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Existence of solutions for non-linear systems
of differential-functional equations of parabolic type

in an arbitrary domain

by S. BrzycHczy (Krakow)

Abstract. Let us consider a system of differential-functional equations of the type

(l) Fi[zi] =fi(tr X,Z(r, X), 2)’ iEJ={1,2,..., m}g
where
Y L. &
Fl =1 ; t: ]
o ,Z= e
(¢, x)=(t, x;,..., xJeD c R"*! and D is an arbitrary open domain whose projection on the ¢-
axis is the interval (0, T), z(¢t, x) = (z'(¢, x), ..., z™(t, x)) and z denotes the mapping

z: Da(t, x)—(z(t, x): J3i—2'(t, x)e R).

For this system we shall consider Fourier’s first boundary value problem.
As a special case of equation (1) we may consider the differential-integral equation

Fi[z] = [ fz(1, {)drd¢

to E

in which the integral is a functional of Volterra's type.

Using the iterative method of successive approximations, we shall prove that there is a
solution of the above problem in a function class E,. A similar problem for a cylindrical domain
has been considered in [3].

1. Notation, definitions and assumptions. Let D = R"*! be an unbounded
domain with respect to x, lying between the hyperplanes t =0 and t =T
< hy (where h, is a constant depending on system (1) and defined as in [2])
whose boundary D consists of two m-dimensional unbounded domains S°
and ST lying on the planes t =0 and = T, respectively, as well as of a
certain surface ¢ which is not tangent to any hyperplane t = const.

We shall assume that the surface o is of class C,},, 1.€., 1t consists of a
finite number of surfaces of class C', not overlapping but having common
boundary points.

Let us write: £ =800, D=DUZXUST, Dg=Dn{(t, x): |x] <R,
R >0}, Zg = dDg-S".
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E, denotes the class of functions ¢(t, x) defined in an unbounded
domain 4 < R"*! for which there exist positive constants M and K such that

lo(t, x)) < Mexp(K|x|?) for (t, x)ed.

We write shortly ¢(t, x)e E,(M, K; 4).

A function z (¢, x) = (z' (¢, x), ..., z™(¢, x)) will be called regular in D if it
is continuous in D and has continuous derivatives 9/, 9/dx,, &°/dx, 0x,
in D.

The space of continuous functions z(t, x) = (z'(t, x), ..., z"(t, x)) de-
fined in D with values in R™ is denoted by C,, (D). For the subspace of those
z which are bounded in D we introduce the norm

llzll, = sup {|Z'(£, x)|: ieJ, 1 <1, (, x)eD}.

A partial order is given in C,(D): for z, Ze C, (D) the inequality z < 7
means that

2'(t, x) <F(t,x) for (t, x)eD (ieJ).

We assume that the quadratic forms

Y a(t, x)A 4 (i€d)

a,f=1

are positive-definite in D.
For system (1) we consider Fourier’s first boundary value problem: Find
the regular solution z(t, x) of system (1) in D fulfilling the boundary condition

2 z(t,x) =0 for (t, x)eZX.

Let the functions fi(t, x, p, s) (ieJ) be defined for (¢, x)e D, arbitrary p
and seC,(D) and let the coefficients ai,(t, x) (ieJ; a, f=1,...,m) be
defined for (¢, x)e D.

We introduce the following assumptions:

H,: the functions f*(t, x, p, s) (i€ J) are continuous with respect to t, x and
locally Holder continuous with respect to x:

L: the functions f*(t, x, p, s) (ieJ) fulfil the Lipschitz condition with respect
to p and s: for arbitrary p, p, s, § we have the inequality

lfi(t’ X, P, s)_fi(t’ X, ﬁ’ :S-)I < Ll Z IPJ_I;’|+L2 Z ”sj_},“h
i=1 =1

where L,, L, are positive constants;
W: the function f(t, x, p, s) is increasing with respect to p', ..., p'~?,
it+1 m
yeees P™ 25

p
E,: the functions f*(t, x, 0, 0) belong to E,(M,, K,; D) (ieJ);
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H,: the coefficients diz(t, x) (ieJ; a, f=1,..., m) are continuous with
respect to ¢t and x, bounded in D and locally Hlder continuous with
respect to x.

