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Continuous solutions of finite variation
of a linear functional equation

by MAREK CEZARY ZDUN (Katowice)

Abstract. In this paper there are investigated continuous solutions ¢ in J = (a, b>

of equation (1) which have a finite limit lim ¢ (=) and are of finite variation in J.
z—a
The given functions g and F are of bounded variation in J while f is a function strictly

increasing in J.
In the present paper we shall consider the funetional equation

(1) o(f(z) = g(@)p(w)+ F(2),

where ¢ is the unknown function and f, g, F' are given. Let J be an interval
of the form J = (a,d), —oco<<a<b< +oo.

We introduce the following function classes:

A real-valued function ¢ is said to belong to BV [J] iff ¢ is defined

on J and sup Varg|P < oo, the supremum being taken over all finite
PcJ

intervals P < J.

A real-valued function ¢ is said to belong to B,V [J] iff ¢ is defined
on J, Varg|P < oo for every closed and finite interval P < J and there
exists a finite limit lim ¢(x).

T—a

We shall assume the following hypotheses regarding the functions
f, g, and F.

(i) f is continuous and strictly increasing in the interval J = (a, b)
and a < f(x) < « for x € J (we admit a = — o0),

(ii) g, FeBV[J], inf ¢> 0, 1im+ g(z) =1 and ]im+ F(z) =0,
R 4 z—a za

(1) g and F are continuous in J.

Let f™ denote the n-th iterate of f. Condition (i) implies that for every
x € J the sequence f"(z) is strictly decreasing and lim f"(z) = a (cf. [3],

7n—00
Theorem 0.4, p. 21).
From Theorem 2.1 in [3] and Lemma 1 in 6] we immediately obtain
the following
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LEMMA 1. Let hypotheses (i), (ii), (iii) be fulfilled and suppose thal ¢
satisfies equation (1) in J. If ¢ |1, i8 continuous and ¢ |1, € BV [I,], where
I, = {f(xo), o> for an x, € J, then ¢ is continuous in J and Varg|P < oo
for every finite and closed interval P < J.

LEMMA 2. Let hypothesis (i) be fulfilled, F € BV [J] and lim F(z) —= 0.

z—at

If the series D, F(f™(x)} converges (absolutely) for an x € J, then it converges

n=0
(absolutely and) uniformly in every compact set K < J.

Proof. From Lemma 3 in [4] and the proofs of Lemma 2 in [4] and

Theorem 5.3 in [3] it is easy to observe that the series > F(f" (x)) converges
n=0

almost uniformly in J.
Put

n—1

(2) G@ =1, G, =[]elfi2), wed,n=1,2,..

i=0
In paper {5] (Lemma 1 and Corollary 2) we have proved the following
facts (which we now call Lemmas 3 and 4):

LEMMA 3. Let hypotheses (i) and (i) be fulfilled (F = 0); then there
exists a positive constant L, such that for any xy € J the following inequality
holds:

(3) %‘Gk(fvo) <G (o) < LGy (@)  for e {f(xy), @y, B = 0,1, ...

LeEMMA 4. Let hypotheses (i) and (ii) be fulleled (# = 0); then there
exists an M > O such that

(4) Va’anKf(‘/DD)} wo) g MGn (070)
for any xy e dJ.
There are the following three posibilities of the behaviour of se-
quence (2):
(A) The product [] g(f*(»)) converges for an z e J.
=0

(B) There exists an « € J such that lim @, {x) = 0.

(C) Neither of cases (A) and (B) occurs.
1. First we consider case (A).
THEOREM 1. Let hypotheses (1), (ii), (ii1) and (A) be fulfilled, and

suppose that the series Y ))

@) converges absolutely for an xed.
=0 Ons
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Then equation (1) has exactly a one-parameter family of solutions p € B; V[J].
These solutions are continuous in J and are given by the formula

7\ Flf@)

5 = — -

®) PO = @) T e G

where

(6) G(2) = lim@,(z) = [ ] 9(f'(@)) for med.
R0 =0

Proof. Condition (A) implies that the product (6) converges uniformly
in every compact K < J, ¢ is continuous in J and lim G(z) =1 (see

z—>at
Theorem 1 in [5]).
Let ¢ fulfil equation (1) and suppose there exists lim+ p(x) = 7.

