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On fixed points of continuous real functions

by BArTLOMIET ULEWIOZ (Sosnowiec)

Abstract. The paper contains some conditions for attractive and repulsive fizxed
points of continuous real functions. Its main theorem is the following sufficient condition:
If in a certain neighbourhood of a point £ a confinuous funection f fulfils the following
conditions:

Jo(x) £ for z = E,
s<f@) K kl@—E+E dfor z< &,

%(w—é)+e<f(w) <z for z> &,

where k is a negative constant, then & is an attractive fixed point of the function f.
The analogical theorem for repulsive points is also proved.

In this paper we -study some properties of attractive and repulsive
fixed points of continuous real functions. Fixed points and their properties
‘have been investigated by Inany authors because of their importance.
Every result in this direction finds immediately applications in the theory
of difference equations and in numerical analysis. A fairly complete biblio-
graphy of the subject may be found in [2], our researches are hased mainly
on [1] and [3].

1. Notations and definitions. To start with we fix some notions. Let
E Dbe a connected, non-degenerated to one point, subset of the space of real
numbers. All topological notions will be understood relatively to the set
E. Let f be a continuous function defined in ¥ and fulfilling the condition

(1.1) f(B) = E.

The class of all such functions will be denoted by C[Z]. In the sequel
we shall always assume that f belongs to C[E]. The successive iterates of
f are defined by the following recurrence relation:

(1.2) Japr (@) =f(fn(w))’ filwg) =2, = =0,1,2,...
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The sequence {z,} defined by
(1.3) @ = fu(®), n=0,1,2,...
is called the dierative sequence of the point ,. Every point @ fulfilling
the equation
(1.4) fi#) ==

is called a fived point of the function f. Fixed points of the function f,
will be called fimed poinis of order k, and the set of points {z,, @;, ..., 2;}
which fulfil the relation

(1.5)  flm) =5y fl@s) = @y, very fl@pny) = oy, flop) =@

will be called a ¢ycle of order k. A cycle of order one is simply a fixed point.
Every point y fulfilling

(1.6)- ) =a

is called the p-ih aniecedent of , the point v = f (@) is called the g-ih
consequent of @.

Now we recall the well-known equivalence relation (cf. [2])

a.m & ~y<=V fr(@) = foly).
»r.Q

In all the above definitions %, », ¢ denote non-negative integers.
The set of all points which are equivalent to a given x, will be called the
orbit of w, under f. The orbit of an # will be denoted by C,(z) or, if it is clear
which function is involved, by C(=).

It follows from this definition that the orbit containg the antecedents
and iterative sequences of all its elements. It may happen that some of
those sequences are convergent. Let us write
(1.8) A (&) = {ze E: lim f,(0) = é}.

n—>00

The set .4,(&) will be called the total domain of aitraction of the point
¢ with respect to f.

DEerINTTION 1.1. (a) A fixed point £ of a function f will be called
attractive if it is an inner point of 4,(£).

(b) A fixed point ¢ of a function f will be called repulsive if there
exists a neighbourhood U of & such that

(1.9) we UNCy(E) > ¢ Af(E).

(c) All the remaining fixed points of the function f will be called
mixed fimed points (cf. also [1], [2]).

It is clear that an attractive fixed point must be an isolated fixed
point.
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2. -Attractive fixed points. Now we are going to give some conditions
which are necessary or sufficient for the attractive character of a given
fixed point. In the proof of one of them we shall make use of the following
result::

Lemara 2.1. If an dlerative sequence has exacily & cluster points, then
these poinis form a cycle of order k.

The proof of this fact may be found in [1]. N
THEOREM 2.1. If there ewists a left neighbourhood Uy of & im which
(2.1) < f(z)< k(x—E)+ & for all © +# &,

and if there exists a right neighbourhood U} of & im which
. .
(2.2) i(m—§)+§<f(w)<m Jor all = &,

where k is a negative constant, then & is an atiractive fizved point.

