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On S. Golab’s characterization of the anharmonic ratio

by BoGpaN CHoczewskl (Krakow)

Abstract. S. Golab [5] proposed a system of functional equations in several variables
to characterize the anharmonic ratio of four points of the projective line. In this paper we
replace one of S. Golab’s conditions by a weaker one, which leads to a functional equation

in a single variable, and we prove that the anharmonic ratio is also the only function
fulfilling our conditions.

1. The anharmonic (cross) ratio of a quadruple of colinear points of
the projective space can be characterized with the aid of functional equations.
This has been first done by J. Aczél, S. Golab, M. Kuczma and E. Siwek
‘[1], who solved the functional equation

(*) ¢(T(X1), T(Xz), T(X3), T(x4)) = ¢(X1, X3, X3, x4)9

where x; are the affine coordinates of the four points on the projective
line L, and T: L — Ldenotes any homography: x — T(x) = (ax +b)/(cx+d),
ad—bc # 0. The authors proved, without any regularity assumptions on @,
that solutions to (*), ie. four-point-invariants under the projective transfor-
mations of the line, are all functions of the anharmonic ratio.

This result was generalized in different directions. W. Benz [3]
considered (x) in the case of the projective group of transformations
acting on the projective line over a skew field. A more general equation
corresponding to (*) but written in homogeneous coordinates has been
solved by S. Topa [10].

Recently H. Schwerdtfeger [8] pointed out that the essential point in
equation (*) is that the group G, of homographies T is exactly three-fold
transitive (i.e., for every x; and y; arbitrarily chosen on L there is the
unique mapping Te G, to fulfil T(x;) = y; i =1,2,3). He obtained the
same result as that mentioned for (#) but regarding an exactly n-fold
transitive group G,. Such invariants have also been dealt with by W. Benz [4].

2. Another characterization of the anharmonic ratio by means of
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functional equations has been proposed by S. Goiab [5], who considered
for a mapping S: D - R, where

(1) D := {(xy, x;, X3, X4): X; # X; for i # j},

the following system of equations:

()] S(x3, X435 Xy, %) = S(xy, X35 X3, Xa),

3) S(xy,x3; X9, %x4) = 1=8(x(, X35 X3, X4),

@ S(xy, X25 X3, X4) S (X4, X35 X4, X5) = S(xy, X35 X3, X5).

S. Gotab proved in [5] that the general solution of system (2)—(4)
is given by the formula

(5) S(xy, X25 X3, %g) = s(a(xy), 2(x5); alxs), a(xs)),
where a: R — R is an arbitrary injection on R and s is given by
(6) $(X1, X25 X3, X4) = (1 —x3) (%2 — x)/[(x2 — x3) (% — x4)]

for (x,, x,, x5, x4)eD, ie. denotes the anharmonic ratio. The solution has
been found without any regularity assumptions on S.

The question arises under what additional assumptions on § it becomes
the anharmonic ratio s. S. Golab answered the question in [5], proving
that if the function a in (5) is strictly monotonic in R and if we have

M S(x,y; 2xy/(x+y),0) = —1 for |x| # |y|, x # O,

then necessarily § = s.

Condition (7) means that S = s on the two-parameter family of harmonic
points of the projective line L.

In the present paper we shall assume that S = s on a one-parameter
family of harmonic points on L, viz. that

@) S(x,1; 2x/(x+1),0) = =1 for xeR := R\{—1,0, 1},

and, using the theory of iterative functional equations, we shall prove, in
particular, that if the o in (5) is injective and of class C'! in a neighbourhood

of x =1, then S = s on D. Some weaker conditions to the effect will be
also given.

3. We shall look for solutions a of (8) which are homographies. Since
s is invariant under these transformations, this will imply S = s in D, by (5).

Let us first write equation (8) for a (using (5) and (6)) and transform
it to a simpler form. This is ours

THEOREM 1. If the function S of form (5)—(6) with an injective a: R > R
fulfils equation (8) in R’, then the function

) @(x):=b""+[a(x)—a(@])" for x # 0; p0):=b"",
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where

(10) b = a(0)—a(l),

is an injective map of R into itself, fulfilling the equation
(11) e(2x/(x+1) = lp(x), xeR.

