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Asymptotic behavior of non-linear differential equations via
non-standard analysis

Part III. Boundedness and monotone hehavior of the equation
(a(t)p(@)2) +o(t)f(2) = 4(2)

by V. Komrov (Morgantown, West Virginia)

Abstract. Using the techniques of non-standard analysis this paper continues
the study of the equation stated in the title. Some boundedness and monotonicity
theorems are proved, following assumptions concerning the coefficients a(t), ¢(t),
the forcing term ¢(t), and properties of the functions ¢(z), f(z). The notation and ba-
sic properties of the non-standard model *R are the same as described in parts I and II.

1. Introductory remarks. Using the techniques of non-standard
analysis this paper continues the study of the asymptotic behavior of
the equation

(1) (e e(@)a’) +e()f(2) = ¢(2)
and of the homogeneous equation
1" (a(t)p(@)2’) +e(t)f(®) =0, te[0, o),

where throughout this paper we assume that
a(t) e ! [0, o0), ¢(t)eC[0, o), q(t)€ Ll(loca.lly) [0, o0).

a(t) is eventually positive (¢(?) could change its sign). f(§), @(§) € C( — oo,
+ o0),

lim sup
-0

")

Equation (1) occurs in celestial mechanics as the law of conservation
of angular momentum. (See a brief explanation in [3], or read Poincaré [6],
Chapter 7.) We assume that solutions are continuable. For exact neces-
sary and sufficient conditions for continuability of equation (1%) see [3],
Theorems 1 and 2.
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No exposition of the foundations of non-standard analysis will be
attempted in this paper. We refer the reader to [5], (7], and [8].

For a discussion of oscillatory behavior of equation (1) and (1%)
we refer to [3] and [4]. For higher order equations see [3], [9] and [10].
This paper continues the basic ideas of [4] and [3] in the study of equa-
tions of type (1), (1%).

2. Notation. As in part I and II of this work the notation follows
closely that given by A. Robinson in [8]. *R .denotes a non-standard
model of the real number system R, which is an enlargement of R. The
notation # ~y (rc€*R,y €*R) implies that (#—y) is in the monad
of zero, i.e. (x—y) is an infinitesimal. *R,; denotes the elements of *R
which are bounded in absolute value by some standard number which
"R, (*R,, = *R['R,;) denotes the infinite elements of *R, with *R,,
*R__, denoting respectively the positive and the negative infinite numbers.

Note in the non-standard arguments concerning asymptotic behav-
ior of differential equations we can utilize the results of Bernstein [1],
Loeb and Robinson to extend the Lebesgue measure to power set of *R,
ie., *u: 2(*R)—>"R. std (*u) coinciding with the Lebesgue measure on R.
In this context we introduce essential asymptotic concepts. We shall say
that & function f: *R—>*R has essential asymptotic property P if for
[t, 2] = *R the measure *u of the set S on which P is not true is infini-

%
K(s) ~ 0. Essential limits will be

2 —h

tesimal compared to (¢,—¢,), i.e.
understood in this sense.

3. Some boundedness theorems.

THEOREM 1. Suppose that the following hypothesis are true:
For Sufficiently large values of |z| the function @(x) is of constant
sign, the function q(t) 48 bounded, and

either lim @- = 0 while limsup [e(?)| < oo,
or lim suplL?\ < oo while lime(t) = 0,
1§00 I >0
while m inf |p(&)| > 0, liminf |a(t)] > 0.
[€]—+00 t—o0 N
Than any solution #(t) of (1) which fails to be eventually monotone,
and such that lim|Z(t)] = co will have the property esslimz:}T(:)) =0
{—o0

Note. We observe that any equation of the form z" +¢(f)2”* = ¢(¢),
where 0 < a < 1, and ¢(?) and ¢(¢) are bounded, satisfies our hypothesis.
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Also the pendulum equation z'’ 4 ¢(¢)cos(kx) = q(2), with the & a constant
with the same assumptions concerning c¢(?), ¢(t), fits these hypothesis.