IT—a

By assumption (A) it follows that ¢ has the form (5) (see Theorem 5 in

[11(1))- ,
We shall show that the series

g Pl @) ar
G,.1(2)

converges uniformly in I, = {f(=,), z,> for an x, € J and that there exists
the limit lim ¢4(z) = 0.

—>a

From Lemma 3 it follows that there exists an L > 0 such that

(7) Po(7)

n=0

1
7 On(@) < Gy (2) < LG, (@)

for # € I, = {(@yy,, @), where z, = f*(b) and »,k = 0,1,... Hence by
the identity

(8) G, (f* (=) =%§:—g—) for n, k =0,1,..., zed,
we obtain

Grir(® LG, 41 (@)
(9) #w:)) <G (2) < —GLJZO for z e I,.
Hence

n+k—1 n+k—1

+ ] s@r<@@<i [ 9w, ael.
i=k i=k

(1) It is easy to observe that all results of [1] remain true for continuous functions
in (a, > which have a finite right-hand side limit at a.
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From the convergence of product (6) at z, it follows that there exists an

™m
m’ and M’ such that 0 < m' <[] g(®) < M’ for any m > k > 0. Thus
i~k

1 ,
—m' <G, (x)< LM forxel,, n,k=0,1,...,

whence

1 _
& @ <M forwed,

where m and M are some constants.
Series (7) converges absolutely at a point Z eJ and the sequence
1/G@,(z) is bounded. Consequently the series

(10) 0 <7<

(11) D Fif@)

n=0
converges absolutely at the point Z. Then Lemma 2 implies the absolute
and uniform convergence of series (11) in I,. Hence and from inequality
(10) it follows that also series (7) converges absolutely and uniformly
in I,. Moreover, we have the estimation

24(2) _‘Z zi{:‘(w) { Z 1P @) _ MZ!FU”‘ & ).

=0 Gn+1( n—0
From Theorem 5 in [4] it follows that lim ¢(x) = 0. Thus 11m p(z) = 0.
z—»at z—at

Now we shall estimate Vare,|I,. Let s, = Var¥|I,. By Lemma 4
(applied to the function 1/g) there exists an M > 0 such that Varl/@,|I,
< M|G,(z,) for n =1,2,... Then from Lemma 3 and inequality (10)
we obtain

f "

n+l

Vare, |1, < Z Var

n=0

I,< ) {VarFof*|I,supl/G, ,+
= 7o

o sup |Fof”|
J_sup |Fof ]V&rl/GnTllIo} 2 Gn+1 ) +M 2 m

n=>0

<LM Y s, +MM F(f™(mo)) +5,) < o0,
since |F(f™(2))| < [F{f"(20)| + ¢, forw e I,.
The function ¢, fulfils equation (1) and ¢|I, e BV[I,]. Then by
Lemma 1 it follows that ¢, € B;V[J]. Theorem 1 in [5] implies that
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1/G € B, V[J], whence ¢ € B,V[J], where ¢ is given by formula (5).
Series (7) and product (6) converge uniformly in I,. Thus ¢ is continuous
in I, and, by Lemma 1, ¢ is continuous in J.

THEOREM 2. Let hypotheses (i), (ii), (iii) be fulfilled. If product (6)
converges absolutely at a point x € J and series (7) converges at an x, € d,
then equation (1) has exactly a one-parameter family of solutions o € B, V[J].
These solutions are continuous in J and they are given by formula (5).

Proof. The uniqueness of the solutions follows by an argument similar
to that applied in the preceding theorem. Theorem 1 in [5] implies that
1/G € B,V [J] and G is continuous in J. Thus it suffices to prove that the
function ¢, given by formula (7) belongs to B, V[J] and is continuous
in J.