Functions u(t, x) = (u' (¢, x), ..., u™(t, x)) and o(t, x) = (0" (¢, x), ...
..., U™(t, x)) regular in D and satisfying the differential inequalities

(3) Fi[u'] <fi(t, x, u(t, x), u)

o . (ieJ)
4 F'[V]=fi(¢, x, v(t; x), v)

in D and the boundary condition (2) will be called the lower and the upper
function for problem (1), (2) in D, respectively.

AssuMPTION A. We assume that there exists at least one pair uy(t, x),
vo(t, x) of lower and upper functions of class E; (Mg, Kq; D) for problem (1),
(2) in D.

2. Remarks and lemmas. The following lemma is a consequence of
Szarski’s theorem on weak differential-functional inequalities [11]:

LEMMA 1. Let us assume that

(1) the functions f'(t, x, p, s) (ieJ) satisfy conditions L and W,

(1) the differential inequalities

FuWl <fi(t, x, u(t, x), u)

o . (ieJ)
Fi[v]=f(t, x, v(t, x), v)
hold for (t, x)e D,
(i) u(t, x) < o(t, x) for (¢, x)e X.
Then

u(t, x) <v(t,x) for (t, x)eD.

It follows from this lemma that if u(t, x) and v(¢, x) are lower and upper
functions for problem (1), (2) in D, z(t, x) is a regular solution of problem (1),
(2) in D and conditions L and W are satisfied, then

(5) uo(t, x) < z(t, x) < vy(t, x) for (t, x)eZ.
We have in particular
(6) ug(t, x) < z(t, x) < vy(t, x) for (¢, x)eD.

Let Z(D) be the set of regular functions of class E, in D satisfying
condition (2) on Z2. Denote by P the transformation

)] P: Z(D)2u(t, x) — s(t, x) = P[u(t, x)],
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where s(t, x) is the solution of the system of equations
8) F[s1=f'(t, x, u(t, x),u) (icJ])

in D with the boundary condition (2).
The following lemma holds:

LEMMA 2. Let
(i) the functions f*(t, x, p, 5) (ieJ) satisfy conditions H,, L, E;

(ii) the coefficients diy(t, x) (ieJ; a, =1, ..., n) satisfy condition H,;

(i) u(t, x)e Z(D).

Then the function s(t, x) = P[u(t, x)] is wuniquely determined and
s(t, x)e Z (D).

Proof. From assumptions H,, L, H, and u(t, x)e Z(D) it follows that
the right-hand sides of system (8) are continuous in D and locally Hélder
continuous with respect to x. This fact and the assumption on the domain D
imply M. Krzyzanski’s Hypothesis (A) from [5]-[7]. It means that for any

R > 0 the system of equations (8) considered in Dy with the boundary
condition

s(t, x) = @g(t, x) for (1, x)e 2y

has a regular solution in Dy for any continuous function @g(t, x). Thus, by
using the above and assumption E,, P. Besala’s theorem [1], [2] can be
applied which implies that problem (8), (2) has exactly one regular solution of
class E; in D provided T < h,.

LemMA 3. If the functions f* (ieJ) satisfy condition W, then the operator
P: Z — Z is increasing.