Proof. It follows from each of inequalities (2.1), (2.2), that & is a
fixed point. We shall find an open interval containing ¢ and contained
in A,(£). Put

Us = (E—s1, £], U =[£ é+e), e=min(ey,s).

“‘We shall examine two cases:

1° k|2 1. Put U = (E—I—;l-, £+s). For e U, < & we have

&-I—;T<m<f(m)< T(w—&) + &

and consequently

(2.3) £—I—Z|<f(w)< Ete.

Similarly, for #e U, # > & we obtain

—;-(m— Hlté<flo)< o< E+s,
whence

(2.4) £—%<f(w)< Ede.

Inequalities (2.3) and (2.4) yield f(U) = U.

2° k| < 1. Now we define U = (E —e, £+ I7icl) and proceeding sim-

ilarly as in case 1° we obtain f(U) < U.
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Now we are going to prove that U < 4,(§). We take an arbitrary
e U and form its iterative sequence z, = f,, (@,). Let us consider the sets
(— o0, E1N{z,}3° and (&, oo)N{w,};>. If one of these sets is empty, then,
since f(x) > @ for ze Uy and f(z) < @ for ze UJ, the sequence {®,} is
strictly monotonic. Consequently, it must converge to £ Thus we may
restrict attention to the case where neither of the sets (—oo, £]N{z,}y,
[&, co)N{z,}7 is empty. The former is the sequence of those terms of {z,}
which lie on the left-hand side of & Let us denote them as follows

(2.5) mpo, 33171, mpz, veey Po< P11 <P ...

We shall prove that this sequence is inereasing. Consider one of its
terms, for example a,;.
I flay) < & then f(z,) = @, , and inequality (2.1) gives

wﬂ’z< sz+1'

If f(»,) = & then evidently {z,} converges to &.
If f(2,,) > £, then there exists such an m > 1 that

mpH_l =fm(a"pl) = Tpyrms
whereas the terms

mp1+17 a"pl+25 e wpl+m—1
lie on the right-hand side of £ We have for them

£ < Oyt < Bppymg < o o0 < Bppyyy
8o in virtue of (2.1)
(2.6) Bppim—1— < B — & < k{2, — §).
Inequality (2.2) gives

i(mpﬁm—l _ ’E) < Tpptm — § = wPl+1 - £’

whence
(2.7) @y, — &) < Tppymy—&.
From (2.6) and (2.7) we obtain

b(2y,, ,— &) < To(@p,— ),
which gives '

By < Ly, 1+ -

The monotonicity of the subsequence {mqj} lying in U} can be proved
analogically. Finally we obtain

limy, =a<§ limw, =b>¢.
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But, as was remarked before (Lemma 2.1), the partial limits of an
iterative sequence form a cycle. Consequently, we must have

fla) =b, () =a.

If we had e. g. a # &, ie. a< £, 50 from the fact that ¢ « U and in
view of inequalities (2.1) and (2.2) we conclude

b—E< k(a—§) and b—E&> L(a—¥§).

This obvious contradiction completes the proof of our theorem.
As an immediate consequence of this theorem we have the fol-
lowing

COoROLLARY 2.1. If there exists a neighbourhood U of & such that
(2.8) [flz)— &l < |z — &

Jor me U, 5= &, then & is an afiractive fized point of f (cf. [4]).

Inequality (2.8) follows from (2.1), (2.2) by setting &t = —1.

The assumptions of Theorem 2.1 can be weakened, namely in one
of the neighbourhoods Uy, U7 we can admit the weak inequality. If we
admitted the weak inequalities in both Uy, Uf, then we should have to
assume additionally that f,(#) # % in a certain neighbourhood of & In
fact, the proof of Theorem 2.1 is based on this very fact. From the above
considerations we obtain the following

THEOREM 2.2. If there exists a neighbourhood U of the point & such
that

L fo(®) # o for e U, 2 # &,
2° < fla) S k(x— &)+ & for e U, < §,
1

3° %-(m—f)+£\<\f(a;)< % for ze U, > £,
where k 18 a negative constant, then & is an attractive fized poini.