Just as in the proof of Theorem 1 in [5] one can show that product (6)
converges absolutely and uniformly in every compact set K < J. Let
#, €J and suppose that series (7) converges at z,. The sequence (2) is
bounded at z,. Therefore there exists a D > 0 that G,(x,)) <D for »n
=1,2,... Let 0 < ¢ < 1. Then there exists an N such that forall n > N
and m =1,2,... we have

n+m
. 1 .
< ¢/2D and ( —1l < e.
|~.nZ+1 G""l w” °f i%l‘g f(wO)) ‘ )

Let n> N. Then by the well-known Abel transformation (see [2],
Vol. 2, p. 264) we have

n+m

|Z+F reall =| Z Tl 6, (e
= Gnmﬂ(xo);ﬁ: f EZZ” Z (6:2(@0) - (m))’-——ﬁ(;i{ k((f,)))
< Gy (o) |§j %‘{1((—2))} -+ jﬁll 1642 (@0) — Gy (@ k%—; JZ,Z Iz EZ:;’
<D— 21) +55 j;;ll |9 (T (@) —1] G 1 (20) < — -‘;i <e.

The Cauchy criterion implies the convergence of series (11) at z,. Hence,
by Lemma 2, it follows that series (11) converges uniformly m I,
= <f_(mo); Ty). ar

Let zel, and B,(x)= F(f"(x))—F(f*(x,). Then |8, (2)|<s,=
E VarF|I,, where I, — (f"“(a:o) (). If « eIk, then F(f"(»))

5 — Annales Polonici Mathematici XXXIV,2
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— Flf***(wy)) + B, ("), where f*(2*) = 2 and * € I,. Let x e I,,. Then

we have the following estimation
n+k n:l:;c
< 'ZFU"(%)) + s,
i—k =k

‘Z":‘F(f(x))’ < ‘EF‘fi+k(

=90

n+k

<| D Fif' @)

i=k

Series (11) converges at x,. Therefore, there exists a. C > 0 such that

~VarF|J.

(12) \ZF(f‘(m))igC for xel,, k,n =0,1,...
t=0

Thus the latter inequality holds for z € (a, a;,,> From hypothesis (i) it
follows that there exists a k > 0 such that f*(z) € (a, ,> for v € J. The
function F' is bounded in J, 80 we can assume tha,t the constant C is such
that inequality (12) helds for all z € J. Under the assumptions of our
theorem inequality (10) holds in J, too.

Applying the Abel transformation once more we have
(13)

S‘F‘(i(w) Gr (@ )2 ‘fl ’— 2‘( z+2( G ( ) ZFU’C {L‘))

Letting n—>oo in equality (13) we get

(14)
3 F‘fi(a;)) 1 > ( 1 )
")) = F
o Gi+1(-’17) G( z) 2 (f ) ; Gi+2( 1,+1 )Z (f ((D

The first series on the right-hand side of (14) converges uniformly in I,
and the second one converges absolutely and uniformly in f,, since from
inequalities (10) and (12) we have

];(Gi_:(m) B Gi+11(w) ),;.;F[fk(ﬂ?))l
- ) -
go;' Gira(@) Gy (@) |= C; q

<O D [L—gif @) £ CHU@).

t=0

L—g(f (@)

i+2(@)

where ¢ and # are some positive constants.
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Lemma 2 implies that the last series converges uniformly in I,.
Hence series (14) converges uniformly in I,. Moreover, we have

sup U = sup Ucf® = sup Z |1 —gofil.
I, 1,

Iy t=n+1

Therefore limsup U = 0, thus lim U(z) = 0 By (14) we have

n—oo I, z—>a™t
F(f( w)) I ‘
F MCU
‘Z G (@) (@) Z (f(@))|+MCU a).
From Theorem 5 in [4] it follows that lm:_ 2 F(f*(x))= 0. Furthermore,
T—>aT {=
lim G(z) = 1, whence
z—at
\ Plfi@) _

lim 0;
z—sat =0 G’t’+1(w) ’

thus lim ¢@4(z) = 0. Series (7) converges uniformly in I,, and so ¢, is

T—a

continuous in I,.
Now we shall show that ¢ |I,e BV[I,]. Let

S 1
Blo) = 2{ (Gi+2(‘v G ) ZF(fk(w)

