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A non-m-convex algebra on which operate
all entire functions*

by W. ZgeLazko (Warszawa)

Franciszek Leja in memoriam

Abstract. We construct a locally convex complete algebra with the property announced in
the title. This solves in negative a problem posed in [2].

1. Introduction. All algebras considered in this paper are commutative
complex algebras possessing unit elements. A topological algebra is a
topological linear space together with an associative jointly continuous
multiplication. A locally convex algebra is a topological algebra which as a
topological linear space is a locally convex space. The topology of such an
algebra A can be given by means of a family (||x||,), e 2 of seminorms such
that for each index a there is an index f with

(1) [1xylla < [1%[lg 1l ¥lig

for all x and y in A. Moreover, for each finite number of indices «,,
as,...,0,€ W there is an index B in A such that

(2) Hxlle; < Il

for all xin A and i = 1, 2,..., n. Relations (2) make of ¥ a directed set if we
put a < B whenever ||x||, <|ix|l; for all x in A. Under condition (2) a
seminorm ||x|| on A4 is continuous if and only if there is an index ae ¥ and a
positive constant C such that

3 lIxll < Clixl,

for all elements x in A. A system (|x|;), fe B, of seminorms on A gives the
same topology as the previous system (||x]|,), xe U, if and only if for each a
in W there is a f in B, a y in A and two constants p, g > 0 such that

(4) plixlls < 1xlp < qllxll,

* This paper was written during the author’s stay in the Instituto de Matematicas,
Universidad Nacional Autonoma de México, in summer 1984.
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for all x in A. This means that all seminorms of one system are continuous
with respect to the other one. A non-void subset S of a topological linear
space, or a topological algebra A is said to be bounded if for each
neighbourhood U of the origin in A4 there is a positive constant Cy such that
CyS = U. If A is locally convex, then a subset S — 4 is bounded if and only
if for each index ae WA we have
&) sup|lxll, = C, < co.
xeS

A locally convex space or algebra is said to be complete if each its
Cauchy net is convergent to some element. A net (x;), i€ I, of elements of A
is a Cauchy net if for each ae A and each positive ¢ there is an index igel
such that

lIx;, — xi,ll. <€
for all iy, i; = ig. Each Cauchy net must be almost bounded in the sense that
for each ae U there is an index i(x)el and a constant M, > 0 such that
(6) llxidle < M,

for all i > i(x). A completely metrizable locally convex space is called a B,-
space. Its topology can be given by means of a sequence of seminorms
satisfying the relations

”x"l s ”xuz S cen

for all its elements x. If A is a B,-algebra (i.e, a topological algebra which is
a B,-space), then the seminorms can be choosen so that

(7) eylly < N+ o 11l + 1

for all x and yin 4 and i=1, 2,...

A locally convex algebra (in particular a B,-algebra) is said to be locally
multiplicatively convex (shortly m-convex) algebra if relations (1) or (7) can be
replaced by relations of the form

@) Xyl < 1%l |1 Ylla

for all « in U and all x, ye 4. Let F(z) =) a,z" be an entire function of the
complex variable z. We say that the function F operates on a topological
algebra A if for each its element x the series ) a,z" converges in A. Clearly,
all entire functions operate in complete, or sequencially complete m-convex
algebras. In [1] it was shown that for commutative B,-algebras the converse
also holds true, so that a B,-algebra is locally multiplicatively convex if and
only if all entire functions operate on it. The problem whether this result is
also true for non-commutative algebras is still open. In [2], Problem 16.8, we
asked whether this result can be extended onto complete locally convex
algebras. The purpose of the present note is to disprove this conjecture. We
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shall construct a complete commutative locally convex algebra on which
operate all entire functions and which is not locally multiplicatively convex.
We give also some remarks concerning multiplicative linear functionals in the
constructed algebra.