THEOREM 2. Suppose that ¢ (&) is of constant sign for large values of
|El, and Ef(E) > 0 if £ # 0. Then if in addition o the hypothesis of Theorem
1 we also assume that c(t) is eventually positive and q(t) is eveniually non-
positive, then any solution Z(t) of (1) such that lim |Z(t)| = -+ oo must be
eventually monotone. d=voa

Proof of Theorem 1. Suppose that to the contrary there exists
a solution &(f) of (1) such that lim |Z(¢)] = oo, but it fails to be eventually

{—ro0
monotone. Then it is easily shown that there exists a sequence of points
{t;} e*R,,, such that z(f;) e*R, and 2'(f;) =0,i=1,2,... Let us
select such pair of points ¢, t,e*R,,. Since lim 1w( )] = oo cE(t) e*

400

a(l ‘(¢
Vi e [t;, t;]. We examine the behavior of the integral J ( )o(@ t) ))

Clearly the value of this integral is zero since z (t) = &'(t;) = 0, while
&(t) # 0 on [t;,t;]. However, 2(t) is a solution of (1), hence (a(t)cp(:v)a:)
= —c(?)f(z)+q(t). Therefore

Y4 A,y
_ a(t)p(x)a’
@0 *,if ( () ) “

—fj{—o(t) 10, 10 _ (06 @E))
e T @ (t) a2 |

The hypothesis imply that ¢(#)f(z)/2 and ¢(f)/Z are infinitesimal for all
te*R,,. The last term in the integrand of (a) is of constant sign.

a()e(z(t)) (@' (1))?
Suppose that, on a subset 8 < [, %;], n(t) = )gp((ﬁ((t)))i ®) is not an
infinitesimal. Then there exists a standard number m > 0 such that,
for all te 8, |n(t)] > 2m. Without any loss of generality let us assume
7(t) > 0 on §. ‘

Then

I(M) dt > m-p(8)
P @
on [%,t;1/8, n(t) is an infinitesimal, and

ap@a’\
(——w—) dt — f|k(t)|dt,

CRATCA [t bgls
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where k(t) ~ 0 Vt e [#;, ,1/S. Then, for any standard ¢ > 0, |k(f)| < &, and

|k(t)dt < &-u(lt;, ;1/8).
[t,-,t]-]/s

Hence it follows easily that
N
p(s) <L
w(lt, 41/8)  m
Since £ was an arbitrary standard number if follows that

p8
([, 41/8)
proving that 7 (?) is essentially an infinitesimal on [t;,t]. Since lim infe(£)

o 16100
#0, lim infla(t)| # 0, it follows that (2’'/®) is essentially an infinitesimal

f—oo

on [#, %], completing the proof.
COROLLARY 1.1. If hypothesis () lim inf|p(&)] > 0 is replaced by the

1€]>o0

condition liminf|p(&)/&| > 0, the conclusion of the theorem is changed to

&—00

ess lim (2')2/(Z) = 0, which is a stronger result.

f—o00

Similarily if (*) is replaced by lim inf|p(&)/&% > 0, then the conclusion

&—>o0

Theorem 1 is changed to ess lim «'(¢) = 0.

t—>o0

Proof of Theorem 2. The proof follows in a routine manner from
the argument of Theorem 1. Suppose as before that there exists points
i, 1 € "R, such that #'(t;) = &' (¢;) = 0. Without any loss of generality it is
assumed that (¢) > Oon [t;, ;] = "R, . Since q() < 0, ¢(¢) > 0 Vi e [t;, ;]
the integrand in formula (a) is of constant sign, and equality (a) is
impossible. Consequently no points t;,?; can exist in *R_, such that
@’ (t;) = @' (t;) = 0. This easily implies that z'(f) has no zeros on *R_,
and «’(¢) is of constant sign V ¢ € *R+m. Hence Z(t) is eventually monotone.

THEOREM 3. Suppose that lim inf [f(&)/&] > 0, (&) > 0 if || is suffi-

[€]—=>00

ciently large lim supjp(&)/&| < oo, and a(t), q(t) are bounded functions. Let

|€é]—>o0

& > 0 be chosen. Then any solution Z(t) of (1) with the property lim & (t)] = oo
t—>oo

e u{(t;, ;1/8} > mu(S) and

0,

will be eventually monotone on all intervals on which c¢(f) 8 positive,
and |c(t)] > e. Moreover, for some M > 0, there exists T > ¢ such that on
any interval [1,,1,],%, > T on which c(t) is negative it is possible to find
i€ [ty t.] such that |(z'())*/x(f)| > M (uniformly on all such intervals).