Proof. Let i(t, x), #(t, x)e Z(D) and #(t, x) < #(t, x) in D. Using (7),
(8) and W we have

Fi[§-§1=f(t, x, @(t, x), &)—f'(¢t, x, d(t, x), ) <O (ieJ) in D.
From this and from a theorem on differential inequalities [2] it follows
that
5(t, x) <5(,x) in D
which means that
P[i(t, x)] < Pi(t, x)).
3. Existence theorem. Let us assume that Assumption A is satisfied, i.c.,

we are given a lower function u, (¢, x) and an upper function v, (z, x). Using
these functions, we shall construct two sequences of functions {u,(t, x)} and

{valt, 20}
(9) un(t’ x) = P[un—l(ta X)],

n=1,2,...
(10) U.(t, x) = P[vn—l(t’ x)]s
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We shall prove the following theorem:

THEOREM. Let

(i) the functions f'(t, x, p, s) (ieJ) satisfy conditions H;, L, W, E,
(i) the coefficients dais(t, x) (ieJ; a, =1, ..., n) satisfy condition H,,
(iii) Assumption A be satisfied and

(11) N = maxsup[vh(t, x)—uj(t, x)] < + 0.

Under these assumptions
1° the successive terms of the iteration sequences \u,(t, x)}, {v,(t, x)},
n=1,2,..., are uniquely determined in D and u,(t, x), v,(t, x)e Z(D),
n=1,2 ...;
2° the following inequalities hold:
(12) uO(t’ X)Sul(t, x)SMZ(t’ X)< . D
in D;
(13) volt, x) Z v, (t, x) 2 v,(t, x) > ...

3° the functions u,(t, x) and v,(t, x), n =1, 2, ... are the lower and upper
functions of class E,(M,, Ky; D) for problem (1), (2) in D, respectively;
4° lim [v,(t, x)—u,(t, x)] =0  wuniformly in D;

(14) n—a
5° the function

z(t, x) = lim u,(t, x)

n—ac

is the unique regular solution of the class E,(My K, D) of problem (1), (2) in D.

Proof. The first part of the conclusion is a direct consequence of
Lemma 2 and (3), (8), (10) (at this moment the problem whether h, is
decreased during the iteration process is open — it will be studied later).

In order to prove inequalities (12) and (13) by Lemma 3 it is enough to
show that

uo(t, x) < Pluo(t, x)] and v4(t, x) = P[ve(t, x)] in D.
It follows from (9), (8) and (3) that
Filub—uy] <S(t, x, uo(t, x), ug)—f*(t, x, uo(t, x), ug) =0 (ieJ)

in D and up—u, =0 or Z. Therefore according to a theorem on differential
inequalities [2] we obtain

uo(t, x) <u,(t, x) = Pluo(t, x)] in D.

The proof of the second inequality is analogous.
Starting with determining u, (t, x) and applying condition W and in-
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equality (12) we have
Filu)—f(t, x, uy(t, x), uy)
=fi(t, x, uo(t, x), uo)—f*(t, x, uy (t, x), u;) <0 (ieJ) in D.
It now follows from Lemma 1 that the function u, (t, x) is a lower function
for problem (1), (2) in D.

Repeating the above reasoning in the next induction step we prove the
first part of assertion 3°.

Denoting by z(t, x) the solution to be found of the considered problem
(1), (2) in D and applying Lemma 1 and (12), (13) we obtain the inequalities

(15)  wup(t, x)<u;(t, )< ... <u,t, x)< ... <2(t,, <.
e S0, X) K L. S0y (8, X) Svo(t, x)  in D.

From (15) and Assumptions A it follows that all functions considered
belong to some class E,:

(16) u,(t, x), v,(t, x)e E;(My, Kog; D) for n=1,2,...

The admissible height h, of the domain D depends on the constants K, and
L, m,... and can be specified using P. Besala’s formula from paper [2].
Therefore hy, does not decrease during the considered iteration process.

In order to prove part 4° of the conclusion we shall first prove inductive-
ly the inequality |

I+ L))"
n!

17 wi(t, x) < (ieJ), n=1,2,...in D,

where
w,(t, x) = v,(t, x)—u,(t, x).
Using (8)(10) and condition L we obtain the inequality
(18) Fi [(l):,] =fi(t9 X, Un—l(t7 x)a vn—l)"fi(t’ X, un—l(ts X), Up-— 1)

S Ll Z (D:_ 1 (ty x)+ mL2 ”wn— 1”!
i=1
and

(19) w,(t,x)=0 for (¢, x)eZX.

