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The measurability of Lie groups *

by G. VRANCEANU (Bucharest)

A Lie group G, transitive in » variables (r > #) is said to be measurabel
if it admits one and only one integral invariant.

This notion is met in probability and the conditions for the groups
to be measurable have been given by R. Deltheil in his book Probabilités
géométriques; the conditions are given in the form of a system with total
differentials.

In 1940, Siing Shen Chern, without mentioning Deltheil, consid-
ered the problem of establishing the conditions under which the de-
terminant of n Pfaff forms, left invariant by the group, is an integral
invariant. Later, Chern’s problem was considered by Santalo in his
book Introduction to integral geometry (1953), again without using Delt-
heil’s results.

Recently, Deltheil’s system has been expressed in a different form
by Stoka, who has also considered the conditions of integrability of this
system.

The aim of the present paper is to express both the systems of Delt-
heil and Stoka, and their conditions of integrability in different simpler
forms, and also to give certain results, especially a theorem concerning
the measurability of a group G, which possesses a subgroup which is
simply transitive, perfect and invariant.

We also prove that a Lie group is Deltheil-measurable if it is Chern-
measurable and conversely.

1. If a Lie group G, with r parameters and » variables
(1) ¥ =f(z, ..., 2" d,...,a") (i=1,..,n)

is considered, a funetion F(z!,..., x") is said to be an integral invariant
function of the group G if we have

(2) fF(a: y xr)yda...dx" = fF L ymyayt . dyt
Ay
for every domain Az on which the integral can be defined.

* This paper was delivered at the ‘“Meeting on Geometry” held in Krakéw
(R.P.P.) October 1961.
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Aceording to formulas (1) it is necessary to have
(3) F(a’la ey TM) = DF(?/17 ey Y)

where D is the functional determinant of transformation (1). Therefore,
it is necessary for the second member of formula (3) to be independent
of the parameters a!, ..., a’.

R. Deltheil ([2], p. 28) has shown that this condition is cquivalent
to the fact that the function F satisfies the conditions

() o @) F(z)] =0,

where & (b =1, ...,7) are the components of the » operators of the in-
finitesimal transformations of the group ..
Considering that these equations can be written in the form

; OF o0&}

(5) E;'a—aﬂ +F a% =0
it follows that, if the group is transitive, the system (4) is a system
with total differentials, and consequently admits at most one solution,
abstraction being made of the multiplication by an arbitrary constant.

M. Stoka ([4], p. 28) has shown that, in order for the system (4)
of Deltheil to have, effectively, a solution in the case » > n, it is necessary
for £, to satisfy certain algebraic equations whose coefficients are the
components of the tensor of structure of the group @,.

In order to obtain Deltheil’s equations we write the equations (1)
of a group in the form (see [8], p. 68)

(6) y' =2’ + ti(x)a + L Ehula)at ek - ...

where the coefflclents E;,k(:v) and also the coefficients of terms of higher
order in a* depend on &}, provided £ are known.
We, therefore, have

!aﬁj a +0i"ah_{_

= o

from which we obtain

D—H—féa’ur

the unwritten terms being of second order in a”.
We also have

F(yly'ﬂyyn):F(mla- 1$)+aw, z a

By introducing these expressions in formula (3) and writing that
the terms of first order in a* are zero, we obtain Deltheil’s conditions.
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It also follows that (4) are the necessary conditions for the functions ¥
to be an integral-invariant of the transformations (1) but it can be proved
that (4) are also sufficient conditions if the transformations (1) form
a group.

Indeed, here a well-known principle of Lie groups is verified, namely
that it is sufficient that a property be true for the infinitesimal trans-
formations of the group.

We now observe that equations (5) can be written in the form
(6) 8L %0 (= togh)

therefore, if these equations have two solutions, for instance ¥ and F,,

then the function ¢ = log% satisfies the equation
i 0p
én Py 0

This shows that ¢ is an invariant-function of the group G.. However,
it is known that a group may have invariant functions only if it is in-
transitive. We therefore have Deltheil’s theorem:

If an intransitive group admits an integral-invariant-function F, all
the other integral-invariant functions are of the form
F 1= F (o
where @ 18 an invariant function.