1=

From Lemma 4 it follows that there exists an M > 0 such that
varl/GnlIo g M/Gn($o)f0rn = 1, 2, cee Letsk - V&I‘Fllkf.ork = O’ 1’ .o
Then from inequalities (10) and (12) we obtain the following estimation:

VarB |1, < Z Var(1/6,,,—1/G,,,) | T
i=0 To

B

+ Z sup]l/G,_,_z 1/6,,, |VarZFof"|Io

k=0
i
1—gofti| Y,
k=0

[Lysup |1—gof"“|+02sup1/Gi+2Vaar<1—gof‘*‘)tlo+
— I,

(A —gof* 1L, +2sup

i=0 i+2 =0 i+2

+MVarF|(a, w0>2 sup[l —gofitl

i=0
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[« ]

< CMMZ‘supu—gofi“ |+CH Y Varg|I,+
— Iy

i=1

+MVarF|(a, x> ysup |1—gofit!] < oo,
= L
where C, M, M > 0 are some constants. Since product (6) converges
absolutely and uniformly in I,, the last series is convergent. The function

g is of bounded variation in J,.80 > Varg|I, < co. Thus B|I, € BV [I,].
. i=1

Theorem 1 in [5], Theorem 5 in [4] and equality (14) imply that ¢,|I,
€ BV (I,]. There exists the limit lim ¢,(z) = 0. Now, Lemma 1 implies

zsat

that ¢, € B, V[J] and ¢, is continuous in J.

From the proofs of Theorems 1 and 2 the following remark follows
directly.

Remark 1. Let a > — oo, I = (a, b), f(a) = a, F(a) =0, g(a) = 1.
If the assumptions of either Theorem 1 or 2-are fulfilled, then equation (1)
has exactly a one-parameter family of solutions continuous in I. Thege
solutions are given by formula (5)

2. In this section we assume that case (B) occurs.

Write
Fif( x))
H,(2) =6, ’% N
F.(z) = F(z)+clg(x)—-1),
SEARE)
H; G —..
() () i @)
Let a function ¢ fulfil equation (1). Then by induction we get a
(15) ¢(f*(2)) = H, (@) +F(f* (@) + G, (x)p().

Let y(x) = ¢(x) —c. Then yp fulfils the equation
ylf(@) = g(@)p(@) +F.()

and likewise we have

(16) p(fM(@)) = H(@) +F.(f* () + G, () p(2).
Since ¢(r) —y(x) = ¢, equation (15) and (16) imply
(17) H(z) = H,(z) —cg{f" " (#)) + G (x)c

We have the following
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Remark 2. If assumptions (i), (ii) and (B) are fulfilled, then
the following equivalences hold:

10 lim H(x) = 0 iff lim H, (x) = ¢ for z eJ.

n—>00 n—oo
20 lim H{(xz) = 0 almost uniformly in J iff lim H,(x) = ¢ almost
—>00 n—>00

uniformly in J.

Proof. On account of Theorem 0.4 in [3] and the monotonicity of
f it follows that lim f*(x) = @ uniformly in J. If lim @, (x,) = 0 for an

n—00 =00

@, € J, then lim G, () = 0 almost uniformly in J (see Theorem in [5]).

i—> 00
Therefore (17) implies equivalences 1° and 2°.
Remark 3. If assumptions (i), (ii) and (B) are fulfilled and equation
(1) has a solution ¢ such that there exists lim ¢(2) = ¢, then lim H, (=)
= ¢ almost uniformly in J. e noo

Proof. Theorem 3 in [5] implies that lim @,(2) = 0 almost uniformly

in J. Thus our assertion results from relation (2).
THEOREM 3. Let hypotheses (i), (ii), (iii) and (B) be fulfilled. If, moreover,
there exists an zy, € J such that im H, (x)) = ¢ and

n—-o

18) giff(m)) <1  for m =0,1,2,...,

then equation (1) has a continuous solution B, V [J] depending on an arbitrary
Sfunction. More precisely, for any y, € J and an arbilrary continuous function
@0 € BY [{f(o), Yo>] fulfilling the condition

?’o‘f(?/o)) = §(Yo)@o(¥o) + F (¥,),

there exists exactly one solution ¢ of equation (1) in J such that ¢ (xz) = @y(x)
for © € {f(yo), Yo». This solulion ¢ is conlinuous in J, o € ByV[J] and
lim ¢(2) = c.

