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§ 1. Introduction. In 1944 D. V. Widder [8] proved the uniqu-
eness of positive solutions of the Cauchy problem for the equation
of heat conduction. J. B. Serrin [7] and Avner Friedman [2] have given
extensions of Yidder’s result to classical solutions of certain. second
order linear parabolic equations with variable coefficients. In this paper
we extend Widder’s result to weak solutions of the Cauchy problem
for uniformly parabolic equations of the form

n

(1.1) Zu E‘;i:— Zéi—i{aﬁ(w, t)%} —0,

1,j=1
where we assume only boundedness and measurability of the coeffi-
cients a4;. Our proof makes essential use of the existence theory for (1.1)
given in [1] and of the Harnack inequality for solutions of (1.1) which
was recently proved by Jiirgen Moser [5].

Before giving a more precise description of our results we shall
introduce some notation and make certain definitions. We use the
symbol x to denote a point (2, ..., #») ¢ E* and ¢ to denote a point on
the real line. Let § = E" x (0, T] and S = E" x[0, T] for some fixed
T > 0. A function f(x, t) € Lioo(S) is said to be strongly differentiable with
respect to # in § if there exist n functions f., e Lioo(S) such that

i t
fdz fftpz,da: = —fdr ff;u(pda: (t=1,..,n)
0 En 0 En
for all te (0, T] and for all ¢ € C}(S) with compact support in E™.

* This work was supported in part by the Office of Naval Research under Con-
tract Nonr 710 (16); (Nr 043 041).
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286 D. G. Aronson

Let uy(x) € Lisc(E") be given. The Cauchy problem for L is the prob-
lem of finding a function 4 = u(z,t) such that

(1.2) Lu=0 for (z,t)eS, u(x,0)=uyx) for zeE".

A function % = u(x, ?) is said to be a weak solution of the Cauchy prob-
lem (1.2) if (i) % is measurable in S and

max fu”(m, t)dr < oo
0.7) §
for every open sphere 2 C F™, (ii) % is strongly differentiable with respect
to z in S and
t

[ [ (ot 3ut)ao < o
i=1

0 Q

for every t e(0, T'], and (iii) » satisfies
! n
(1.3) fu(a;, De(xz, t)dw—}—fdr f(—wp,+ Zai,-uz,xp,,)da;
Em 0 En i,7=1

= [ uf@)p(@, 0)do
En

for all ¢t ¢[0, T] and all ¢ € C}(S) with compact support in E".
Throughout this paper we shall assume that the coefficients a; of L

are measurable in S, that ay — aj;, and that there exists a constant
vy > 0 such that

(1.4) v ER < ) ag(e, 1)E:& <IEP
ij=1

n
almost everywhere in S, where |£° = ) & and the & are arbitrary
i=1

real numbers.

Our first result (Theorem I) is a general uniqueness theorem for
weak solutions of. (1.2). In particular, we prove that if % is a weak solu-
tion of (1.2) with uy(x) =0 which satisfies

T
(1.5) [ at [ ertetura, tydw < oo
0 En

for some a > 0, then « = 0. This result, which we prove in § 2, is a gen-
eralization of a result proved by I’in, Kala¥nikov and Oleinik in [4].
In §3, we observe that Moser’s Harnack inequality ([5]) implies that
a non-negative weak solution of (1.2) with u,(x) = 0 satisfies the growth
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condition (1.5) (1). Thus we obtain the following generalization of Widder’s
Theorem 5 ([8]). If # is a non-negative weak solution of (1.2) with
uo(®) = 0 then 4 = 0 (Theorem IT). Our main result (Theorem IIT) is
proved in § 5. We show there that every continuous non-negative weak
solution of (1.2) is uniquely determined by its initial values. This result
is a direct generalization of the theorem which Serrin announced in [7] (2).
The proof of Theorem IIT is based on Theorem II and a Maximum
Principle which we prove in § 4. Finally, in § 6, we derive an estimate
for the gradient of a non-negative weak solution under the assumption
that the initial data satisfies a certain growth condition (Theorem IV).

