w):—li-[l—(l—?)], ¢ 0,

and that ¢, = ¢, = ¢ =¢, a, = §, a3 = (1 4L19).

As an illustration of the argument we shall prove the last statement.
The idea in the proof is the same as in the proof of Proposition 1, and we
shall use the same reference numbers for the equalities:

(3.1) P(w) =w+ Ad,w?+ A, w?+ 4,0,
(3.3) P’ (w) = (1_ﬁ).(1_£).(1__“’_)
¢, Cs Cy
=1+24,w+3A,w?+44,w3,
a, a, ag
(3.5) P(w) :w(l—-—w)(l——w)(l——w).
0 Cy Cy

In this case we have, from the proof of Proposition 1, that a; = 4, a,,
= (1 £9).
Comparing cocfficients we find for w?:

a a a 1 1 1
— 42+ =%(—— +—~+—) = —A4,.
¢, c, Cy ¢, Cs Cy
This gives
) ) _ 0
2¢, 6
and hence ¢, = ¢y = ¢.
For w?® we find
(1414 F(1—1 : 1 1 1
1 _)_+E( )_l_’i:%(_ 1 _2)’
¢.C c.c c? €, 6C ¢

and hence
1 1

1

2
201+20 3_cl+3c’

from which follows ¢, = ¢. From (3.3) with ¢; = ¢, = ¢; = ¢ follows that

ro - 2fo- - 4]

and the statement is thus proved.
Quite generally the following holds:
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PROPOSITION 2. The polynomsials

C _ w\"

(4.3) P(w)=——[1—(l——) ], c#0,
n ¢

are solutions of Problem 2, with ¢; = ¢, = ... =¢,_, = ¢ and
2k \\7!

Proof. From the proof of Proposition 1 we know that the only possible
a,-values of a solution of Problem 2 are the values in the statement of
Proposition 2.

For a given natural number » let @ (w) be the polynomial

_P(cw) __1_ 4
Q(w) = c—_'n,(l (1 w))’
and let
(2k1n)
e =exp| ——
Then for all U, V
£ U 14
QU)—Q(V) = (U—V)n(l— i 1_s_k)-
k=1

This follows immediately from the fact that for any fixed V both sides
are polynomials of degree n in U with the same zeroes

U=1-(1-")&, k=1,2,...,n,

and the same constant term

n—1

| 4
e = v [ [ {1- =)
From this follows immediately, that
n—1
PW=Pw) = =] [ (1- LEE=08),
k=1

with @, = (1—¢*7! (and 1—aqa, = (1—¢%)1).
This concludes the proof of Proposition 2.

Remark 1. The polynomials in Proposition 2 seem to be the only
solutions of Problem 2. We know that this is true for n < 4.

Remark 2. For any fixed n we have: If w # ¢, then P(w) # c/n.
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5. Geometric interpretation. We shall need the following lemma:

LEMMA 1. Let p and q be distinct points in C, and let a be an arbitrary
non-real complex number. Then the circular arc from p through ap+ (1 —a)q

to q has angular measure
a
a—1 ‘)’
where arg e is chosen in ( —m, +x).

The proof is a simple application of a theorem in school geometry,
and shall be omitted here.

Remark. If Rea has a fixed value in (0,1) and we let Ima— 0,
then the angular measure — 0. If Ree has a fixed value not in [0,1] and
we let Ima — 0, then the angular measure — 27. The two cases correspond
to the open line segment from p to ¢ and to the complement of the closed
segment with respect to the line through p and q.

We shall use the term fp-arc from p to ¢ to denote an arc of angular
measure £ from p to ¢. We shall aceept the term 0-are for the line segment

from p to gq.
The a-values occurring in our cases are

arg

(5.1) 2(7:—‘

1 2mi
a=ak=—i_8k, Where£=exp—n-,
and hence
C ek k=1,2,..(n—1).
a—1

For cven n the a-value } occurs (for ¥ = n/2). All other a-values are
non-real, and the corresponding arcs have angular measures

2k n—1
2|1l — — Ek=1,2,...
77( n)a 7‘ ) a[ 2 ]1

according to Lemma 1.
From this, Proposition 2 and Remark 2 it follows immediately:

THEOREM 1. Let D be a domain in the complex plane, let f e H, (D)
and let ¢ be a point not lying on any 2n(1 —2k[n)-arc between points of f(D),
k=1,2,...,[n/2]. Let furthermore

(5.2) g(2) = % [1 —~ (1 — f—(:))n]

Then g e H (D), and c/n ¢ g(D).
For » = 2 this reduces to the result of MacGregor.
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6. Examples. The main difficulty in using this method is to determine
which ¢-values are permitted and which are not. In some cases there is no
permitted ¢-value. This is e.g. the case for the Kocebe functions z/(1 — 7z)?,
|n} = 1, for arbitrary degree of P and for the functions z/(1 —#z), (] = 1,
when the degree of P is > 3.

We shall here briefly indicate some special cases, where the ¢-problem
is easily treated.

One such case is the case when (in addition to f € H, (D)) we require
f(D) to be contained in a fixed disk. In this case we shall nced the follow-
ing lemma:

LEMMA 2. Let the disk
(6.1) lw—a] < R

and the number 8 e (0, 2xn) be given. Then the set of B-arcs belween points
of the disk covers exactly the disk

(6.2) lw—a| <

Ccos L
4

The proof is quite clementary and shall be omitted here.

The simplest example is obtained by taking f(2) = 2, in which case
a = 0 and R =1 in the lemma. From Theorem 1 and Lemma 2 it follows
in this example:

The functions

(6.3) g(z) = % [1 - (1 — _':_)]

are in § for all ¢ with |¢| > 1/sin %

For n = 2 this actually gives the whole family of univalent poly-
nomials of degree 2. For » = 3 it shows that the polynomials

l/g 2 1 253

z— = az? -+ 1 a®*
are univalent for all ¢ with |a] < 1. An interesting observation is that
for a = +1 the polynomials are extreme points of the family of poly-

nomials of degree 3 in § with real coefficients [1].

Another example of application of Lemma 2 in combination with
Theorem 1 is to functions in §,,, i.e. functions in § for which |f(z)] < M

for some M > 1. For such functions we have:
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If fe 8, and |¢| = M /sin %, then the function

=3 -2

n ¥

is in 8, and g(=) # ¢/n.

Related results may be obtained for functions fe §, where f(U)
is contained in some fixed disk, not necessarily centered at the origin.

A second special case where the determination of permitted e¢-values
is easy, is when f(D) is contained in an angular domain.

In a subsequent paper we shall take a closer look at the cases briefly
mentioned above and at some other cases.

7. Final remark. As remarked to me by Don Blevins in an oral commu-
nication Theorem 1 also has an extension to arbitrary rational n-values,
in which case there will be a finite number of a-values. (A non-rational n,
however, would give an a-set, dense on the line Rea = 3.)
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