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1. INTRODUCTION

The aim of this paper is to investigate various vector bundles (vector
pseudo-bundles in the terminology of [4]) occurring in the process of dif-
ferentiating of functions defined on subsets of a Euclidean space. If X
c 2™ and f: X — %', then f is differentiable at € X if there is a neigh-
borhood U of z in #™ and a differentiable function f: U — #' such that
= f on UnX. The tangent space T, X (sec [9], [6], [2]) is the largest
subspace of #™ such that the derivative f'(x; u):= f’ (x;u) for any u
e T, X is independent of the choice of the extension f. The bundle TX
= U {#} x T, X: & — X} is thus the domain of the derivative of every
differentiable function on X. We can consider covariant vector fields on
X (functions on T'X linear on the fibers) and contravariant fields (sections
of TX). To differentiate the former one can proceed as above to define
the tangent bundle to TX — a bundle over 7X — which thanks to the
linear nature of the fibers of 77X can be identified with a bundle over
X — the second tangent bundle to X. This identification has been ex-
ploited by N. Aronszajn in the case of differentiable manifolds (personal
communication), who also noticed the interest in considering coupled
differentiable-linear structures. The process can be repeated to obtain
higher order tangent bundles; the tangent bundle of any order is the
natural domain of definition of the derivatives of functions on the tangent
bundle of order by one less which are lincar on fibers.

The bundles so obtained are of interest only at “singular” points
of X ; at points of smoothness they are easily calculated and do not seem
to provide a new insight. At all points the bundles are local invariants
of homeomorphisms locally extendable to diffeomorphisms between open
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sets in Z™ and thus provide some insight into the nature of singunlar points.

In thé above context it is natural to look for the notions of affine
connections and covariant derivatives: these can be defined in a rather
natural way, however (as one would expect), one cannot expect in general
the existence of a smooth affine connection. Even if such exists, one
with prescribed properties (e.g. Levi-Civita connection) may not exist.

The bundles indicated above are connected with the operation of
first order differentiation of all functions on some given bundle, which
are linear on fibers. In the cases of special bundles and more restricted
classes of functions, the derivatives of course are defined on the tangent
bundle, but the latter may actually not be their maximal domain of
definition. One of such cases is that of the bundle TX with the class of
functions consisting of all derivatives of functions on X, the other
one is that of the bundle ®*TX, k>1, with the class of functions
congisting of all functions which are skew symmetric on fibers. The oper-
ation here is of course the exterior differentiation.

The bundles obtained in the first case are domains for derivatives
of arbitrary order of functions defined on X; they provide a systematic
set-up for the compatibility conditions to be satisfied by the derivatives
of any (differentiable) extension of a function defined on X (see [2] for
an example).

The bundles associated with the exterior derivative seem to present
yet another framework for the exterior calculus and resulting theories
(see [7], [5], [3D).

The examples occurring repeatedly in the paper are those of a poly-
hedral singularity and of the vertex of an algebraic cone (in most cases
of 2nd degree). In these cases all the bundles in questions can be computed.
It would be of interest to describe a wider class of sets with singularities
where such computation would be feasible.

We found it expedient in this paper to use the setting of subcartesian
spaces [1] even though all the considerations are local and concern subsets
of a Euclidean space. In this setting the meaning of various concepts
and of their invariance becomes apparent.

The content of the paper is as follows:

Section 2 sets up the notations and conventions as well as some basic
notions concerning vector bundles over subcartesian spaces. Section 3
deals with bundles obtained from given ones by means of functors of
linear algebra, Section 4 is devoted to the construction of the modified
tangent bundle to a vector bundle, higher order tangent bundles and
restricted tensor products. Section 5 contains further properties of the
bundles introduced in Section 4 and Section 6 contains some results con-

cerning bundles associated with higher order derivatives and with the
exterior derivatives.
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2. NOTATIONS AND PRELIMINARIES

2.1. For a function f we denote by D, the domain of f, C*(%™, %")
is the class of functions f: D, = #™ — %", where D, is open in Z™ and f is
k-times continuously differentiable when k¥ = 0,1, ... or real analytic
when k = 0. We write CF = |J{C¥(%™,2"): m,n =1,2,...} and
C*(#™) = C*(@™, R'). For feCF f'(x)u = f'(x; u) = {pf(x), u) denote
the differential of f at  with increment «, { , ) denotes the scalar product;
similar notations are used for partial and higher order differentials.

A™ x A" denotes the space of pairs (z,y), ze Z™, y € Z"* with its
product structure; in the cases when there is a need to identify it with
A" we use the notation #2™ -+ £".

C*L(RA™ X A", A™ x A™) denotes the class of functions of the form
(9,G): (x,u) eRB™ X A" — g (), G (2, u)) € ™ X #", where g € C*(Z™, 2™ ) Dy
=D, x#", G(x,:) 1is linear for every zeD, and z—>G(z,:-)
is of class C*. We write C¥L = | {C¥*L(%#™ x #", #™ X &#"): m,n, m', n’
=1,2,..} and C*L(#"XA") = C*L(A™ X A", #') to denote the
real valued functions linear in the second wvariable.

A homeomorphism in C* is a homeomorphism k e C*(%#™, #™) for
some m = m(k) such that k! e C*(%™, Z™).

The notion of homeomorphism in C*L is defined similarly.