r—>a

Proof. By Theorem 3 in [5] it follows that condition (B) implies
lim @,(x) = 0 uniformly in {f(#,), x,>. Remark 2 implies that lim Hj (z,)

n—>00 n—>o00
= 0. We shall show that lim Hj(x) = 0 uniformly in {f(z,), 2,)-
Let n—o0
7,(fi(
19 A
(19) wi1(0) £ G (@0) Z SRS %)

First we show that 4, tends uniformly to zero in I,. Write
d, = VarF,I,, where I, = <f”'“ (o) F™ (7)) -

Then the condition F, e BV |J implies that 2 d, < oo. Put D, = Z‘d
and lim D, = D. i=0

TL=>00
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Applying the Abel transformation we get

n—1 n—1 w2
di \ | 1 Dn-—l E I( 1 1 )
- = dl' = - - Di
.'-Zo‘ G;y1 (@) 1—20‘ G ;11 (%) @, (o) =0 G 12(T) G 11(%) ’
for n > 2; thus
n—2
1 1
§ ' (o 1 — G (T — D,
Gt (o) G,+1 o) ol e )[ . 0);(&“(%)' G"'“(%)) ]

because G,(z) = ” 9(fi ().

From (18) 1t fo]lows that the sequence 1/@G, (x,) is strictly increasing
and lim 1/G@,(z,) = oo; then by Stolz’s theorem (see [2], Vol. 1, p. 53)

we have
= 1
n—2 Z .D
1 1 - ( 2(%,) Gi+1(”"o)) b
lim @, (,) ( — )D — lim *=° Gs
nevoo ’ — G2 () G 11 () n—>00 1
G, (z,)
(om0~ T
- Dn—l
— Jim 1 Grt1@)  Ga(0) ~ limD, = D,
n—00 1 1 n—>o00
G i1 (%) G, (%)
then

n— .
lim@, ., (z )Z——‘—— —
n—>o0 +(® e G 11(%,)

For z € I, we have the inequality

F (z)—F, (z, P (f? —F,(f*?
Gn+1(w0) (agl(wo) (m ) 4+ ... 4 (f (mg (xo) (f (a;O)) '
d L @y .
< Gn+1(mo)(“ai(—w;)"+ e o Gn(wo))’
thus
F, F (x, F, n—1 —F, n—1
G )( (c;l(a:o) 2y 2 (wg @) . (%))) =0

uniformly in I,. Hence and in view of the condition lim Hj(z,) = 0 it
n—->o00
follows that

(x)
Im@G, ,(z,) E . ]ﬁ 500)) = 0
n—>00 1+1

uniformly in I,.



Continuous solutions of finite variation 189

In paper [6] (Lemma 3) we have proved that under our assumptions
there exist a uniform limit lim G, (z)/@,.(x,) = a(z) In I,, ae€ B, V[J]

n—-oo

and a constant L, such that 0 < 1/L, < a(x) < L, for x € I,. Hence there
exist a constant M > 1 and an m such that

G, (%)
G, (z,)

We shall transform H; ,, again applying the Abel transformation. Put

(20) 0<m<

<M forn=0,1,2,... and zel,.

_ G132 (%) G 11(%0)
Zile) = Giy2(2) B Gy (2) .

We have

n—1 .
C (m) — T (f'(2)) Gea(@)
(21) HS (%) = Gy () p 6. (@) Gonrl@)

n—1 : n—2 i I
Guale) ) SO N, () 1 EAT @)
i=0 k

G, (x) 4 G{-}-l(mo) — Gk+1(a7o)

_ 9(f"=) F(f'(@)
= g(fn wo)) n+1( O)Z G

1+1(%o)
3 Fol (@)
— Z;(x “+1 G- ! A
2 Gipa( i+2(%) — Gre11(20)
g(fn(w)) O G, ()
= T 4 @)~ Y Ze) S A (a),
g(f"(wo)) i1(?) ; (@) G 12(%) +2(2)
where A, (x) is defined by (19).
For 2 € I, we have the inequality
@ e = Y D ) gl
=0 im0 GH—Z(
< - mm:fg Zigif‘ xo))— gl fi (@)} < ——Vargl(a 2> < C < o0,

J

where C is a constant greater then unity.