We may also observe that, if the group G, has an integral-invariant,
we can suppose it to be equal to one, which means that the group has
an invariant volume.

In this case, if we write
" o}
(6”) phzéﬁ (h=1,..,71),

formulas (5) show that all p, must be zero
We suppose that the determinant 4 = |£,| (4 = 1, ..., n) is different
from zero. In this case we may write

(7) £ =& (a=n+1,..,7),
because this means that we have

oy = ELEY,
where & are the cofactors of A.

We also observe that if & are the vectors of the stability group,
then o; are equal to zero at the origin.

Annales Polonici Mathematici XV 13
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If we write system (6’) in the form

_ 0 u
(8) Xuf+pu=0 (Xuf = 51‘13—;) y  PuGa =Pa,

it follows that the functions p, are also zero at the origin.
Considering (7), the last equations (8) can be written as

(81) Euaﬂu _

oxt

It follows that the problem consists in seeing whether the first equa-
tions (8) may have solutions and if there exist functions o; which are
not constant and which satisfy equations (8').

As a consequence, we have the theorem:

A necessary condition for the transformations (1) to possess an integral-
invariant funclion is that equations

y . _ _ i 9f _ ok,
(8 ) ‘Yuf"'—pu _0 ( f Eua.’l}"’ u _8_.1;’)

should have a solution and that o. should be the solutions of equations (8').
We now suppose that transformations (1) form a group. We therefore

have the formulas
351:

%
(9) Ehor — ¢k

£

i
i = CheSLs

which may also be written as
Xn(Xf) — Xl Xnf) = che Xf .
As a consequence of formulas (6'), these formulas may be written as:

’ 7 opn
(9%) fkaﬁ:‘ — & ap,’ = P

and therefore represent the conditions of integrability.
We therefore have the theorem:

In order that a group G, (r > n) may admit an iniegral-invariant
function it is necessary for £y and & to satisfy equations (9’) where the quan-
tities py, are defined by (6'') and where chi are the group constants of structure.

For the case where the integral-invariant funetion is a constant, i.e.
if the quantities p, are zero, equations (8') are the only equations not
identically satisfied. There are » —n such equations; therefore they admit
an infinity of solutions. It follows that in general, if a group @,, simply
transitive, is given, there exists an infinity of groups G, (r > n) which
are measurable and include @, as a subgroup.



Measurability of Lie groups 183

We suppose that G, is transitive and r > n. In this case, in for-
mulas (9), we can make £, and o, appear instead of &,.
Indeed, formula (9) for h,k << n can be written as

0 ;0
(9”) fu 3 _Er Eu (cma+cu'u e)ft

In the same way, formulas (9) for » <=, k> n can be written as

o}
ox®

00, O i
5! Eu O (Su Eg %) Gfu == (O:W+G$w0'3) & ’
s0 that, in view of (9”") and of the fact that the determinant &3] is different

from zero, we obtain the equations

30 3, 1 ¢ ¢ ¢
(9"") §u 775 — OalOsuF C3u0) + Cua + Cua 9 -

According to these equations, the operators X,(¢!) are functions of o.
If we consider the conditions of integrability

(9:1/1) -Xu(Xo( o-i)) — Xv(Xu(Gi)) = (wa + 059 UZ) Xs(afx) ]

we obtain relations in finite terms in o), which are evidently verified
if the group @, is a transitive group in n variables.

For h, k greater than =, equations (9) also give relations in finite
terms in o..

It follows that if some structure of a group Gy is given, we have a way
of knowing whether that structure is compatible with a transitive group G,
in n variables.

If the group G, is measurable, according to (9”'), equations (8’) become

(10) - 0oy + Cfy o) + My + 6oy = 0,

where we have written m; = cﬁz. We therefore have relations in finite
terms in of.

For the case where &£ are the vectors of the group of stability it
follows that

(10°) Ma=0.