The spaces Z°,n = 0,1, ..., are considered as subspaces of £ — the
space of all real sequences and are thus ordered by the canonical inclusions.
The cartesian products #™ x #" are considered as subspaces of #Z*° x #*
and are partially ordered by the canonical inclusions.

2.2. If S is a topological space, then ¢ is an {#"}- (or {Z™ X Z"}-)
“chart if for some m (or some m, #) ¢ is a homeomorphism ¢: D, c § - Z™
(or respectively ¢: D, = § - Z™ x #Z") such that D, is open in §. It is
not required that the image ¢(D,) of a chart ¢ be open in any of the spaces
A* (A™ X #") containing it.

A C*-atlas on S (or respectively a C*L-atlas) is a collection of {#"}-
charts @ = {g} (or respectively {#™ x £"}-charts) with ( J{D,: p € ®} =&
and such that the following condition of local extendability of connecting
homeomorphisms holds: for any ¢, v € @ such that D,nD, # @ and
for every p € D, n D, there exists an open neighborhood U of p, U = D,
nD, and a C* (or respectively C*L-homeomorphism) k€ C¥ such that
D, o> ¢(U) and b = yog~! on ¢(U).

A C*- (or C*L-) space is a pair (S, @), where § is a topological space
and @ is a C*- (C* L-) atlas on S. We also say that @ gives or defines a C*-
(C*L-) structure on 8.

The following concepts are defined in the usual way C*- (C*L)-
compatibility of a chart in § with an atlas on §; C*- (C*L)-equivalence
of two atlasses, a maximal atlas equivalent to a given one.
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If (S, @), (8, &') are two C* spaces, then f: § — 8’ is a C*-mapping
(morphism), fe C*(S, 8’), provided for every ¢ € ®, ¢’ € @ the mapping
g’ofop™" is locally extendable about every point of its definition to a fune-
tion in C*. The notions of mono-, epi-, iso-, ete. morphisms are defined
in the obvious way.

2.3. Let (8, ®) be a C*-space. A ('L-vector bundle over (8, @) is
a triple (X, =, @), where (X, ®) is a (' L-space, and #x: X — § is continuous
open mapping such that the following conditions are satisfied.

2.3.1. Forevery peS,n ' (p) = 2, — the fiber of X with the foot-point
p (or at p) is a vector space; denote by O, its zero vector. Also let X,
=J{Z,;;pelU}, UcS.

2.3.2. For every ¢ € ®, D; = X for some open U c §, §(D;) = #™ X
X &" and §(&) = (p,(0,), ¢2(p, &), Where @,(p,): Z, — %" is linear.

2.3.3. The atlas @ |8 is O*-equivalent with ®.

2.3.4. The term vector bundle is used here with connotations some-
what different from standard ones as no local triviality is assumed. A more
precise term — vector pseudobundle — was introduced in [4]. We refer
to this paper for a discussion of vector bundles with C*-structures, as
opposed to C* L-structures on which we insist here.

2.3.5. If (X, n, D), (X', 7", P') are C'-vector bundles over C* spaces
8, 8’, then f: X — 2’ is a ' bundle morphism, f e C'L(X, 2') if for every
pesl, f: £, — Z;(0,) is linear and if for every g e @, ¢' € @', ¢’ofop™!
can be locally extended to a C'L-function about every “foot-point”
@(0,) of its domain. We also write C'L(Z") = C'L(Z, Z).

The notions of mono-, epi-, iso-, etc. morphisms are defined in the
obvious way.

D

2.4. The vector bundles of interest in this paper are those obtained
from the tangent bundle to a C* space by functors of linear algebra x
(cartesian product), ® (tensor produect), ®, (symmetric tensor product)
and ®, (skew symmetric tensor product). In the next section we shall also
introduce the modified tangent bundle and restricted tensor products.

We recall the standard procedure of constructing a vector bundie
over a CF-space (S, #). Assume that we are given the following local
data:

2.41. For every ¢ € @ with ¢(D,) =« #™ we are given a set X°
= Ulletx 2%: = ep(D,)} = #™ x #", where X7 is a vector subspace
of #" for cvery x e @(D,).

2.4.2. For every pair ¢, y €  with D,nD,, # @ we are given a con-
necting homeomorphism h,,: 2% — 2% such that



Vector bundles 353

(1) FOI' every p e -qu nsz? hw(‘P(P); 0) = w(p)7 a’nd hw(‘P(p)’ '): 2&1,)
— 2% 18 a linear isomorphism.

() If ¢, v, y€® and D,nD,nD, # @, then h,oh,, = h,, on

P
2¢(D¢0D10Dv) .

(iil) About every point of ¢(D,nD,) h,, is locally extendable to
a C'L-homeomorphism. More precisely for every peD,nD, there is
a neighborhood U of p, U <« D,nD,, there are integers M > m, m/,
N=n, n (ZXcE™" x%") and there is a homeomorphism (k, H) in
CH(RM x 2N, #™ x #~) such that ¢(U) = D and (h, H) = h,, on Z¥qy.

With the data 2.4.1, 2.4.2 we note that for £* € 2%, £¥ € 2* the relation
& = h,,£% is an equivalence relation compatible with the vector space
structure of the fibers in 2%, 2¥ and we define for p € § the fiber 2,, over
p, as the space of equivalence classes of vectors in X7, with the natural
vector space structure. Then we let X' = (J{{p} x Z,: p € 8} and define
the bundle (Z, z, &) by letting z({p} x Z,) = p and D = {$},.s, Where
#((p, &) = (p, &), where & is the representative in X¥ of the vector
§in X,.