Assuming inductively that inequality (17) holds for n—1 and using the
definition of the norm we have

[m(Ly+ L)t} !
-1

From (18) and (20) we conclude that the function w,(t, x) is a solution

(20) lom-1lls < N
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of the system of inequalities

[m(Ly+L;)]"t""!
- (n=1!

(21) Flol]<N (ieJ) for (t, x)eD

with the boundary condition (19).
If we now consider the comparison problem for problem (21), (19)

[m(L,+L;)]" "

22 FIM] = N =

(teJ) for (¢, x)e D

with the boundary condition
(23) M,(t,x)=>0 on X,

then the functions

Mo 9 = NPT

(ieJ), n=1,2,...,

are its regular solutions in D.

Applying the theorem on differential inequalities in an unbounded domain
[1], [2] to systems (21) and (22) we get

[m(L,+ L)t}
n!

wi(t, x) S Mi(t,x)=N (ieJ) in D

which, using the principle of mathematical induction, ends the proof of (17).
Assertion 4° follows directly from inequalities (17) and 0 <t < T< hy.
The iteration sequences {u,} and {v,} are monotonous and (14) holds so

there is a function U (t, x) continuous in D such that

u,(t, x) = U(t, x) uniformly in D,

(24)
v,(t, x) = U(t, x) uniformly in D,
and this function satisfies the boundary condition (2).

To prove that the function U (t, x) defined by (24) is a regular solution
of system (1) in D it is enough to show that it fulfils (1) in any compact set
contained in D. Consequently, because of the definition of Dy, we only need
to prove that it is a regular solution in Dy for any R > 0.

It follows from (12), (15) and condition W that the functions
Si(t, x, un(t, x), u,) (ieJ) are uniformly bounded in Dy (with respect to n).
On the basis of W. Pogorzelski’s results [8] concerning the properties of
weak singular integrals by means of which the solution of the system

(25) Filu]=1t, x, up-,(t, X), uy_y) (i€J) for (t, x)e Dy
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is expressed we deduce that the functions u,(t, x) satisfy locally the Lipschitz
condition with respect to x, with a constant independent of n. Hence we
conclude by (24) that the boundary function U (t, x) satisfies locally the
Lipschitz condition with respect to x.

If we now take the system of equations

(26) Fi[Z]=f'(t, x, U(t,x), U) (ieJ) for (t, x)e Dy
with the boundary condition
(27) z(t, x) = U(t, x) for (t, x)e Xy,

then the last property of U (¢, x) together with conditions H; and L implies
that the right-hand sides of system (26) are continuous with respect to ¢, x in
Dy and locally Holder continuous with respect to x. Hence it follows from
condition H, and from a well-known theorem (cf. [4]) that there exists a
regular solution z(t, x) of problem (26), (27) in Dy.

On the other hand, using (24) we conclude that the right-hand sides of
(25) converge uniformly in Dy to the right-hand sides of (26)

(28) Lm fi(t, x, u,(z, x), u,) =f7(¢t, x, U(t, x), U)  uniformly in Dp,

n—w®

and the boundary values of u,(f, x) converge uniformly on Xz to the
respective values of U(t, x). Hence using the theorem on the continuous
dependence of the solution on the right-hand sides of the system and on the
boundary condition [12] (see also [9], [10]) we obtain

(29) limu,(t, x) = z(t, x) uniformly in Dyg.
Relations (24) and (28) imply that
z(t,x) =U(, x) for (t, x)e Dy
for any arbitrary R, which means that
u(t, x)=U(t, x) for (t, x)eD,
1€, z(t, x) i1s a regular solution of problem (1), (2) in D.
The uniqueness of the solution of this problem follows directly from

J. Szarski’s results [12].
Moreover, by (15), (16) we have

z(t, x)e E,(My, Ko; D)
which ends the proof.
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