We shall have occasion to refer to various function spaces in the
remainder of this paper. For convenience we list these spaces here. Let
Q be an arbitrary open sphere in E". H"*(Q) is the closure of the 0™(RQ)
functions with respect to the norm

@l = {!(q’z‘l‘ Z‘Pi‘)d-’v vz

HY(Q) is a Hilbert space with the obvious scalar product. It is known
([3]) that H**(Q) is equal to the space of functions ¢ which are strongly
differentiable on £ and for which

Qf(qJ’+ Z¢L)M< .

The closure with respect to the H"*-norm of the C™(2) funections which
have compact support in 2 will be denoted by Hy*(R). L’[0, T; H"}(Q)]
is the space of functions ¢(z,?) with the following properties; (i) ¢ is
defined and measurable in Qx (0, T), (ii) for almost all te(0, T),
@(x,t) e H*Q), and (iii) |||z e L*(0, T). The space LY0, T; Hy*(2)]
is similarly defined with (ii) replaced by: (ii)’ for almost all ¢ ¢ (0, T),
o(x,t) e Hy*(Q). L[0, T; H**Q)] and L0, T; Hy*(R2)] are known to be
Banach spaces with respect to the norm

T 1
([ lplEnad)™ .

L™[0, T; L*(2)] is the space of functions ¢(x, t) such that (i) ¢ is defined
and measurable on 2 x (0, T'), (ii) for almost all ¢t € (0, T'), ¢(x, t) e L*(Q),

(*) In [5] Moser proves the Harnack inequality for weak solutions which have
square integrable strong derivatives with respect to ¢. Since we do not assume the
existence of a ¢-derivative here we shall need an extension of the results given in [5].
Such an extension was announced by Moser at the Joint Soviet-American Symposium
on Partial Differential Equations at Novosibirsk in August 1963. In the Appendix
to this paper we show how this extension can be derived from [5].

(*) The author is greatly indebted to Professor Serrin for giving him access to
the unpublished proof of the theorem announced in [7].

20%*



288 D. G. Aronson

and (iii) ||g|lzag) € L7(0, T'). This space is also a Banach space with respect
to the norm

ess.maxX. ||@|[raq) -
{0,77

»

Finally, we will denote by H"*[0, T'; I*(Q)] the closure of the C* func-
tions on 2 x (0, T') with respect to the norm

T
N ICE

We note that by a standard limiting argument we can reformulate
our definition of weak solution as follows. A function # is a weak solu-
tion of the Cauchy problem for (1.2) if, for every sphere QC E",
u e L7[0, T; L}(Q)] ~ I’{0, T; H*R)] and wu satisfies (1.3) for all
te[0, T] and all test functions @ e L’[0, T; Hy*(2)] ~ 12[0 T; L}(Q)).

§ 2. General uniqueness theorem. We shall prove the following
THEOREM 1. Let u be a weak solution of (1.2) in S with uy(x) = 0. If

T
(2.1) [ dt [ertuxa, tyde < oo
0 En

for some a >0 then-u =0 in 8.

As we remarked in § 1, Theorem I generalizes a uniqueness theorem
proved in [4]. The proof of Theorem I follows essentially the same lines
as the proof of the corresponding result in [4]. The main difference lies
in the fact that we do not assume the existence of any ?-derivatives
of . In [4] it is assumed that » has a square integrable strong derivative
with respect to .