Conversely: if ¢: R— R is injective and it fulfils (11) in R’, then the
function S given by (5)—(6) with the a: R — R defined by the formula

(12) a(x) = a+[e(x)—@©0)] ' for x # 0; a(0) := a,

with an arbitrary ae R, satisfies equation (8).
Proof. Inserting (5)-(6) to (8) we get the equation

(13) [o(g (x))- /(X)] [2(0)—a(1)] = [a(g(x))—a(1)] [x(x)-a(0)]

for xeR', where we put

(14) gx):=2x/(x+1), x# —1.
Denoting a := «(0), so that a(1) = a—b (cf. (10)), and
(15) B(x) := a(x)—a, xeR,

we can rewrite (13) in the form

[Ba () —B0]b = (Bla)+b] p)

for xeR’, i.e.
B (g (x)) B(x)—bp(g(x))+2bB(x) = 0.

This means that the function
(16) o(x):=1/B(x)+1/b for x # 0; @(0) := 1/b,

fulfils equation (11) in R’. Formulae (16) and (15) yield (9) for the function ¢.

Conversely, given an injective solution ¢: R = R of equation (11) in R/,
we necessarily have ¢(1) = 0. Calculating # from (15) with an arbitrary
acR, we check that the a has the form (12) and that it fulfils (13).
Equation (13) implies (8) for the function S given by (5)-(6).

This completes the proof of the theorem.

Thus all the injective solutions a of (13) in R’ are compositions of
a homography with a solution ¢ of (11) (in R).

4. By the results of the preceding section we are led to the study
of injective solutions of the Schroder equation (11).

We shall make use of two theorems on the existence of a unique one
parameter family of solutions to the Schrioder functional equation

(17) V(fx) =), 0<p<l.
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First of all we assume that

(H) The function f: [0,b) —[0,b) is strictly increasing and continuous
in [0,b) and 0 < f(x) < x in (0, b).

Denote by f" the n-th iterate of the function f. The following two
theorems can be found in M. Kuczma’s book [7].

LEmMMA 1 ([7], Theorem 6.8, p. 143). If the function f fulfils hypotheses
(H), and it is convex in [0,b), f'(0) = p (), then there is a unique
one-parameter family of convex solutions of (17) in [0, b), given by the formula.

(18) V() = ¢ lim [f" ()" (o)),

where ce R and x, is an arbitrary point in (0,b). These solutions are con-
tinuous and for ¢ # 0 strictly monotonic in [0, b).

Remark 1. The lemma remains true if we replace the interval [0, b)
by the open interval (0, b). The existence of f'(0) must then be additionally
assumed.

Lemma 2 ([9], <f. also [7], Theorem 6.3 and 6.2, p. 137-138). Let f
fulfil (H) and be of class C' in [0,b). If there is a positive number r
Julfilling

(19) f'(x) = p+0(x"), x-0+,

then there exists a unique one-par?zmeter family of C'-solutions of (17) in
[0, b), given by the formula

(20) V() = ¢ lim p~"f" ().

These solutions are strictly monotonic in [0, b) (for ¢ # 0).

We shall also need a theorem on extension of solutions of (17). The
lemma which follows is a consequence of a general extension theorem due
to K. Baron [2]. It can be also derived from a theorem on the form
of the general solution of the Schréder equation, which has been proved
by M. Kuczma ([7], Theorem 1.10, p. 43).

LEMMA 3. Let f- A— A, where A > [0,b) is a set, be a function whose
restriction to the interval [0, b) satisfies Hypotheses (H). If y,: [0,b)—> R
is a solution of (17) in [0, b), then there exists exactly one solution y: A— R
of (17) in A, such that Y (x) = Yo (x) for x€[O0,b).

5. We return to equation (11), ie. to the equation

(1) ?(gx) = o (x),

where the function g is defined by (14). This function has two fixed points:
repulsive x = 0 and attractive x = 1 (that means, there is a neighbourhood

(') The derivative actually exists since f is convex in [0, b).
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of x = 1 such that f"(x)—= 1 in it and f"(x) never tends to zero if x # O0;
cf. {71, p. 18).

We shall look for solutions of (21) in a neighbourhood of x = 1.
In order to be able to apply the results collected in Section 4 we need
to move this point to the origin. Using the transformation

g(x) = fx):=gx+1)-1,

we get a function, which has the attractive fixed point x = 0. We have

(22) f(x) = xfx+2) for x # -2

and, instead of (21), the equation

(23) Y (f () = W ().

A function ¢ is a solution of (23) in a set A iff the function
(24) o) = ¥ (x—1)

satisfies (21) on the shifted set A+1.
We shall deal with equation (23) in an interval [0, b), b > 0.
THEOREM 2. Equation (23) with the function (22) restricted to the interval
[0, b) has only the one-parameter family of solutions y both in the class of

convex (or concave) functions in [0,b) and in the class C'[0,b). The
solutions are given by the formula

(25) vix) = dx/(x+1), xe€[0,b), deR.