Note. The choosing of (an arbitrary) ¢ > 0 was a device to avoid
a non-standard theorem. What was needed was a statement c(f) # 0
on the interval in question when such interval lies in *R._,.
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Proof. Proceeding as in Theorem 1 we derive equality (a). As be-
fore #;, t; are points in *R, such that &'(f;) = &'(1;). If ¢(t) is positive,
then —¢(f)f(&)/z is & negative non-infinitesimal number, (¢(?)/2) is an
infinitesimal, and (—e¢(¢)f(#)/z) %0 is a negative number, while

—a(t)p(z)(2')
w2

ber + an infinitesimal -+ & negative number = a negative (non-infini-

tesimal) number, and equality (2) can not be satisfied. This completes the -

proof of the first assertion of the theorem.

is also negative. Since a negative non-infinitesimal num-

¢
If ¢(t) < 0, then by a similar reasoning we have: [ (negative non-in-
¢

) (2)(®')? '
finitesimal + infinitesimal — (‘M))dt = Oz. Hence the mean
a(t)p(@)(@')® . : e
value of - on (%, %) is a negative non-infinitesimal number.

But a() € *Ry; and (p(®)/2) € *Ry;. Hence (2')2/(%) 7 0 for some values
of te[t,1t], which implies the following statement: “d M > 0 (s'R)
such that |(2)2/#| > M an each such interval [f;, ¢,]” (with the properties
described above which can be stated in our language #). Since this state-
ment is in % an identical statement is true in R: “IM (e R)...".
CoroLLARY 3.1, If the hypothesis lim inf |f(&)/&]| > 0 4s replaced

|£]>00
by lim f(&)/& = + oo, then we can replace in the conclusion of the theorem

é—o0

AU > 0 by “YM > 07, i.e. limsup |(#)2/#] = -+ oo.
[ )

COROLLARY 3.2, If in the hypothesis of Theorem 3 lim sup |p(§)/&| < oo

1§l—>oc0

s replaced by lim sup |p ()| < oo, then we can assert a stronger conclusion:
|E]—>00
“IM > 0> lim inf |2’ (2)/z(t)] > M.
t—00

THEOREM 4. Consider equation (1) with additional hypothesis: a(t)
is bounded, c(t) ts eventually positive and bounded away from zero,
lim ¢ () =0, &f(£) > 0, & £p(§) > 0 V & 3£ 0, lim inf|f(&)/&] 5 0, then any

t—o0 |1&|~>00

solution T (t) of (1) which is eventually bounded away from zero must be un-
bounded.

Proof. We make the following observation. If Z(f): R, —R is bound-
ed away from zero, but is bounded on any ray [T, o), then %(f): "R,
—*R has the property [Vie*R,  Z(f) % 0 & &(t) e*R,;] &[I ¢, c*R .,
i=1,2,...,2'(};) ~ 0]. Suppose by the way of contradiciton that indeed
Z(t) 0Vt e "R, but 2’ (f;) ~ 0 for a sequence of points {#;},7 =1, 2, ...,
when ¢;—1, are arbitrarily large (in *R) for suitable choice of indices i, j.
(Note. Consider the sentences describing this in R.)
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We repeat the device used in Theorem 1 and 2 and integrate along
the trajectory of the solution (%)

Y

[ (a(t)g@)a‘a'(t))’ P IOEAON
; .’L‘(t) m(t) t;
since
CP@) _p [t =1
& Roa {t =1,

while &'(;) ~ &'(t;) ~ 0.

We use again formula (a) (in the proof of Theorem 1) and observe
that —c(t)f(®)/@ is negative and is not an infinitesimal, ¢(¢)/#(¢) is infi-
nitesimal, while the remaining term in the integrand of (a) is negative.
Hence the integrand is bounded away from zero by some standard number.
But then

b

J‘ a(t)w(’w‘")a}')'dt ~0
. z -

L

is possible only if #,—%, ~ 0. This is a contradiction, which proves the
theorem.