Let yr(x) e C'(E™) be such that yg(x) =1 for 0 < |z| < R, yr (2)=0
for || > R+ 2, yr is a non-increasing function of |z| for |z| > 0, and

Zm, 1. For arbitrary g > 0 let @(x, t) = u(x, t) exp {— (a+ ;Bt)z|*},

(w, t) = yr(®)% (2, t) and 4(x, ) = |@|d(z, t). Let Kx(t) be an even aver-
aging kernel with compact support in |t| < k (cf. [3]). For any locally
integrable function f(t) we shall write

[4
fMz) = | Ealz —n)f (m)dn

for 0 <z <.
Let

en(®, 7) = yr(®)@®, 7) exp {— (a+ §f7)|2[*} .
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It is clear that, for all sufficiently small A, ¢ is an admissible test func-
tion in (1.3). Thus we have

[
@22)  [ulz, e, Ydo+ [ dr [ (~prut ) aytapne)dz =0
B o E» ®]
for all te[0, 7). We investigate the behaviour of the individual terms

in (2.2) as h—>0.
It is not difficult to verify that

!
23) [dr [ upnds
0 En

t ! i
= [ [ Eite—m)| [ (2, )0(2, pyda}dran—18 [ dx [ dlo, )i, v)d.
00 En 0 En

In view of the symmetry of K, the first term on the right in (2.3) is
zero. Thus

t
[ & [umido = —plip+4,

~

|41 < LBl lla*— ) .

where

Here

7 t
Iz = f dr | frde.

En

By a well known property of averaging kernels (cf. [3]), A >0 as h—>0.
Therefore

]
(2.4) — [ dr [ upn.dz >3l
0 En

as h—>0.
Now consider

i i
[ | 2 @i Uy Pray A = f i [ Z a5 Uuz(yre” P u),dr + B,

0 En 4,5 0 En 4,5

where
i

B={dr [ D aiupfype@r¥ll(gh _ )y, do.
J :

En 13
Since
{yre~CT¥IER (G — @)y,

= eI — @)y, 2y e (@ — W)~ 2 (ot §pr) 2y (" — 1))
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we can write B as the sum of three integrals which we shall denote by
B, for p =1,2,3. Using the Schwarz inequality and (1.4) we obtain
| Bl < v M|V (7" — )|l
where Vf(x,t) = (9f/ex,, ..., Offox,) and
M =|lyrVu exp {—(a+ §B7)|z*}] .

Similarly, taking into account the properties of ygr we obtain

!
| B,| évM(fdr f |'¢7"—1‘L]2dm)1l2.
0 |Tl<R+2
Finally, if t < é we have
| Bl < 2v(a+ £p80) Mjjd*—dlf.

Thus it follows from the known properties of averaging kernels (cf. [3])
that B->0 as h—0. Therefore

[ ¢
25)  [dr [ D ayuaprmda—>[dv [ D ayusrhe * M ), do
0 En 4, o E® i,

as h—0.
Since we can write

h
#(@, 1) = yre~ @+l [ R (¢)ygemet -0ty (g, 1—g)dg
0

we have
[ w(@, tyou(z, tydo = } [ @, do4-C,
En En

where

h
¢ = [ ‘0| [a@, 0@, -0 —a, 0] da}d.
0 En
Let y(z) € C3(E™). It follows from (1.3) that
(2.6) [ (@, t—0p@)ds > [ (@, yy(z)de
ER En

a8 t— ¢ —1+4 through values in [0, 7'). Since 4 is the product of » and
a smooth compact support funection, (2.6) also holds with « replaced
by . On the other hand, since i (x, t) ¢ L*(E™) and vanishes for |z| > R+ 2,
it can be approximated in the mean with arbitrary accuracy by Cy(E")
functions. Thus C—>0 as h—>0 and we have

(2.7) [ u(@, Yor@, tydo >} [ @, t)do
En En

as h—0.
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Thus it follows from (2.4), (2.5) and (2.7) that if we let A —0 in (2.2)
we obtain

’
(2.8) + [ @@, da+3plar+ [dr [ D) ayus(yre P u)ydn = 0
E® 0 E* i
for t [0, min(4, 7). °
Let D denote the third term on the left hand side of (2.8). We have

¢ t
D =fd1: fZa,-,-v.-'v,-d:v—i—Zfdt fue"“’**ﬁ’)”"Za,-,-'v;ym,dw—
o Er iy o En 0
{
—2 [ dr [ (2a+ Br)yrue @ ¥ N g, 0.0,dx = D, +D,+D;,
0 En .7
where

,v‘, — yRe—(a'l"*ﬁT)}xl’u:u .