2.5. We recall the definition of the tangent bundle TS to (S, @).
For X « #™, x ¢ X we denote by Nx , the space of germs of C*(#™) func-
tions vanishing on X at @. For k # o, Nx, = {fly: f € C*(2™), D, = 2™,
flx =0, U — a neighborhood of «}. Let T, X = (") {kerf'(x): fe Ng,}.
Then if & is a C*-homeomorphism of some neighborhood of z in %%,
M > m, then for v e T, X, h'(x, v) depends only on k|y and belongs to
Ty h(X).

For ge @, pe D, we let Ty8 = T, ¢(D,) and h,,(z, v) = b'(z; v),
where h is any extension about z of the connecting homeomorphism
yop~!. In view of the preceding remarks this provides the data needed
to define the bundle TX as in 2.4. The corresponding atlas @ is in this
case denoted by @D, = {ps}yco. If 8 is a C*-space, then TX is a C* 'L
bundle over 8. B

It (8, ®), (8;, P,) are C*-spaces and f: 8§ — §,, then the formula
(@10fo@7Y) = @refaps’s ¢, € D, ¢ € D, defines a unique C*~! L-morphism
of the vector bundles T'S, T'S,. f« is referred to as the tangent mapping
of f. In the case when f = ¢ € @ the notation coincides with the preceding.

2.6. We recall the notions of upper semicontinuity of a vector bundle
over 8. The following conditions are clearly invariant under C*-homeo-
morphisms and are meaningful for abstract bundles. Let 2 = 2™ x #"
be of the form X' = | J{{#} x Z,: v e X }, where X c #™ and Ny, denotes
the space of germs at # € X of functions in C* L(#™ x #") vanishing on X.
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(i) For z € X, u € ", the condition f(x,u) = 0 for every feN,,
implies u € 2. ‘

(ii) For {m} = X, u; € Z,, the conditions », ;55> v e X, u; 355> v imply
uek,.

(iii) The function y € X — dimZ), is upper semicontinuous at zeX,
i.e., dim 2, > dim Z,, for every y in a neighborhood of z in X.

Clearly (i) = (ii) = (iii). For every 8, T'S satisfies (i) at every point
of 8. There are natural examples of vector bundles over § (5.5.2) satisfying
(iii) but not (ii).

3. CARTESIAN AND TENSOR PRODUCTS OF VECTOR BUNDLES

3.1. If {Z;,,n, D}, i = 1,2, are C"-vector bundles over a C*-space
(8, @), then the bundles 2,4 X, (direct sum), X; ® 2, can be defined in
a canonical way provided the atlasses @, |g, @, | have a common refinement
which we can assume to coincide with @. If the latter is the case then we
can choose @; = {@;},.0 50 that ¢;|g = ¢, 7 = 1, 2. Let Z' -}- Z, = U{{p} x
X( ZypF Zop): P €8} (or respectively Z; @ X, = | J{{p} X (£, ®Z,,): p € 8}),
(7034 7 ) (215 + Z5p) = p (or 71'1@“2(211; ®2Z,p) = D) a'nd for ¢: D, < 8§,
A"y @i Dy, > A" XA™, i =1,2, and for peD,, u;e 2y, let (@14
+ @) (P, w1+ uz (‘P ), 1(2, “1)4- P2(P, ’“2)) €A™ X (gm X #"2) (or re-
spectively @ @@s(P, % @us) = @(p) X(92(P, %) R Pa(2, ’“z)) EA™ X (AN QD
® %™)) extended by linearity.

It is clear that different choices of the common refinements of @,, @,
give rise by the above construction to isomorphic bundles.

3.2. The condition in 3.1 is clearly satisfied if the bundles X;, X,
coincide. In particular if X is a C*-vector bundle over 8, then the following
are well defined and are C'-vector bundles over 8: @*X (kth direct sum),
®%Z (kth' tensor power), Q%X = A¥Z (skew symmetric tensor power)
and ®*Y = ©*X (symmetric tensor power).

3.3. If (2, =, D) is a vector bundle over §, then the bundles X x TS,
Z®TS etc. are all well defined: we merely consider S with the atlas @[8S.

3.4. PROPOSITION. If the bundles Z;, X, over S satisfy at some point
any of conditions 2.6, then the bundles X, 4 X,, X, QZ, satisfy the corre-
sponding condition. The same is true for the bundles QX and QLZ, r > 2.

Proof. It follows directly from the definition that all the bundles
in question inherit (iii) and (ii) and that X, 4 X, inherits (i). If X; c 2™ %

X &% 1 =1,2andfeNy , then (2, u®v) —f(z, u)g(z,v)is mNZIMM
for every ¢ EC"L(QZ”‘X.%“Z). If 0 = Zu,®v, € A" @A™ satisfies a(z, o)
= 0 for all a € Ny q5,, then assuming as we may that {«,} and {v,} are
linearly independent and choosing g appropriately’ we conclude that
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flx, u,) = 0 for every fe N z, . and for every s. Thus if X satisfies (i) at 2,
then u, € 2, for all s. Slmllarly v, € 2y,. The same reasomng applies to
the bundles ®FZ and ®%Z.

3.5. Morphisms of vector bundles induce in a canonical way morphism
of the bundles obtained by means of functors of linear algebra described
above.