2. Construction of the example. Denote by @ the set of all complex-
valued continuous functions ¢@(t) defined on

R* = {teR: t >0}

satisfying the following conditions

©) 0<o<t

for all teR* and

(10) lim ¢ (z) = 0.
I=m

We define 4 to be the set of all continuous complex-valued functions
defined on R* such that for every ¢c® we have

(11) lIxlly = sup |x(2) @ ()] < co.
teR*

Clearly, A endowed with the system of seminorms (||x|},), ¢e®, is a
locally convex space. It is also a locally convex algebra under pointwise
defined algebra operations. This follows immediately from the fact that for
any ¢ in @ the function ¥ (t) = @(t)}'* is also in ¢ and we have

xyllp < 11xlly I ¥ily

for all x, y in A so that conditions (1) are satisfied. Relations (2) are also
satisfied with g =y if for ¢,, ¢,,...,p,ed we put

Y (t) = max(@, (1), @2(1),..., 9,(t)).

ProrosiTioN 1. The algebra A coincides with the algebra of all bounded
continuous functions on R* and, moreover,

(12) lIxlly < [l

Jor all x in A and all ¢ in ®. Here ||x||, = sup |x(t)|.
teRt

Proof. Clearly all bounded continuos functions on R* are in A. If some
unbounded function x, is in A4, then there is a sequence (t,) = R*, t, - oo,
with |x4(¢,)] > n. We can easily construct a function ¢ in @ satisfying ¢(¢,)
=n"'2 We have |¢(t,) xo(t,)} > n'/? and so ||x,|l, = 0. The contradiction
proves our assertion. Relation (12) follows immediately from formulas (9) and

(11).
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PROPOSITION 2. A non-void subset S — A is bounded in A if and only if it
is bounded with respect to the seminorm ||x||, i.e., if

(13) sup {||x]| .: xeS} < oo.

Proof. If relation (13) is satisfied, then by (12) and (5) the set S is
bounded. We have to show that if relation (13) fails, then relation (5) fails too
for some ¢ in &. But if (13) fails, then there is a sequence (x,) = § with
lIxdl, > n, and so we can choose points t,e R* so that |x,(t,)| > n. If the
sequence (t,) is bounded, say ¢, < M for all n, then we choose ¢ in @ in such
a way that ¢(t) =1 for 0 <t < M. We have ||x,[|, > n'/? and so relation (5)
fails in this case. If the sequence (t,) is unbounded, then passing if necessary,
to a subsequence we can assume that t, - co. We choose now ¢ in @ in such
a way that ¢(t,) = n” V2. Again we have [|x,||, = |x,(t,) ¢(t,)] > n'/? so that
relation (5) fails too. The conclusion follows.

We shall show now that the algebra A4 is complete. Let (x,) be a Cauchy
net in A. We have to show that the net (x,) converges to some element x, in
A. Choose first elements ¢, in @ so that ¢,(¢t) = 1 for 0 <t < n. Since the net
(x,) is a Cauchy net with respect to each seminorm [|x||, we infer that it is
also a Cauchy net with respect to the almost uniform convergence on R*
(uniform convergence on each compact subset of R*). This implies that the
net (x,) tends almost uniformly to a continuous function x, on R*. We shall
show that the function x, is in A, i.e, it is bounded, and that lim ||x, — x|,

= 0 for all ¢ in @. But if x, is an unbounded function, there is a sequence ¢,
— 00 with |x(¢,)] > n. Since x, tends to x, almost uniformly, it implies that
|x.(t)] = n for large a, say for a > a(n). Choosing ¢ in @ so that ¢(t,)
=n"12 we see that ||x,||, = n'/? for a > a(n). This is in contradiction with
formula (6). Thus the function x, is in A. It remains to be shown that lim x,

= xq. TO this end choose a ¢ in @ and a positive &. We have to show that
there is an index a(¢, €) such that

(14 1%, — Xolls <&

for all a > a(¢, €). Put Y (t) = ¢(t)"/%. We have Y e ® and formula (6) implies
that there is an index a(y) and a positive constant M, such that