It is easy to verify that

{
| Dy| < $D;+ 2v f dv f ute—Ca+BIlzid
0 R<|z|<R42
and that

\Dy| < 3Dy 2(2a+ o)l

for 0 <t < 4. Thus, from (2.8), we obtain

(210) 3 [ @z, )do+ (38— 2v(2a-+ RO}
Eﬂ-.

¢
< v f dr f ute—(2a+Anlz g
0 R<|z|<R+2
for all ¢ ¢ [0, min(d, T)].

If a =0, we set § =0 and 6 = 4+ co. For a > 0, given any 4 such
that 0 < 6 < 1/32a» there exists a § = §(8) > 0 such that § = 4v(2a+ p0)%.
For B chosen in this manner, the second term on the right hand side
in (2.10) is zero. In view of (2.1) and the properties of yg it follows
from (2.10) that

min(3,7)
[ eeormiaturw, ydo <ty [ @ [ e-earmeburdy
lz|<R o En

for all ¢t €|0, min(d, T')]. Thus if we let R —>oco we obtain

min(3, 1"

f e~ Ca+flzl’y2(p, t)dr < 4v f dr f e~ Ca+plzl*y2dy
En 0 E"
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on [0, min(é, 7')]. Finally, if we integrate on t from 0 to min(d, T)
we find
min(s,T)

(1—4vmin(s, T)} [ dr [e-eotsilatuzde <O0.
0 Er
Therefore for 6 < min(1/32a»,1/4v) we have # =0 on [0, min(4, T)].
In case 6 > T this completes the proof. If 6 < T, the proof can be com-
pleted by a finite number of repetitions of the same argument.

Remark. The uniform parabolicity of L does not enter into the
proof of Theorem I. It suffices to assume that the ay are bounded and
measurable and that D ay;(x, t)£:& = 0 almost everywhere in §. More-

i

over, we may replace the assumption that
t
[ dr [1Vupds < oo
0 ]

for all (0, T) and every open sphere 2C E" by

4 n
fd‘l,'f Zaifux,u,,dw< oo .
0

2 ij=1

On the other hand, Theorem I can be easily extended to uniformly para-
bolic equations with lower order terms (cf. [4]).

§ 3. Non-negative solutions with zero initial data. Let
# be a weak solution of (1.2) in §. Moser [5] (*) has shown that % can
be redefined on a set of measure zero so that the resulting function is
Holder continuous on every compact subdomain of S. We assume that
this has been done. Hence we may speak of the value of » at any point
of 8. We shall assume that 4 > 0 in S and that u,(z) = 0 for all = ¢ E".
We extend the definition of « to the half-space { < 0 by setting #(x,?) = 0
for t < 0. It is clear that the resulting function, which we again call u,
is a weak solution of the Cauchy problem

du 2": 2 . ou) B
at—ﬂglax,-n“”‘“’"")éaa}_" for (x,1) € E* x (—o, T,

w(r, —p)=0 for xekE",
where p € (0, co) is arbitrary and

- aij(z,t) for t>0,
aij(z, t) = d; for 1 <0.

Again, we may assume that « is continuous and % > 0 in E" x (—p, T].
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According to Theorem 2 of [5](!), there exists a constant ¢ > 0
which depends only on » and » such that

B o T
w(z,t) <u(0,T) exp‘c(T +E +1)}

for (z,t) e E" x[0, T—5](3). Here 6 is an arbitrary number such that
0<d<T. If (0, T) =0 then u(z,t) =0 on E" x[0, T—6]. Otherwise,
we have

T-0
f dt fe*z"""uz(w, t)dx < oo
0 En

for any a > ¢/4, and it follows from Theorem I that u(x,?{) =0 on
E" x[0, T'— ). Therefore, since d > 0 is arbitrary and u is continuous,
we have

THEOREM II. If u 18 a non-negative weak solution of (1.2) in 8 with
Uo(w) = 0, then u =0 on S.