Proof. It is enough to verify the assumptions of Lemmas 1 and 2.
Our function f given by (22) obviously fulfils (H) in every interval [0, b)
and it is convex there, f'(0) = 3 = p (the p in (23)). Thus Lemma 1 implies
that all the convex solutions of (23) are given by (18), where

(26) fhx)=2""x(1+(1-2"")x)"!
Calculating the limit (18), we get (25) with d = c(xy+ 1)/x,.
Similarly we see that f is of class C![0,b) and
f/(x)=2(x+2)"2=4+0(x), x-0+,

ie (19) is fulfilled with r = 1. By Lemma 2 all the C!-solutions of (23)
in [0, b) are then given by formula (20), with p = 4 and f"(x) from (26).
This again yields (25), with d = c.

Let us complete the definition of the function f requmng it to be an
injective map of (— o0, + o] onto itself. We put

27 J(+o0) =1, f(-2)=
THEOREM 3. All the solutions y: A— R, where A := (— o, +0]\{-1},
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of equation (23) (with the function f defined by (22) and (27)), whose restrictions

to an interval [0,b) are either convex functions or C'-functions, are given
by the formula

(28) W(x) = dx/(x+1) for xeR\{—1}, ¥(+o0) = d.

Proof. The functions (28) actually fulfil equation (23) in R\{—2, —1}.
Let x = —2. Then f(—2) = +o, by (27), and y(—2) = 2d, ¥(f(-2)
= Y(+o)=d, by (28). Thus (23) holds for x = —2. We have also
Y(f (+0) =y (1) =1d = Y (+o), ie (23) for x = + 0.

On the other hand, since the function 'fdeﬁned by (22) and (27) maps
the set A onto itself, we can apply Lemma 3. This lemma says that there
exists a unique extension to A of every solution of (23) in [0, b). Functions
(28) are such extensions of functions (25). They fulfil (23) in A, as we
have checked, and there is no other solution than (25) in the classes of
functions considered (Theorem 2). This completes the proof.

6. Now we can return to the problem of the characterization of the
anharmonic ratio. We shall prove the following

THEOREM 4. Let the function S: D— R (cf. (1)), of form (5)-(6) with
an injective a: R — R, fulfil equation (8) in R'. Then there exists such an
injective ¢@: R — R, that the a is given by (12) and ¢ satisfies equation
(11) in R'.

On the other hand, for every injective @: R — R satisfying (11) in R’
and such that the restriction @, := @|( .y is a function either convex or of
class C! in [1, 1+b), the corresponding function a, defined by (12), is a homo-
graphy. Consequently, S = s — where s is the anharmonic ratio (6).

Proof. The first part of the theorem results from Theorem 1. Further,

solutions ¢ of equation (11) in R’, whose restrictions @, possess the required
properties, are of the form

@(x) =d(x—1)/x, xeR\{0}.
This follows from (24) and (28) of Theorem 3. (Note that functions (28)
satisfy equation (23) in the set 4 containing R’.) Let us put
(29) e(x) =d(x—1)/x for x #0; ¢(0):=4d,d # 0.
Functions (29) are the only injections defined in R and such that the functions
¢|r- satisfy equation (11) in R’
Using (29) to determine the functions a by (12), we get

(30) a(x) = a—% for x # 0; a(0) = a,

l.e. « is an injective map of R into itself. Moreover, the a is a homography.
This yields S = s on D, according to the introductory remarks in Section 3
above. This ends the proof of the theorem.
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Remark 2. The simplest consequence of Theorem 4 can be formulated
as follows:

COROLLARY. If the function S: D— R is of form (5)—(6), fulfils (8) in
R’ and if the function. a is injective and of class C' in a neighbourhood
of x =1, then § = s.

Proof. This follows from Theorem 4 and formulae (12) and (9): if

« is a C!-function in a neighbourhood of x = 1, then so is also the
function ¢, and conversely.

Remark 3. A stronger result than those contained in Theorem 4 is
obtained by assuming that the function ¢, has the property: “[¢, (x)—1]/(x—1)
is monotonic in (1, 1+b)”. This results from a uniqueness theorem due to
M. Kuczma [6], which is more general than that quoted as Lemma 1.
The theorem reads: “If f satisfying Hypotheses (H) is such that the function
f (x)/x is monotonic in (0, b) and xﬁxg1+ f (x)/x = p, then formula (18) yields

all the solutions of (17) such that ¥ (x)/x is monotonic in (0, b); and only
these.” Observe that the function f given by (22) actually has the above
required properties. Thus formula (28) remains valid in the class of functions
for which the ratio ¥ (x)/x is monotonic in a neighbourhood of the origin.
Consequently, (30) also holds true.
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