4. TANGENTS TO VECTOR BUNDLES

41. Let T =J{{#}xZ; ze X} c #*x %", where X c ™ and
X, is a subspace of £ for every # € X. As in 2.5 we define N, as the
space of germs at x of functions in C*L(%™ x #") which vanish on X and
let for (w,w)elX, T2 = (){kerf'(z,u): feNy,} <« #™ X R", where

(41.1) f(@,u; v, w) = fo(z, u; 0)+f (z, w).

. 4.1.2. Remark. If (v,w)eT,, 2, then veT,X. However, in gen-
eral w¢ 2.

To check the first part it suffices to notice that if g e Ny, and b:
Z" — Z is linear, then f(y, u) = g(y)b(u) is in Ny,. For the second part
one can take 2 = TX and z = (0, 0) € X, where X < #? is the parabola
z, = 7.

4.1.3. Remark. The set | ) {{w, u} x T,,2: (, u) € Z} is the repre-
sentative of tangent bundle Y to 2 in the inclusion chart X < £™ x #*,
where X is considered with its C*L structure given by this inclusion.
This bundle is replaced in the next paragraph by a vector bundle over
X carrying essentially the same information.

41.4. Remark. It is not clear, even in the case when ¥ = TX
when do the spaces T, , X and the tangent space to X at«, in the C* struc-
ture induced by the inclusion 2 < #™ 4 #" coincide. A sufficient condi-
tion is that the ideal generated by N, be dense in the ideal of germs
at @, u of O functions in #™ .. £" vanishing on ZX.

5. If f: £ — 2 is extendable to a ¥ L-function in a neighborhood
of # in %™, then the differential f'(z,u; v, w) = fi.(z, u; v) +f(z, w)
for (u,w) eT,,2 is independent of a particular extension of f.

4.2. For ze X let T X =[{u®v+w: (v,w)eTl, X} c Z"QA™ +
4 2", where [ ]denotes the linear span. Also T2 = (J{{z} x T}Z: © e X}.

Then T'2X has the following properties.

4.2.1. For f: X —# as in 4.1.5 there is a well defined f,: T'Y > 2
given by the linear extension to T.X of fi(z, u Qv +w) = f.(x, u; v)+
+f (@, w), where J e C*L(&™ x #&"), f|z = f. The value of f(x, u®v 1+ w)
does not depend on the choice of f.
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4.2.2. X (b, H): e CL(Z, X)), 2' c A" @A™, then with h(X) = X'
we have that for uQv+weT.Z, w' Qv +w' eT,2', where &' = h(x),
w' = H(z,u), v = Dh(z; v), w' = H(x,w)+H,(x,u; v), the primed
quantities being independent of the choice of a C'L-extension of (h, H).
The mapping (2, #Rv+w) - (', ' V" +w') we denote by (h, H),;
(hy H)u e C'L(T' 2, T' 2).

4.2.3. The procedure 2.4.2 can now be used to define the bundle
T’ X for an arbitrary vector bundle (X, n, @) over a C*-space S. The data
2.4.1,2.4.2 are: for g € B, p(D,) < A™ x A" T'2* = T'p(D,) and the con-
necting homeomorphisms are given by h,, = (yo¢~')« Wwith notations
as in 4.2.2. The resulting bundle 7”2 we refer to as the modified tangent
bundle. Its charts will be denoted by ge, ¢ € D.

4.2.4. To every feC'L(X,ZX’) there corresponds a unique f,
eCL(T'E,T'Y") given by (p'ofop ') = guofuog™, pe®, ¢ cd'.

4.3. The form of the connecting homeomorphism in 4.2.2 implies
that the “horizontal projection” z,: T'Y -~ 2 QTX given by x,: ot w
EXR"QA)+ R >weA"RQAR™ is a well defined bundle morphism.
Define the restricted tensor product by X QTX = m, (T' X).

More explicitly, (2® TX), is the subspace of (X®TX), spanned by
the vectors u ® v with the property

4.3.1. There exists w e #" such that f,(x,u; v)-+f(@,w) = 0. for
every feN;z,.

4.4, There is no canonically defined vertical projection from the

bundle 7" X (see 4.1.2). One can nevertheless consider mappings I': 2 QTS
—T'8S which are linear on the fibers and satisfy the condition =0l

= identity on Z®TS. Any such mapping is called an affine connection
in 2. In the case when X = T8 we refer to I" as an affine connection on §.

4.4.1. We avoid the term bundle morphism with regard to affine
connections due to the fact that even in rather simple cases they need
not be continuous.

4.4.2. Let I" be an affine connection in (X, n, #). For any § ¢ ®
denote p = ¢|g and let I = g;loI'o(p @) " represent I' in the chart
@. Then I'(z, u®0) = (¢, Qv+ y* (¢, u @v)), where u®v — y°(w, 4 @)
1s linear (or equivalently (u, v) — 9®(x, %, v) is bilinear).

The representations I'¥, I'¥ in two charts ¢, ¢ at the same point
p € 8 are connected by 4.2.2 with 2 = ¢(p), 2’ = y(p) and (k, H) = $op~},
in particular »*(z’, ' ®v') = H(w, ¥ (@, u®v))+H;(a;, u; ).

4.4.3. In the case when X = TS, H(x, u) = h'(x; #) and the above
formula becomes »*(z’, w' ®7v') = I’ (2; »°(2, u@v))+ 1" (x; u, v), where
z' = h(x), v = b (z; w), V' = h'(z; v).
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This is formally the same as the transformamon law for connections
in the classical case.