§ 4. Maximum principle. In the proof of our main result (§ 5)
we will need to be able to make pointwise comparisons between various
weak solutions of (1.2). Specifically, we will need the following general-
ization of the classical (weak) maximum principle for parabolic equa-
tions. Let X = (|z| < ¢) x (0, T'], 2* = (|o| < 0*) x (0, T] and I = {(|=|
< )X (t=0)} v {(|#] = o) x[0, T]} for some fixed numbers ¢ and pg*
where 0 < p < p*. Let % e C°%(2*) be a weak solution of (1.2) in Z*,
that is, we assume « satisfies (1.3) for test functions with compaect sup-
port in |z| < g*. Let we OZ) ~ L0, T; Hy*(|z] < ¢)] be the weak
solution of the boundary wvalue problem

Lv=0 for (z,t)el, ov(x,0)=124x) for |z|<op,
v=0 for (z,?)e(lz]|=0)x[0,T],
where v,(x) is assumed to be identically zero in a neighbourhood of |z| = e.
In particular, v satisfies (1.3) for test functions with compact support

in |z| < p. The existence and uniqueness of v is proved in [1]. We shall
prove the

MAXIMUM PRINCIPLE. Let w = u—v, where u and v are defined above.
Then

(4.1) minw < w(zr,t) < maxw
r r
for all (z,1) e Z.

(®) The inequality (1.6) in [5] is not valid for 0 < ¢ < T—4. It holds only for
d<t< T-6 and we do not use it here.
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Choose numbers g; for j =1,...,4 such that ¢ = oy < 0, < ... < 0,
< o*. For arbitrary ¢ e (0, T') let 2'; (lo] < @5) x (1 —j/4)e, T]. Clearly
EOC 2 C..C2,C 2* Let n =n(z,t) be a smooth function such that
n=1in 22 and 7 = 0 in the exterior of X3 for ¢ < I. The function
z = nu belongs to C°(Z,) ~ L0, T; Hy*(|z| < o,)] and satisfies

f y(z, t)2(wz, t)da:—[—fdt ) (—w,z+ Za{jz;qu)dm
L%

|z|<es |:l<e¢

=6fdr f {1,0(17:%—;aﬁﬂanz,)+%zaﬁﬂm%a}dm
v »7

lz[<ea

for all ¢ € [0, T] and y ¢ C'(Z,) with compact support in |z| < g,. In other
words, 2z is a weak solution in 0%ZX,) ~ L[0, T; Hy’(|z| < o,)] of the
boundary value problem

(4.2) Lz=f—divg for (wv,t)e2,, 2=0 for (w,t)el},,
where I', = {(|2] < @) X (t = 0)} v {(|z]| = ¢,) X [0, T1}, f = qeu— Za,,uunz,,

= (g1y -y gn) and g¢; = uZa,mz‘ Note that f and g have support in

— 2, and that f, gy eLz(Z")

It is known [1] that the boundary value problem (4 2) has a umque
weak solution in £ = L¥[0, T; L*(|z| < g,)] ~ L0, T; Hy*(|z| < o,)). Thus
z is the only solution in this class. We extend the coeiﬁcients ag of L
for t¢ [0, T] by setting a;(wx,t) = 6, for t¢ [0, T). Let i’ denote the
integral average of a;; formed with a kernel whose support lies in
(|z|2+12)"* < 1/m, and similarly for ™, g™ = (g™, ..., ¢%™). The boundary
value problem

"'z___Zam ﬁg'"az) f™_divg™ for (x,1)eZ,.

ii=1

z=0 for (z,t)el,
has a unique classical solution z = 2, for each m > 1. Moreover,

~

1
(4.3) max | (v, o+ f at [ \Venfdo <o(s, TYIAE+II)
(0,7 lz| < lz)<
o4 o4

It is shown in [1] that the sequence {z»} converges weakly in £ to 2
as m —>oo.