Put P < sup{g(f"(@))/g(f*(®,)): @€l,, neN). The function g is
bounded in J and infg > 0, so P is finite. Let ¢ > 0. From the uniform
J
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convergence of A, to zero in I, it follows that there exists an N such
that
(23) |4, (@) <e/MC(P42)< ¢/P+2 for n> N and zel,,

where M, C, P are constants defined previously.
Moreover, there exists an 7' > 0 such that

(24) A ()| <T forn=1,2,... zel,.
PFrom (18) we get G 1 (@) /G40 (m) < 1 for ¢ << m—2. Therefore
Gpi1(2) G (2) Grpr (@) G, 1.1(®)
= < <M.
G, 2() Gr1 (%) Giiz(zy) G, 11 (%)
Consequently by (22) and (23) we have
n—2
(25) ZZ @ o 4 @< Sz Melo@ )M < ofP+2
H-l( 0) oy

for n > N+2, v el,, since ¢ > N,

If ¢ <N -1, then 1/G;,,(®,) < 1/Gy(x)). On account of assumption
(B) it follows that there exists an N,> N-+2 such that @, ,(x,)
< Gy () e/ MTC(P+2) for n > N,. Consequently, in view of (24), we
have for n > N, and z €1,

(26) IZ Z( n+1(w A,

z+2

G, i1 (2) (@)
Z,(@ +1 G, 11(2 T
Z | (@) Giy2(2o)

<T "“(‘"") ZIZ( 1\%(‘”;’)TM0<3/P+2.
N\

Finally, from (21), (23), (24), (25) and (26) we get |HE(x)| < ¢ for
n > N, and = € I,. Consequently lim H{(x) = 0 uniformly in I,. Hence,

n—00

in view of Remark 2 and Theorem 7 in [1], it follows that equation (1)
has a continuous solution ¢ in J depending on an arbitrary function,
such that there exists a finite limit lim ¢(z). Lemma 1 implies that this

z—>at
solution is of finite variation in J.

THEOREM 4. Let hypotheses (i), (ii), (iii) and (B) be fulfilled. If, moreover,

there exist an xy€J such that (18) holds and @ finite limit im M
z—at 1 —g(2)
= ¢, then equation (1) has a continuous solution ¢ € B,V [J] depending on

an arbitrary function and such that lim ¢(z) = c.
I—>a
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Proof. The sequence 1/G,(x,) is strictly increasing and lim 1/G, (z,)

n—roo

= oo. Then by Stolz’s theorem we have

N Flfi@)

i @
lim H,, (%) = limg(f"(wo)) i=0 Q11 (2)

n—o0 n—>o00 1/Gn(w0)
e Pl @) Gaa@) o Flff@)
= lim == lim g (7 (@) = lim S ] =

Grir () N G, (%)
Our assertion follows now immediately from Theorem 3.

THEOREM 5. Let hypotheses (i), (iii), (B) be fulfilled; suppose that
geBVI[J], infg >0, g(z) <1, FeB,V(J), lim F(xr) = 0 and that there
J

z—at
F(x
evists a finite limit Tim, 1__;(){5 _

solution ¢ € B,V [J] depending on an arbitrary function.

Proof. It is easy to check that Stolz’s theorem remains true also for
functional sequences and. uniform convergence. We must show that
lim H,(z) = ¢ uniformly in I,. This proof is analogous to the proof of

n—oo
F (]
Theorem 4. It suffices to observe only that lim ————(f (;T ))
noo 1 —g(f (@))

¢. Then there exists a continuous

= ¢ uni-

formly in I,.

The following remark follows directly from the proofs of Theorems
3, 4 and 5.

Remark 4. Let a > —oo, I = {a, b), f(a) =a, F(a) =0, g(a) = 1.
If the assumption of one of Theorems 3 or 4 or 5 are fulfilled, then equa-
tion (1) has a continuous solutions in I depending on an arbitrary function.