4.4.4. If for some atlas @ on X we are given in the image of every
chart ¢ a mapping I® (or 9%): zp(D,,,)@T (D3) > T'p(D;) as in 4.4.2,
then a connection on X can be reconstructed from these local data by means
of a partition of unity (assuming that § is paracompact).

4.5. Let fe C'L(Z,2’) and f, be as in 4.2.4. If I" is an affine con-
nection in X, then the corresponding covariant derivative of f is given
by prf = fuol™: QTS -~ T'3. In particular if fe C'L(ZX), then prf:
2R TS - A.

4.6. It (X, =, H) is a vector bundle over (8, ), & = d|g, then
%: 8§ —~2X is a section of X provided mou = identity on X. A section
w is of class C', u € C'(8, Z), provided for every p € ®, ¢ = Plg, pouogp™
is locally extendable about every point of its domain to a C' function.
4.6.1. PROPOSITION. If u: 8 — X i8 a C'-section of a C'-vector bundle
Z,if p e S andif u(p) = (p, u,) € 2, then for everyv e T, 8, u, ®v € (Z‘é 8),.
It suffices to verify the claim in the case when X' < 9?"‘ X Z" is as in
4.1 and u(y) (¥, u,), where u: X - A" and w, €2, ye X. If ae N,
then ao# is in Nx, for every C'-extension % about x of the function wu;

hence for every v e T, X, a,(z,u(x);v)+a(z,  (z;v)) = 0 establishing
the claim.

The converse to 4.6.1 is false.

4.6.2. For an affine connection I" in a (*-vector bundle X over 8§ and
for a section u: S8 — X one can define the covariant derivative p u(p; )
of » at pe S with increment veT,S by the condition (fou).(p; v)
= prf(p; w(P)®v)+f(p, v ru(p; v)) for every fe C'L(Z).

The first term on the right-hand side is meaningful because of 4.6.1,
also in local coordinates with I'(z,u®v) = (z, y(x, u®@v)) one easily
gets

pru(@; v) = u'(2; v)—y(z, u(r)®90).

It can be checked directly that p,v(x; %) e 2, provided X satisfies
at o the upper semicontinuity condition 2.6(i), or if  is continuous at
and X satisfies at z, 2.6(ii).

5. FURTHER PROPYERTIES OF THE MODIFIED TANGENT
BUNDLES AND EXAMPLES

5.1. We assume from now on that spaces and bundles under con-
sideration are of class at least C™.

The functors 7' and ® can be iterated. In the case when X = T8
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we write TF§ = T'T*'8, T'S = T8 and @*TS = (®*' T8) ® T8,
k> 2.

5.2. Recall that p € § is a point of homogeneity provided dim,S
= dim, S for every ¢ in some neighborhood of p in 8. Also recall that
dim, S = dlmT S.

5.2.1. PROPOSITION. If pe 8 is a point of homogeneity of S, then
(® T8), = (Q*TS),.

Proof. It suffices to check the statement for the image of any chart
about p. But in the tangential chart the statement is obvious.

5.2.2. 5.2.1 applies in the case when S is a manifold or the closure
of an open subset in a manifold.

5.2.3. In a neighborhood of a point of homogeneity p € § one can
define a O™ -affine connection as follows. By choosing a tangential chart
¢ at p one can assume that ¢(D,) =« #™, where m = dim,8 for every
q € D,. Then T, p(D,) = ™, (R*Tp(D,)) = &™QZ™ for every x € p(D,).
Choose now any function y (in C®L(%™ X (®'%Z™), ®™)) and let »°
= ¥ |xxamgam - In any other chart v about p (tangential or not) ¢¥ is then
defined as in 4.4.3. In the case when § is a C*-manifold and only the
tangential charts are considered this coincides with the standard netion
of an affine connection.

5.3. The next case of interest is when § is locally a union of finite
number of sets as in 5.2. More preclsely, assume that X < #™ is of the

form X = UX‘, that z € ﬂX and that 2 is a point of homogeneity

i=1 =]

of X;for¢{ =1,..., N.Fork>1let W = 2®’°TX) QF A,

=1
5.3.1. PROPOSITION. With the hypotheses as above we have W < é".’l’Xs.

Proof. If the result is true for some %k, then N Jhrxa © Nokrx,, for
¢ = 1, ..., N which by 5.2.1 and the definition of ® implies that (®*+! TX),
c ®k+lTXm. |

5.3.2. The following example shows that the inclusion in 5.3.1 is in
general strict. Let X = {(ml,wz) eR: wz(wz—exp ) = 0] Write
a € O°L(#* x %, A) in the form a(x, v) = al(m)v +a,2(.'v)'v2 Then a € Ny«
if and only if a,(#,,0) =0 and a,+a,2z7%exp(—a;%) =0 for =z,
= exp( —a;?%). It follows that @1 (Zyy X3) = by(@y, ¥) @, and that z3b, +2a,
= 2b,, where b, (@, exp( —;*)) = 0 and that a(z, v) = b, (#,v' — }u3?) +
+ by 0%, Condition 4.3.1 is equivalent to 4?2 = 0 and v*u? = 0. (Note
that 0b,/0m, = 0 at 0. It follows that (QTX), = [6,Qe€, €,R6,].
If X, ={,0): 5,e 2}, X, = {z, = exp(—a}): =, € #'}, then (TX,®
®TX,), = (TX,QTX,) = [e,Qe¢,].
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5.3.3. Remark. 5.3.2 shows that TX® TX need not be symmetric,
i.e., u®ve(é>“TX), does not in general imply that v®ue(é2TX)c.