For m sufficiently large the supports of /™ and g™ lie in the ex-
terior of X,. Thus Lm2m = 0 in 2, for sufficiently large m. Moreover,
according to (4.3),

[f .dadt < (v, T)(fE+1gIP) -
I
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It follows from results of Moser ([5]; Theorem 3 and the Corollary to
Theorem 1) that the sequence {z;} is uniformly bounded and equi-
continuous in ZX,. Since 2, >z weakly in £ and z = u on Z,, every con-
vergent subsequence of {z,)} converges to u in ZX,. Hence z,->% uni-
formly in Z.

On the other hand, it is proved in [1] that v is the uniform limit
in T of the sequence {vs} of classical solutions of the boundary value
problem

Lpvy =0 for (x,t)el,

Un(®, 0) = 0g"(®) for |a] <o,
vm =0 for (x,1)e(jx|=p)x[0,T].

Let I'y = {(|#| < @) x (t = &)} v {(|z| = o) X [¢, T]} and wm = 2m— Om.
Since Lpwm = 0 in X, the classical maximum principle holds for wm
and we have

minwpy < We(z, t) < MaAX Wy,
Iy To
for all (z,t) ¢ 2,. Now wp,-—>w uniformly on I',. Hence given any 6 > 0
there is an m(d) > 0 such that

minw — é < wn(@,t) < maxw- 6
ro FO

for all (z,t) ¢ 2, and m > m(d). If we let m ->oco we obtain

minw—4d < w(z, t) < maxw-- 8
Io T

in X,. Finally, since 4 is arbitrary, it follows that

(4.4) minw < w(zr,t) < maxw
_ Iy Ty

in %,.
Consider a fixed point (z,?) e 2. According to (4.4) we have
(4.5) A = min{minw, rlninw(a:, e)}) <w(z,?)
o r|<e
< max {maxw, maxw(z, &)} =B
ae |z|<e

for any ¢ ¢ (0, t), where o, = (|z| = o) X [¢, T']. Let 0(¢) = max |w(z, e)—
_ lzl<e
—w(z, 0)|. Since w is uniformly continuous in X, 6(¢) >0 as ¢->0. Now

B< ma,x{maxw,miaxw(x, 0)+ 6(e)} < maxw-+ 0(e) and A > minw— 0(¢).
de |zl<e r r

Hence
minw— 6(e) < w(z,t) < maxw-+ 6(e)
r r

and (4.1) follows by letting &-0.
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Remark. Since every weak solution is continuous in the interior

of its domain of definition (cf. [5]), (4.5) holds without the hypothesis
that u ¢ C°(2*) and v e C°(2).

§ 5. The representation theorem. We consider a non-negative
weak solution % of (1.2) in 8. We assume that « is continuous in S. Let

Zm = (| <m)x (0, T]
and
I'm = {(Jo] <m) x (t = 0)} v {(|z| =m) x[0, T]}.

For each integer m > 3, let ym = ym(x) denote a smooth function de-
fined for all # ¢ E" such that y,, = 1 for |2| < m—2, ym = 0 for |z} > m—1,
0 < ym <1, and |Vyn| bounded independent of m. Consider the sequence
of boundary value problems

Lv=0 for (z,t)elm, v(x,0)=vm(r)u(xr,0) for |z|<m,

(5.1)m
v=0 for (x,t)e(|x]|]=m)x[0,T].