The following two theorems concern the case where k—— oo and
k—0.

TaeoREM 2.3. If there exists a left neighbourhood Uy of the point §
such that

(2.9) 2< f() for weU;, © # &, )
and if there exists a right neighbourhood UF of the point £ such that
(2.10) E<fm)<aw for e U, & #+ &,

then & is an attractive fived point.
Proof. It follows from (2.10) that f(£) = £. Put

U; = (5_31; '5]) U+ = [57 E+82)) &£ = lllill(el, 52)'
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The continuity of f implies the existence of a § > 0 such that
fley< é+e HE-d<a<E.
Consider the interval

(E—e, E+6) if 8>,
(6—61 £+£) if (5< &,

It is easy to check that f(V) <« V. Take an arbitrary ay¢ V, %, 3 &
If 2, > &, then f,(2,) is' & decreasing sequence, so it must be convergent
to & If @, < & and all the terms f, (x,) lie on the left of £, then they form
an increasing sequence convergent to £, and if, for some I > 0, f;(#,) > &,
then all the consequents of f;(z,) lie on the right of £ Hence it follows that
limf, (@) = &

The proof of the next theorem is similar.

TuroREM 2.4, If there exists a left neighbourhood U7 of the point &
such thal

(2.11) . s<fle)< & for 2e Uy, o # &,
and if there ewisis a right neighbourhood Uj of the point & such that

(2.12) fo)< o for e U, & #§,

then & is an atiractive fized poini.

Those were sufficient conditions for attractive fixed points, now we
are going to prove a necessary condition, but first we shall prove the fol-
lowing auxiliary theorem.

LeMMA 2.2, If there exists a left (right) neighbourhood of the fized point
& in which f(x) < z (f(z) > ) holds for @ # &, then & is not attractive.

Proof. Let us consider a left neighbourhood of £ (for a right neigh-
bourhood the proof is the same) and assume that

(2.13) fla)<w for me(E—s, &), > 0.

Two cases may occur:

1° f(@) < » for all ¥ << & we B. Then the iterative sequence of an
arbitrary #,< & is convergent to an @, —oo < a< ¢, wluch means that
& cannot be attractive.

2° There exist in the set F N (— oo, £—¢] points for which f(x) = «.
‘Write

n = max{z: f(z) = x}.
z<é—a

In the whole interval (7, &) we have f(») < z. Again we shall consider
two cases:
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(a) f(z) = y for ze (9, £). Then [y, &) = A,(n). So & is not attractive,
sinee in every neighbourhood of & there exist points generating iterative
gequences convergent to #n £ &

(b) There exists an xe (7, £) for which f(z) < . It follows from the
continuity of f that there exists a ye (5, £ such that f(y) = 5. Write

n-1 = max{z: f(o) = n}.
ze(n,£)
The existence of this maximum is guaranteed by the continuity of f.
Further, put
1 = max {: f(z) = 7n_,}.
z6(1_1,¢)
Continuing this procedure we obtain the sequence of antecedents
of 7y
N< Ny < g < .. < 6.

This sequence is increasing and bounded, so it converges. Write

limn_, =a.
‘We have
p<a<s§
and we obtain

fla) = fimn_,) = limf(n_,) = limzy_,;, = a.

Thus we must have
a=¢§,

since in the interval (7, &] there are no other fixed points of f. Hence, in
every neighbourhood of & we can find antecedents of 7, which means
that £ is not attractive. Now we can prove the announced theorem:

THEOREM 2.5. If & is an attractive fized poini, then there exists a left
neighbourhood of & in which f(x) > x for © # &, and there exists a right neigh-
bourhood of & in which f(z) < x for » +# &.