5.3.4. Neither of the peculiarities in the example above may occur
if the singularity is a point of finite order tangency of two manifolds:

Let ge (%™ '), m>2, ¢?0)=0,1=0,1,...,k—1, k> 2 and
let X = {(«',z,)ea™: z,(x,—g(")) = 0. Then (®2TX), = 2™ '®
@@ﬂ»—l.

We consider next a case when the inclusion in 5.3.1. is an equality.

5.3.5. PROPOSITION. With the motations as in 5.3.1 assume that, for
N
$=1,...,N, X; is a closed convex set. Then for z € (| X; and any k> 2,
, N i=1
(®"TX), = ¥ (®*TX,),.
: i=1
Proof. We can assume that dim_X = m and that ¢ = 0. Fors
=1,..., N let P;: 2™ — [X,] denote the orthogonal projection onto the
span [X;] of X;. If a e C*(RA™ X &A™, #) we write a(x,v) = {(a(z), v),
acC(RA",2™). X aeNypx,, then @(0) = 0 and d(zx) = A(z)x, where
A€ C°°(U, L(.@"‘)), where U is a neighborhood of 0 which we can assume
to be convex. Let U, = U nP;}(X;), then 0e U,;, U, is convex and U;
has non-void interior. ¥ z € U;, v € #™, then P,z e X, PyveT, X, and
{A(P;x)P;x, P;v> = 0. Replacing = by tz, letting ¢{ -0 we conclude
that {A(0)P;z, P,v> = 0 for 2 € U, v e #™. By linearity the equation
remains valid for all x e 2™ and

_ P, A(0)P; = 0.
Conversely if A (0) satisfies the above condition, then (z, v) — (4 (0)x, v)>

is in Nypy,. Definition 4.3 of (TX®TX), becomes v®u e (TXQTX),
<> {Au,v) = 0 for all A satisfying P,AP; = 0. With the usual identifi-
cation of L(#™) with Z"Q A™ we let V={4e2"Q4™: P;AP; = 0,
$=1,...;N}. Then (TX®TX), = V., on the other hand it is easily

N
checked that (Y TX;®TX)* = V which proves the claim for k = 2.

7=l
Assuming the claim established for t—1 we write ae N, . Irx in the
RN 0

form a(z,v) = {d@(x),v), ve®* A4 e 0°(A™, @ '2™) and easily
conclude that @& can be represented in the form d(x) = a@(0)+ 4 (2)-z,
where A € C(#™, ®*#™), + denotes the contraction with respect to the
last entry and @(0), A(0) satisfy <d(0), P;o;X ... X P, > = 0,
{(A(0)P;z,P;v;y ..., Pv,_,») =0forallz,v;,...,0,_ €A™ and ¢ = 1, ...
«esy N. 5.3.1 now becomes v® u € (*TX), if and only if (A(0) u, v)+
-+ {@(0), w) = 0 for some we ®* 2™ and every a(0), A(0) satisfying
the conditions above. Choosing in particular ¢(0) = 0 and using the same
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N
argument as for ¥ = 2 we conclude that (®*TX), c Y ®*TX,; which
i=1

is the opposite inclusion to the one 5.3.1. m

5.3.6. PROPOSITION. With the notations and hypotheses of Proposition
5.3.6 assume that for every 1<4, j<N, X;nX;c {X;,i=1,...,N}
and for 1< j<N let I;={i: X;c X;}. Then ((@kTX)éTX)z

N
= 2 (%4 e, TX,® .. @ TXy) X TX;.

The proof is similar to that of Proposition 5.3.5 and is omitted.

5.3.7. COROLLARY. If X is as in 5.3.5, then the mapping (ézTX)v
—0eR™ yeX, defines, in the inclusion chart X < ™, a C*-affine con-
nection.

Recall that a C®-space S is of polyhedral type if for every p e S
there is a chart ¢ at p in the maximal atlas defining the C* structure on
8, such that ¢(D,) = UX; c #™, where X, are closed simplices.

It follows that on a space of polyhedral type there always exists
a (C®-affine connection.

, 5.4. We consider here some additional properties of the bundle
R*TS.

5.4.1. PROPOSITION. Suppose that X c ™, zeX. If u,Q ... Qu,
€ (®*TX),, then Uy ® .o Oy e (®'TX), for 1<iz<...< i< k.

Proof. For k = 2 this is Remark 4.1.2. For k > 2 we can proceed by
induction. If 4, < k, then there is nothing to prove, thus we can assume
that ¢, = k. Write {1, ..., k} = {4, ..., 43V {Jip1y ooy Jo}. If aeNéMsz

then, using the induction hypothesis the function a,(z,7,® ... ® v;_,)
= (&, Uy ooy y_,)<b, %,,8 .- ® v,> is In Ngk-1py, for every b
e @*'#™. Applying 5.3.1 to this function: there is w € ®*~'2™ such that
Doa(wy 0; 5 0oy Vy_ 5 V) b, Vi ® oo ®;,> 1+ a1 (2, w) = 0. Choose b so
that <b,v;, ®...®%;,> =1 and let w = Jwi® ... ®w;_,. Then a(z,

2 ® ... ®0;,_ ;%) +a(@, ®) =0, where v = ', wj, ® ... w5> w;®

S k
®...Qw;_,. W
Remark. The above proof remains valid if 4,,...,4, are distinect,

not necessarily increasing provided ¢, = k=>s = [.