It is shown in [1] that, for each m > 3, (5.1)n has a unique continuous
weak solution. More precisely, there exists a function vy(z,t) € C(Zn) N
~ L0, T; Hy*(|@| < m)] which satisfies

(82a | vals, V(e )do+ f & [ (~ompet Zwm.%,)dw

Izl <m |z|<m

| rm(@)uiz, 0)p(e, 0)do
|lzj<m
forallt e [0, T]and all ¢ € L0, T; Hy*(|z| < m)] ~ H*[0, T; L*(|z| <m)]
Moreover, vm 18 the only functlon in L7[0, T; I¥|2] < m)] ~ L¥o0, T;
o(|z] < m)] which satisfies (5.2)m, and vn >0 on X,. We extend
the definition of v, to all of § by setting v, = 0 for (z,1) e S—Zp.
We shall now prove

THEOREM III. Let w be a non-negative weak solution of (1.2) in §
and let u be continuous in S. If vm is the sequence of weak solutions of the
boundary value problems (5.1)m, then vp—>u as m—>oco pointwise in S and
uniformly in every compact subregion of S.

Thus, in particular, a continuous non-negative weak solution of (1.2)
is uniquely determined by its initial data.

Since v = 0 and ¥y, >0 in §— Z',,., we have Opi1 = Um in 8—Zp.
Moreover, vp11 > ¥m on Iy. Hence, by the maximum principle, v,,+1 = ¥m
in Z». Therefore, ¥m41 = vm in S and the sequence {vn} is non-decreasing.
On the other hand, for any m, % > v, on 8—X, and I's. It follows from
the maximum principle that % > v, in Ym. Thus « > v, in S for all m,
and we have

0<y,<<...<p ... €U
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for all (x, t) ¢ S. Therefore, there exists a function w == w(x, t) such that

0<w<uin S and vy —>w as m—>oo pointwise in S.

Let 2 be an arbitrary open sphere in E" and Q* be a concentric
sphere such that 2 C Q*. Choose m, so large that Q* C (|z| < m,). Then
for any ¢ e L0, T; Hy*(2%)]~ H[0, T; I*2*)] we have

t
(5.3) f (2, t)cp(w,t)dm+fdt f (—vmqp,—l- Zaﬁvm,%,)dw
0 %)

x| <m x| <m

= | vn(@, 0)p(z, 0)ds

lxl<m

for all t ¢[0, T] and m > m,. Let u = u(x) be a smooth function defined

for all # ¢ E” such that x =1 on 2, u has compact support in £*, and
0 < u < 1. Define

oz, 1) = () vm(@, 1)

(cf. § 2). Clearly ¢, is an admissible test function in (5.3). By the argu-
ment employed in the first part of the proof of Theorem I we obtain

t
1 fp”(m)vfn(m, t)ydx+- fdt f ,uZZa,-,-v,,mv,mdw
g o g %

{
— 3 [ W@ ke, 0)dz—2 [ dr [onn D GyOme ey .
o* 0 o 1,7

Thus

¢
J‘ W (@) V(@ t) dac+ fdr f ‘uzza/ij Vi VOmazy AT
n.

0 Q* 1,7

t
& f,ug(as)v?n(:v, O)da:—f—«ifdt fvf,,Zai,-ywyz,dw.
o0 [1}

aQ* 1,7

Finally, using (1.4), the properties of u and the fact that v, <,
we have

! ¢
(5.4) f vm(, t)dm—{—%bfdrdfw'vmlzdm < fuz(m, O)dm—i—cbfdr J wdw

2 Q- a*

for all te[0, T] and m > my, where ¢ is a positive constant which de-
pends only on », 2 and 2*. We conclude from (5.4) that there is a sub-
sequence of the v, which converges weakly to a limit function in
L~[0, T; L}Q)] ~ L[0, T; H**()]. However, since v, >w pointwise in §
it follows that the whole sequence {vm} converges weakly to w in
L¥[0, T; LY(@)] ~ L[0, T; H*(L)].
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For any m > m,, vm satisfies