As a consequence, in the case where &, are the vectors of the
groups of stability, in order that a transitive group G; be measurable
it is necessary for the equations (10’) to be verified. In the second part
of this work we shall see that this is also a sufficient condition.

Equations (10) have been given by Stoka in the form

(10"") CnE1EL ELE —Cn EE = 0,
13*
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where k varies from 1 to r, but it can easily be seen that, if k varies from 1
to n, equations (10"') are identically zero, and that for ¥ = a they coincide
with equations (10); this follows in view of the formulas

(10) EE =0y, &&=,
where 6, is Kronecker’s symbol.

2. Let us show how M. Stoka has given another form to Deltheil’s
equations.

We multiply equations (9), for h = u =1, ..., n, with & and take
the sum relative to =.

We obtain

35 i 06 su

28 E R E 4 EEY,

ox!

so that, by making ¢+ = s and summing, we obtain the following formulas
for the quantities pj:
a’su rald ot
Pr= Eh 51 chnELEY .

On the other hand, if 4 is the determinant |&,| we have
ologd -,
ok,

~ el
u

so that, by multiplying with % we obtain

ologd _ ologd @ __8_51_4,611,.
e ot e ed ]

we therefore may write
jologd

Pr =& — ey + Cun 1€
By introducing this relation in equations (4) we obtain Stoka’s system

610gFA

(11) & = b1t ,
which, for the case where transformations (1) form a group, is equivalent
to Deltheil’s system.

In view of (10"'), we have the formulas

jolog4
oz’

Ph=5h +my, + ey oh



-
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where we have written

My = Cyun
and system (11) becomes
; 0log A «
£ (;i,. = My + € 0e
(11%)
EZLU;LM:: ma+c?ao'; .

ox’

From the last of these equations, in view of the first ones, we obtain
the equations (10) in finite terms.

The conditions of integrability of the first equations (11’) may be
written as

X Xof) ~ Xof Xuf) = o Xaf
where we have put
. J'aj _ a &8
Xif =& o My -+ Cq 0, -

Therefore, in view of the fact that X,(o%) are defined by (9’’), we have
s t t t t s t ¢
Ga(ctav Csu c(llv cgu 09) -+ CZ, Cua -+ c?u Ggm Gy — Uu(,cztzucsv + c:uc.gsv Uq) -
¢ a ‘ 4 I a s
— c(t‘u Cpa — Ciu c'?:a Gy = CypMy + CypCy1 T -

But it can be easily verified that the quadratic terms in o are identically
zero while the linear terms are equal to zero according to Lie’s quadratic
relations. We therefore may write these relations in the form

{4 11 4
(12) c‘tzrcm_‘c?ucva—cuvml =0.
On the other hand, let us consider Lie’s quadratic relations
ho 8 h s h s h h R
(13) €57 Cup + CsuCrp + Csr Cpu 4 Cap Cuv + CauCop + CanCpu = 0 .
If we make h =p =t <n and take the sum, we obtain the relations
i & s ¢ ¢
— Mg c';v + CsuCrt + Csr c:u — Mg c:w + Cau c:t + Cav c:u =0.

Because the second and third terms cancel, it follows that relations (12)
are identically verified.

We, therefore, have the theorem:

A group G, is measurable if o\ verifies equations (10).

If we suppose that the group G is simply transitive, i.e. that » = n,
equations (11’) become

; olog F'A
(14) EL-Tgm,—= Cuy

where ¢, = ¢g, is the structure vector of the group.
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The conditions for integrability of these equations can be written as
(14") €16 =0

and these conditions are verified if we consider Lie’s quadratic relations.
Therefore, the following theorem results:

A group G., simply transitive, is always measurable.

It follows that, if the vector of structure is zero, we may take as
the integral-invariant function F the quantity 1/4.

It also follows that, being given a measurable group G, (r > n), which
has a simply transitive subgroup, we may always choose a system of
coordinates relative to which the vectors &, have a null divergence.
Indeed, this means that we may conveniently proceed so that the integral-
invariant function of the group G, becomes equal to 1.