5.4.2. If (8,, D,), (8., D,) are C®-spaces, then on the space 8;x 8,
we can consider the atlas @, X @, = {p, + ¢,: ¢, € Dy, ¢, € D,}, Where
@1+ @o: (P1) Do) € Dy X Dy, > 1(p1) + 92(p2) A"+ A% We identify
here in the standard way & -+ #"% with #"%1" "%, It is clear then that
(8, x8,, @, x D) is a C*-space.

The bundle T'(S, x S,) can be identified in a canonical way with the
bundle T8; 4+ T8y = \J {{(P1; P2)} X (T, 814 T, 8): P18y, pr €8y} In
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the case when §, = §, = § this bundle is not to be confused with 78 + T8
introduced in 3.1 — the latter is the restriction of the former to the diag-
onal of S x 8.

5.4.3. ProrosiTION. (a) If X, c #™, 0,e X;, 4 = 1,2, and if (0,4
+ 92) @ (U + o) € DT (X, X Xo)g 0y, them v, Qu; € (@*TX,),, &=1,2.

(b) If =, is a point of homogeneity of Xz, then the converse of (a) is
true, in particular vQu = (v+0)Q(0+ u) e ®T(X1 X Xo)zy, 2y f0€ET, P&
and weT, , X2

(e) If Zy 18 a point of homogeneity of X,, then (ul-}-vl)@ <g>(u,c
+v,)e ®"T(X X Xo)aap f and only if u,;® ... Qu € (®TX1)31
Uiy oeny U €Ty X, Also if for some 0<s<k, u1® . ®u, € (®”TX1),,1
am,d Ugyry ooy Vp €T, Xy, then @ ... QU @0, ® .. ®vk e ®*T(X, X
X Xz)(:cl sL9)

We omit the details of the proof which uses the following observa-
tions. 1° If a €Npy, ,, then the function ((4,¥,), U+ us) — a(yy, %,)
is In Npx,xx,), @20 81mllarly for @ € Npx,,,- 2° If @ € Npx, xxy,

Z1,T9) ?
then writing a(yy, Y2, Us+ %) = @1(Yq, ¥, '“1) +a5(Yy; Y5, %) We have:

Y2 > 01(21, Y, uy) 08 0 Ny, o ;
Yiy U > @1 (Y1, @2y %) 18 In Npy
and similarly for a,.

5.5. We next describe the bundle ®TX at certain conical s1ngular-
ities.

5.5.1. EXAMPLE. Suppose that A is an m X m symmetric and non-sin-
gular matrix, m > 2, and X = {z € #™: {Aw, x> = 0}. Then (TX ® TX),
= [{u®v: {Au, v) = 0}].

To check the claim: suppose that a e Npx,. Since T'yX = #™ this
implies that a(0, #) = 0 for every v e #™ and that a(z, u) = {(B(z)z, %),
where B e (™ (2™, L(#™)). Also for ze X, # # 0, T, X = {u: (dz, w)
= 0} and {(B(x)z,4) = 0 whenever {4z, u) = 0. Replacing = by iz,
letting ¢ | 0 we get (B(0)z, u) = 0 whenever (Az, u) = 0and {Az, z) =0.
This implies that B(0)z = A(zx)Az for all z such that {Az,z) = 0.
The set {z: {Az,z) = 0, || = 1} is connected (m > 2) and on this set
Az) = {A"'B(0)z, ) is continuous. Since A is finite valued, 4 must
be a constant and B(0) = AA. Definition 4.3.1 becomes vQ@u € (é”TX),,
if (B(0)u,v> = 0 as claimed.

5.5.2. Remark. The bundle ® TX in the above example does not
satisfy 2.6(ii) at 0 (but satisfies 2.6(ii)). It suffices to notice that for z # 0,
# € X one can find a pair %, v € #™ such that (Az, %) = 0, (Az,v) =0
but (Au,v) # 0.
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5.5.3. Remark. For X as in 5.5.1 the spaces (®*TX), and (_(®"1’X)é
éTX)., are determined in a similar way. We have %,® ... Qu, € (é"TX)_o
if and only if {Adu;, ;) =0,1% j=1,...,k % #j. Also ,® ... U, Qv
e (®*TX)QTX), if and only if (Au;,v) =0 for § =1,...,k In the
process of verifying these one can notice that Njxrx o = Nekrx,o-

5.5.4. If X is as in 5.5.1 except that A # 0 is singular, then we can
represent X in the form X = ker 4 x X,, where X, = {w € (ker A)*: {4,z, 2>
= 0}, 4; = Alker4yL and a description of the bundles as in 5.5.3 can
be obtained using Proposition 5.4.3.

5.5.5. For m = 2 the set X in 5.5.1 is a pair of lines and the bundles
in question are easily determined by 5.3.5.

5.5.6. Remark. If X = {x e #™; f(z) = 0}, where fe C*(#™) and
x is a non-degenerate critical point of f, then by Morse’s lemma, in a suitable
system of coordinates, X is of the form as in 5.5.1 and the above determi-
nation of ® TX applies also in this case.