3. Finally we are going to study case (C).
We shall prove

THEOREM 6. Let assumptions (i), (ii), (iii) be fulfilled. Moreover, suppose
that there ewist an x,€J such that g(f*(x,))>1 for n =0,1,2,... and
F(z)

lim G, (z,) = oo, and a finite limit lim =
lim (2,) , f 1@

has exactly one solution ¢ € B, V[J]. This solution is given by the formula

¢. Then equation (1)

O Pif(a))
— Gn+1(w) |

Furthermore, ¢ 18 continuous in J nad lim+ p(z) = c.
T—>a

(27) p(®) = —

n
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Proof. Let z, € J, g(f"(®)) > 1forn = 0,1, ... and lim G,(z,) = oo.
Then from Lemma 3 and relation (8) it follows that lim G,(x) = oo
n—o0

almost uniformly in J.
We have the identity

glff @) -1 _ glfi@) 1 1 1

Gy (@) Gin(@)  Gn(®)  Gi@) G (@)

Then
(28) Z y(f(w

This series converges uniformly in I, = {f(x,), @).

F(x) . . F{fi(m,))

The assumption lim ———— = ¢ implies that lim -

asat 1 —g(2) i—»o0 g‘fl(mo))—l

= —e¢. From the conditions g{f*(w,))>1 for ¢ =0,1,... follows the
absolute convergence of series (28) at x,. Then the series

1 forzed.

Z f(xo)) Z g‘f'(‘vo) -1 F(f(wo))
G,

i+1(%o) G y1(2) g(f(wo))—i

converges absolutely.
We have the identity

Fif@) _ Fife) | glf(e)) -1
G p1(,) G 41(%o) G, 11(2) )

Hence and from the absolute convergence of series (27) and (28) at z,
it follows the absolute convergence of the series

=]

F,(f'(z
el Gy (@)
at z,. We shall show that this series converges absolutely and uniformly
in I,.
Write
d; = VarF,|I,, where I, = (f"*'(xg), f'(2o)).
Let

a,(z) F(fi @) —F.(f(x,)) for xely, i =0,1,...
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Therefore |g;(z)| < d; for x € I, and consequently
(30) |Ff @) < |Fol fi(wy))|+d;  for eIy, i =0,1,..
Hence we have the inequality

B @) _ (@)
1_=20 Gii1() \é-i G 11(%) +§1

:(,J G, 1)

ZIFW(Z" Zd <o forzel,
1.+1 0
- ch‘fl(-'E)”

Therefore the series
.;; G ()
From Lemma 3 it follows that there exists an L > 0 such that
Flf @) _ . [Fe(f @)
Gnlt) &mm

converges uniformly in I,.

for x € I,.

Consequently series (29) eonverges absolutely and uniformly in I,.

Similarly as for series (29) one can show the absolute and uniform
convergence of series (27) in I,. From relation (8) it follows that series
(27) and (29) converge absolutely in J.

It is easy to see that the function ¢ given by formula (27) fulfils
equation (1) in J. Moreover, ¢ |I, is continuous, whence by Theorem 2.1
in [3] it follows that ¢ is continuous in J. We shall show that there exists
the limit lim qa(m) = c.

SD—NI

From the definitions of ¢ and ¢ and by relation (28) it follows that
y(®) = —@(x)+o By (29) and (8) we have the following equality:

F,|fi(w)) _
(31) P(ft(z) = Gyl )Z G0 k=0,1,..., xed.

i=k

By Lemma 3 and by (31), in view of the absolute convergence of series (29),
we have

[w(ff@)| < LGl 0)2 el () for x e I,.

1+1(w0)

Hence on acecount of inequality (30) we get

Fw%m 1 4G ()
" < LZG ‘ I? — —  f I,.



194 M. C. Zdun

We have Gy (x,) < G;(«,) for 7 > k. Therefore
(32) sup Iyl < LGy (,) Z [ K(m:))l +L22d-.
The assumption xl_lf_ll. 1F;a,;)) = ¢ implies that a}_igl+ lj_u;w()m) = 0.
Then for any ¢ > 0 there exists an N, such that
b%‘#a:—ﬂ- < /20 for i > N,.