Also if the quantities g5 form a group Gy, simply transitive, we have
¢fs = 0 and, as a consequence, equations (10) may be written as

(15) cf.,oi,—aﬂms—{—ma =0

and are, therefore, linear equations in d.

If we suppose that the group G, is an invariant subgroup in G, we
have ¢§, = 0. In this case we have

3
Cs = My , Mg Cyp = 0

and, if the group G, is perfect, conditions (15) become conditions (10°).
We, therefore, have the theorem:
If a group Gy has a subgroup G,, which is simply transitive, perfect
and invariant, then the group G, is measurable, provided relations (10°)
are verified and conversely.

In particular, this theorem may be applied to Cartan’s symmetric
spaces V,, which have a group of motions G, and it results that these
groups (., arc measurable. Indeed, in this case the simply transitive
group G, is a simple and invariant subgroup in G.,, i.e. an invariant
and perfect group.

Relations (15) are also verified, because, in the case of G,, the quanti-
ties ¢, are s]iew-symmetric in ¢ and 2.

We suppose that r = -+1. In this case, if we put o34+, = o5, equa-
tions (10) can be written in the form given by Stoka

(16) €30° = Cpt1

where ¢, = c';ﬁh is the vector of structure of the group G,.,. As a con-
sequence, G, is measurable if ¢, is a null vector and, therefore, any
group G, which is perfect is measurable.
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8. We will show now that conditions (10’) are sufficient for the
group G, to have a measure.

Indeed, it is known that, given a transitive group G, in n va-
riables #!, ..., y*, other variables y»t!, ..., y", which since Elie Cartan
are called secondary variables, can be associated in such a way that
the group leaves invariant n Pfaff forms:

ds* = 2dy’, ds"=2Mdy' (u,i=1,..,n; a,f>n),

where 1%, 17, 25 depend on the principal variables g’ and on the secondary

variables 4’ and the determinant D = |1Y| is different from zero; ds* are

therefore independent Pfaff forms in the space Ya(y*, ..., y").
Concerning the » forms ds¥, ds® they satisfy the relations of structure

As* = cyds” 0s' + e[ ds®ds’] ,

(16')
As® = cds” s + e[ ds®ds’] + ¢5, dsPds”

where we have written [ds’ds’] = ds”6s’ —ds’6s° and where A represents
the operator dd—dd.

In this case, if the determinant D is independent of the secondary
variables, we may take as volume in the space Y, the quantity

(16") V= [Day...ay",
dy
which can be written as

V= [[dst...ds"]
a4y

by using the notation of exterior product.

It can easily be shown that, if the formulas (15) are verified, .D does
not depend on the secondary variables, Indeed, it can be shown that
we may always make a change of forms ds*

ds* = c'ds®
in such a way that ds* does not depend on the secondary variables and
that ¢, does not depend on the principal variables; in this case the de-
terminant 4 = |c,| satisfies the formulas (see [6], p. 159)
ed
—_—= —maA .
s
Therefore, if (15) are verified, 4 is a constant and, considering we have

D = AD, where D is the determinant lEl, it follows that D is independent
of the secondary variables and we have Chern’s thecrem ([1], see also [3]):
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In the space Y, a necessary and sufficient condition for the volume (16'’)
to be invariant relative to the group G, is that formulas (10°) be wverified.

These mean that a group G, is measurable according to Deltheil or
Chern at the same time.

We observe also that, according to formulas (16’), equations (14')
can be written as

S
CoCup+CaCuv =0, CaChy =0,  €,Cup~+ CaCg = 0

and we also have

Cs = Mg+ Ng Co = Mq + Na (ny, = cﬁh) .

Considering that cs, are the constants of structure of the stability
subgroup of the group G,, it follows that, for the case where G,_, is
perfect, the quantities ¢, vanish.

On the other hand, for the group G,_, we have also formulas (14')

e Cgy = 0 .

Therefore, n, also vanish and, as a consequence, (15) are verified.

We therefore have the theorem:

A group G, having as subgroup of stability a perfect subgroup 1is
measurable.

It follows thus that Cartan’s symmetric spaces, with a simple group
of stability, are measurable.
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