¢
(5.5) f'vm(a:, De(z, t)dm—l—fdt f(—'vmtp,+ Zaﬁvmtpq) dx
En o Er ]
= [ @@, 0)p(a, 0)ds

for all t [0, T] and all ¢ e L*[0, T; Ho*(2)] ~ H'[0, T; I}(2)]. In view
of the weak convergence and pointwise monotone convergence of vy
to w we can let m >oco in (5.5) to obtain

¢
fw(so, e(w, t)da:—l—fdr f(—-'wtp,+ Za,-,-wx,%,) de = fu(:o, 0)p(x, 0)dx
En o En T En

for all te[0, T) and all ¢ L0, T; Hy*(Q)] ~ H"0, T; L*(2)]. Since
£ is arbitrary, it follows that w is a weak solution of the Cauchy prob-
lem (1.2) in 8 with initial data w(z, 0). Therefore u(z,t)—w(x,t) is
a non-negative weak solution of (1.2) with zero initial data. We con-
clude from Theorem II that w = u in S and v, —>u pointwise in S. The
uniformity of the convergence in compact subregions of § follows from
the continuity of 4 and Dini’s theorem on monotone convergence.

§ 6. Estimates for non-negative solutions. We consider
a non-negative weak solution # of (1.2) in 8. We assume u is eontinuous
in § and that there exists an a > 0 such that

(6.1) [ e-zl=tur(z, 0)dw < oo
b‘ﬂ

In case a > 0 we cannot expect « to exist for arbitrary 7. For example,
the Cauchy problem

a_u 2y
ot ox?
has the solution

=0 for t>0, wu(z,0)=e"

1Al z®
u(z,t) = (1—4t) exP{'_l——M}
which is clearly only valid for ¢ < }.

According to Theorem III, the sequence v, converges pointwise to .
For each m, v, satisfies

]
6.2) [ onlz, )o@, )do+ [dr [ (—vmpit D 6 Vnegs) do
(i} if

|z|<m lzl<m

= f'v,,.(w,O)q)(m,O)dx

|zl <m
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forallt € [0, T] and all ¢ € L°[0, T; Hy*(|z| < m)] ~ H"*[0, T'; L*(|Jz| < m)].
For arbitrary g >0 let

Vm(%, 1) = Um(@, 1) exp {— (a+ }Bt)la}*}

and 9y, = ||vm. Then

Pa(®@, 1) = Tin(@, 1) exp {— (a+ } Bt)|w]2}

(cf. § 2) is an admissible test function in (6.2). By the argument em-
ployed in the first part of the proof of Theorem I we obtain

¢
1 f n(z, t)ydz + 18 f dr f Do Ao+ f dr f e“"‘“””"’l'z 0§ Oz V08

lz|<m jz|<m jzj<m

<t [ o, 0)dot2] f dr [ @y (94 Br) N ayomaida|.
1,j

|z|<m |z|<'m

Thus, in view of (1.4),
t i
(6.3) fﬁf,,(m,t)dw+2{§ —4v(2a+ﬂT)2}fdz J o da +

0 0 2| <m
t

L1 J dv j e @t gy Pde < J 25z, 0)da
‘Vo |z|<m lz|<m

for all 1[0, 1.
If a =0 put g =0. For a >0, assume T < 1/64ar and put

B ={1—32aT— (1—64arT)"*}16»T" .
In either case the coefficient of the second integral on the left hand side

of (6.3) is zero. Thus, since vn(x, 0) = ym(z)u(z, 0) < u(x, 0), it follows
from (6.1) and v, = 0 for |z| > m that

¢
(6.4) f ootttz o t)d:v—l—% [ ar | et
En 0 En

< fe"zdlzl'ug(w, 0)dz
En

for all t¢[0, T].

Let 3 denote the Banach space of measurable functions f(z, t)
such that

1/2

AN = ess. Mmax. { f e~ CatfDlziif (g t)d:v}

[ @ [ eomenpypa™ < co.
0 En