% ()Y () <M,
for all ¢t in R* provided a > a(y). This implies
1% (0) @ ()] = 13, ()W (O] () < My Y (8)

for all ¢t in R* and all a > a(y). Since limy(t) =0, there is a t,e R* such
that

(15) Ix, () @ ()] < &/2
for all @ >a(y) and all t>1¢,.
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Since x, tends to x, almost uniformly, relation (15) implies
(16) |xo () ()] < &/2

for all ¢t > ¢,. The almost uniform convergence of the net (x,) implies also
that there is an index @, such that

(17) %4 (8) = xo (1)l <€

for all a>a, and all ¢ satisfying 0<t<t,. We put now a(gp, e
= max (a(¥), ao). By (9) and (17) we have

(18) sup |(x.(—xo (M) @(1)] <&

OStst*
for all a > a(e, ¢). Relations (15) and (16) imply

(19)  sup|(x. () —xo (1) @ (2)|
21
v S supix () @ (1) +supxo (@ (0)l <&/2+¢e/2 =,
21, 21y
for all « > af(¢, ¢). Formulas (18) and (19) imply now (14) and we are done.
ProposITION 3. All entire functions operate on the algebra A.

Proof. This follows immediately from relation (12). For, if F(2)
=Y a,z" is an entire function and @e®, then for each x in 4 we have

Yllayx = 3 lanl X"y < Y laal [1X7 o, = Y lanl lIx]|%, < o©
and so the series ) a,x" converges absolutely in A.
PropPosITION 4. The algebra A is a non-m-convex algebra.

Proof. Suppose conversely that 4 is m-convex, so that there exists an
equivalent system of seminorms satisfying relations (8). By formula (4) for a
given ¢ in & we can find a submultiplicative seminorm |[|x|| (i..,
l|lxyll < [Ixli 1l yll) and positive constants p and g so that for a certain ¢ in &
we have

plixlly < lxll < qllxIly

for all elements x in A. Thus whenever q([x||, < 1, then ||x|| < 1, what implies
[Ix"] <1 and so p||x"|, <1 for all n. Since limy (¢t) =0 we can find a ¢, in
R* so that qy(t) < 1/2 for t > t,. Let x be a non-negative function in A with
support in [t,, o) such that x(f) <2 and x(t,) = 2 for some ¢, >t,. We
have q{[x|[y < 1. On the other hand p||x", = p2"¢(t;) and the right-hand
expression tends to an infinity as n — o0. The contradiction shows that 4 is a
non-m-convex algebra.

The above construction gives the result announced in the abstract.

Remarks. The constructed above algebra has the following property. All
its multiplicative-linear functionals are the evaluations at the points of SR* (the
Cech compactification of R*). All functionals corresponding to the points of R*
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are continuous with respect to all seminorms [|x||,, for if f (x) = x(to), toe R”,
then

Lf () < @ (o)™ IIxl,

for all ¢ in @. On the other hand all functionals corresponding to the points in
BR*\R* are discontinuous (and so A possesses more discontinuous
multiplicative linear functionals then continuous ones). In fact, suppose that such
a functional F is continuous so that |F(x)| is a continuous seminorm on 4. By
formula (3) there is a ¢ in @ and a constant C > 0 such that

(20) IF(x)| < Clixll,

for all xin A. Choose toe R* so that Co(t) < 1/2for allt > 1,. Take an element x
in Asothat 0 < x(f) < 1 forallte R*, x(t) = Ofort < ty, and x(t) = 1 for all ¢
> t,, where t; > t,. Evidently we have F(x) =1 and C||x||, < 1/2. This is in
contradiction with formula (20), what proves our assertion.

However, by Proposition 2, all multiplicative-linear functionals on A are
bounded.

Let us also remark that we could perform our construction taking instead of
R* the discrete space N of all natural numbers. In this case we would obtain the
algebra of all bounded sequences and the set of all countinuous multiplicative
linear functionals would be countable, while the set of all mutiplicative linear
functionals would be of cardinality 29 where ¢ is the cardinality of
continuum.
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