Proof. Suppose e.g. that in every left neighbourhood of £ there exist
points for which f(z) < 2. If in every left neighbourhood of £ one may find
points fulfilling f(z) = 2, then &, as a cluster point of the set of fixed points,
cannot be attractive. Now it is enough to consider the case where & has a
left neighbourhood in which f(2) < x for all # # & But this case, in view
of Lemma 2.2, also leads to contradiction with the assumption. The
proof concerning right neighbourhoods is the same.

3. Repulsive fixed points. In this part we are going to prove some
conditions analogous in a certain sense to the theorems of Section 2.
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TuwoREM 3.1. If there exists a left neighbowrhood, Ug of the point &
such that

(3.1) Elz— &)+ EL flw) for ze Uy,

and if there exists a right neighbourhood U of the point & such that
1
(3.2) flo) <z (@—8)+&  for @ T,

where L is a negative constant, then & is a repulsive fized point.

Proof. It follows from (3.1) and (3.2) that f(&) = & Let us pubt
U = Uy uU{ and take an arbitrary zy,e U\ Cp(£). Thus, if the sequence
{fa(2,)} contains only a finite number of different terms, it converges to
a fixed point different from & or contains a cycle. Suppose then that
{fn@p)} is infinite. We shall consider two cases:

1° An infinite number of the terms of the sequence f, (2,) lie outside U.
Then evidently f,(r,) cannot converge to §.

2° Almost all terms of the sequence f,(2) lie in U. For those
terms we observe that f,(z,) < & implies f, (%) > & and similarly
fon (@) > & implies f, ., (@) < & So for n sufficiently large the terms of
the sequence f,(x,) lie alternatively on the left- and right-hand side of
&. Suppose that e. g.

Jilwe) < €.
Then

b(fy(@o) — &) < frya (@) — &,

and
1

(3.3) Jr42(20) — 5<f(fl+1(w°)—£)’
whence

k(f,(mo) — 5) <k (f1+2 (%) — ‘5)
and

Jrra (@) < fi(m,).

Thus those terms of f,(z,) which lie on the left-hand side of ¢ form
a decreasing sequence and hence they converge to a number different
from . This is enough to prove the theorem, although the similar argument
shows that the terms of {f,(x,)} lying on the right-hand side of & increase
away from &.

COROLLARY 3.1. If f(&) = £ and there exists a neighbourhood U of the
point & in which

(3.4). [f(@)— &l = lw— &,
then & is repulsive.
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The proof of this fact is similar to the proof of Theorem 3.1.

TEROREM 3.2. If there exists a left neighbourhood Uy of the fimed point
& such that

E<fl®) for ve Uf,

and if there exrists a right neighbourhood UF of & such that
2<flx) for xe UF,

then & 1s repulsive.

Proof. First we note that xe Uy implies f(x) > &, so we can restrict
our considerations to the points.of UjF. But for those points we have
[f(w)— & = |z — &,
which in virtue of Corollary 3.1 proves the theorem.

Quite similar is the proof of the following

THEOREM 3.3. If there exists a left neighbourhood Uy of the fimed poimi
& such that

floy<ae for 2z Uy,

and if there exists a right meighbourhood UF of & such that
fl@)< & for we UZ,

then & is a repulsive fimed point.

References

[1] B. Barna, Uber die Iteration reeller Funkiionen, Publ. Math. Debrecen 7 (1860),
p. 16-40.

[2] M. Kuczma, Functional equaiions in a single variable, Monografie Mat., PWN,
Warszawa 1968,

[3] A. N. Barkovskii, On atiracting and atiracted-sets (Russian), Dokl. Akad. Nauk
SSSR 160 (1865), p. 1036-1038,

[4] R. Schauffler, Uber wiederholte Funktionen, Math. Ann. 78 (1918), pn. 52-62.

Eegu par la Rédaction 26. 5. 1973