Therefore for k > N, we have

] (]ﬂ(wo g(f "170 -1 Fc(fi(fvo))
Gule 0)2 Gy (m)) = Gl 2 G0 () g(fi(-’vn)) -1

g(f1 a’o))_ € 1 _ 2
Felo Z G ( 2L2 Gl Gy () = o2l

2L2
Since Zdi < oo, there exists an N > N, such that
1=0
I} Yd;<ef2 for k>N,

Hence by (32) we have sup|y| < ¢ for £k > N and consequently lim y(x)
I, z—>at
= 0. Thus lin-x'_ p(x) = c.

z—a

Now we shall show that y|I, e BV [I,], where ¢ is given by formula
(29). From Lemmsa 4 it follows that there exists an M > 0 such that

Varl/G,|I, < M|(G,(z,) forn=1,2,...,

where I, = {f(%,), %o>.
Therefore we have

F.of* |

i+1

Var

I, < Varl(Gy,,|I,sup|F.of'|+supl/G;,, VarF.of'| I,
" Iy Iy

sup |F,off +
G (@) 1 ! mszH

Iy
From this, in view of inequalities (30) and (3), we get

Foff M . d,L

Var Gin [Ty < G pr(@0) (ch(f(mo))|+di)+ G 1 ()

< M| F,(f*(2,)
G 11 (%)

<

N +(L+M)d,,
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gince G;(z,) > 1. Hence
(

o F.of - F,of
Vary|I, = Var "—‘I < Y Var——|1I
v »tgo: G ’ Z G ’

i+1

Mz IFE(“"" (L-}-M)Zd

i=0 =0

Sinee p(2) = —y(x)+¢, Varg|I, < co. Hence by Lemma 1 it follows
that ¢ € B, V[J].

The uniqueness of solutions follows directly from Theorem 2.6 in [3].

THEOREM 7. Let hypotheses (i), (ii), (iil) be fulfilled and suppose that
case (C) occurs. There .exist a T > 0 such that G,(f*(x,)) > T for k,n =
=1,2,... and a ¢ such that the series ) F.lf'(z)) converges for an x € J.

f=0 )

Then equation (1) has exactly one solution ¢ € B,V [J]. This solution is
given by the formula

1 P f ()

(33) p(x) =c— m’

=0

18 continuous in J and lim ¢(z) = c.
z->at

Proof. Under our assumptions inequality (3) is true. It implies
1 :
pr‘f"(wo)KGn(-’v) for @ e (f** (@g), fH(@e)>y ny b = 0,1, ...

Therefore

T
7 SGul@)  for ze(a, zp).

Hence by relation (8) it follows that there exists a D > 0 such that
D<LG,(x) forxzed,n=1,2,..

From Lemma 2 it follows that the series ) |F./f'(x))| converges

=0

almost uniformly'in J. We have the inequality

Ff @) _ § F. I‘f‘(w Z
F,lfi(2))| = y(x).
|2 G @) | & Gipy(@) Fif @) =
Therefore series (33) converges absolutely and almost uniformly in J.

Moreover, we have the inequality |p(2)—c¢| < y(x). From Theorem 5

in [4] it follows that lim y(z) = 0. Thus lim ¢(2) = ¢ and ¢ is continuous
z—sat —a
in J.
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It is easy to verify that the function ¢ given by formula (33) fulfils
equation (1).

The proof of the fact that ¢|I, e BV[I,] is analogous to the proof
of this fact in Theorem 6. Thus ¢ € B, V[J].

The uniqueness follows directly from Theorem 2 in [1].

We have the following

Remark 5. Let a > —o0, I = (a, d), f(a) = a, F(a) =0, g(a) = 1.
If the assumptions of Theorem 6 (Theorem 7) are fulfilled, then equation
(1) has exactly one solution ¢ continuous in I. This solution ¢ is given
by formula (27) ((33)).

From the proofs of Theorems 1-7 the following remark follows directly.

Remark 6. If in Theorems 1-7 hypothesis (iii) does not hold, then
the assertions remain true with the only exception that the solution ¢
need not be continuous in J.
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