We comment that so far all theorems proved here and in parts I and
II were standard theorems, i.e. the statement of each theorem referred
only to R and to functions from R to R. However, some asymptotic
properties of solutions of differential equations are stated easier in non-
standard terms. Some problems concerning oscillation, boundedness or
monotone properties of solutions lead naturally to conditions which are
complex when stated (in R) in terms of limits. Restated in *R they some-
times become quite simple and easy to interpret.

For this reason we shall offer two theorems stated in both the stand-
ard and non-standard versions.

THEOREM 5. Consider the solution (1) of (1) #: *R,—*R. Suppose
that, for any te R, a(t) € Ry, q(3) €*Ryz,c(t) % 0, and for any
Ec*R_, f(&) e*R,, and a(t)e(t) # 0. We also assume that ¢(&)f (&) is
a positive function (V£e(—o0, +o00)) if & #0. Suppose that, on some
interval [11,1,) ¢ "R, #(1) € "R, while ¢(#)z’(t) € *Ryz. Then t,—1, ~ 0.

STANDARD VERSION. Suppose that for sufficiently large values of
t the following conditions hold: limsup|a(t)] < oo, limsup|g(t)| < oo,

t—oo t—o0

liminf|e(f)| > 0, lim |f(&)] = oo, and there ewists T > 0 such that a(t)c(?)
o0 ’ 1&]->00

#0 for all t> T;(£)f (&) > 0 if £ # 0. Suppose that given any T > 0,
and given any M > 0, £ > 0, there exists an interval [t;, 1,1, > t; > T, such
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that x(t) > M for all t € [t;,1;], while |p(x(t)a’ ()] < & (for all t & [t;, §;]).
Then lim (t;— ;) = 0.

T—>o0

Proof. Let [t, ¢,] be an interval (in *R, ) with the properties stated
above.

Congsider the integral
[2

: a(t)qo(a‘a)a‘s')' a(t)e (1) & (1)
b — -} dt = A
® J (e * - e

since a(t) € *Ryg, ¢ ((2)) @’ (1) € *Ryy but f(2(1)) € *R,,. However,
t t

2 a Y 2 ~ -~
A% 1 AN 4 A m?\2
f(a(t)q»gw)m ) e f[—c(t) L 90 ag(@) £ 6) (@) ] i
J\f@) g f(@) 1 (@)
We observe that ¢(t) is not an infinitesimal, ¢(t)/f(2) is an infinitesimal,
— a(t)g(&) (@) f (&
ang —OOP@ @ @)
@)
tegrand is bounded away from zero by & standard number. The only
possibility which remains for the integral to have infinitesimal ‘value

is t,—t, ~ 0. This completes the proof. A very similar line of argument
leads to the proof of the following

THEOREM 6. Suppose that

‘t2

~ 0,

2]

has the same sign as —e¢(t). Hence the in-

. e(E)f(&) ] . & .

i | Sy < % d =0 i) <
limf(&) =0, limsuple(?)] < oo, liminfig(t)] > 0.
£—-0 {0 t—>o0

Then for any solution Z(t) of (1) if ©(8) # 0, but (1) ~ 0 Vt € [t;, 1,] = t,—
—1, &~ 0.

Comment on the proof. We make an observation that if «'(¢,) is
infinite it must assume a near standard value in an infinitesimal neigh-
borhood of ¢, if z(t) isnotinfinitein somenon-infinitesimal neighborhood of ¢, .

Hence if the interval [¢,, t,] stated in the conclusion of the theorem
was of length ¢, —¢, = 0, while 2'(¢) was infinite at ¢, and for ¢,, then [¢,, t,]
can be replaced by an interval [?;, t,] with identical properties (as stated
in the hypothesis) but such that #’(f,) € *R,;, and Z'(t,) € *R,;. Now an
argument similar to the one given in the proof of Theorems 5 and 6 com-
pletes this proof. The details are omitted.

During the writing of this paper I was told of the death of Professor
Abraham Robinson the originator of the non-standard analysis, a gentle
man with a sense of humor and a great mathematician. Professor Robin-
son offered me his advice and encouraged me to work on the subject of
this paper. All of us working in this field will miss his leadership.
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