5.6.7. With X as in 5.5.1 it is easy to determine the form of an affine
connection on X. Clearly at all points of X different from the vertex 0
remarks 5.2.3 can be applied. Also we know that («, u) - (Ax,u)isin Npx
and that this function generates Npx ,. It follows that any affine connec-
tion y: TX @ TX — &™ (see 4.4.3) satisfies (A0, u)+(Az, y(z, v@u)> = 0
and for z € X and y can be written in the form

A
y(@,2@u) = —%ﬁ—)Aw+w(m), where w(x)eT, X,
i.e.,, {(Ax, w(x)> = 0. It follows that
(Av, u)?
ly(z, v @u)|* = —TA—;;P* + lw (@)]%.

For any « € X it is easy to find v € T, X such that v | # and (4v,v) # 0.
¥ v, =z+t"vel, X for t>0, then v,Qv,e(TX é;TX),z and, for
tl0, Qv >rRz € (TXéTX)., since (Az,2) = 0. On the other hand

(4
ly(lz, @) = m+ |w ()|

and it is evident that y cannot be continuous at 0. For a fixed v € 2™,
x — |Az|?v —(Az, v) Ax = v(») is a C* section of T'X, but y(a:, v(w)@v(w))
is not in C*.

5.6. EXAMPLE. Let X = {weq™: af, =2+ ... +al,_}, m>2,
1> 3. By a calculation which we omit one can verify that (éﬂTX)o =

A™R A™. This with 5.5 shows that the vertices of the 2nd degree cone and of
a higher degree cone are distinct from C* point of view.
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5.7. If I' is a connection on X, then by analogy with the classical case
it is natural to expect that I" should give rise to a connection in the bundle
®*TX by the formula (in local coordinates)

k
yk((u1® ®uk)®'v) = 2 1D oee @U_, QU RV)R v @ Uy,

{=1

extended by linearity. The expression on the right-hand side is meaningful
since (4, ® ... ®u) ®0 € (@*TX) @ TX), implies that u;®v e (TX @ TX),.

In order for y, so defined to give a connection we must have for every
o e ((@*TX)®TX),, w+y,(0)eT'@TX. A sufficient condition for this
to hold is that every a e Ngryx be a finite sum of functions of the form
a,(x, ) ... ay(2, w,), where at least one of the a,’s is in Ny5. This is not
true even in the case of polyhedral singularities: if X = {& € #°: @, x, (2, —
—&;) = 0}, then a(x, u,v) = 2,u'v? —2,uo' i8 in Npyerx, but is not
in the span of products as above.

However, in the case of polyhedral singularities the zero connection
gives rise to the zero connection in the bundles ®*TX.

5.7.1. ExaMPLE. If X = {(2,, @,;) € #*: @,(®, —}) = 0}, then Npg,
is generated by the functions z,%, — 32w and (x, —2%)u,. It follows that
u®v+weTI'X provided uv,— 3us0;+2w; —4x,w, =0 and wugv,—
—2z, 4,0, + (g —a7)w, = 0. When x; = 0 both equations imply that
w, = 0 and impose no restriction on w,. When z, = a}, then %, = 2z,u,,
Yy = 2@,9, and 2z, (4,9, — 3%, 0;1) + (2,0, — 3w,) = 0, i.e., w0, 42,0, —
—1w, = 0. Note that by 5.3.4, (TX®QTX) = [¢, X ¢,]. The continuity
of (z, 4 ®v) — w at 0 would imply that w, = 2%,v, which contradicts the
preceding conclusion.

Note that in this example the condition in 5.7 is satisfied.

6. BUNDLES ASSOCIATED WITH HIGHER ORDER DERIVATIVES
AND WITH THE EXTERIOR DERIVATIVE

6.1. The bundles T'F, F ® TS etc. considered in the preceding sections
are associated with the operation of the first order differentiation of
arbitrary functions in C*L(F). In connection with differentiation of func-
tions in various subspaces of C®L(F) or higher order differentiation of
functions in ¢ (S) the procedure used.in construction of T'¥ yields with
suitable modifications bundles over 8 which are better adapted to the
purpose at hand. The modifications described in this section deal with the
cases when F = TX, X <« @™ and Ny, is replaced by l(fmm — the sub-
space of Npy , consisting of all functions of the form (y, w) —f'(y; ),
where f € Ny , and with the case where ¥ = ®@*T'X and Ny, is replaced by
N% . — the submodule of N . consisting of all skew symmetric functions.
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6.2, For ze€ X =« &™ let
621. I’X = [{uQv+w e ZA"QA™ + A™: [ (x; u, v)+f (xz; w) = 0

V/f eNx}] and define the bundie T*X by 7*X = J {{2}@ T2 X: z € X}
and by the transformation law

(@, 4 ®@v+w) > (h(@), b’ (@; w) @k (w5 V)4 (R (@5 w)+}h"(z; u, v))),

where % is any C*-extension to a neighborhood of  of the connecting homeo-
morphism k: X - X'. =

6.2.2. Remark. If fe Ny, , then, for any C*-function g defined in
a neighborhood of z, gf € Nx ,, and the condition in 6.2.1 becomes (since
f(@) = 0) g@)(f’(@; u, v)+f(z; w)+g'(z; 0)f (x5 u)+g'(v; w)f (x; v)
= 0 and since g is arbitrary this implies that f'(z; %) = f'(2; ») = 0.
Hence « ®v + w € T2 X implies that u, v € T, X.

6.2.3. Remark. It is easy to check that the transformation law
6.2.1 gives a mapping of __TE,X onto T3, h(X) which is independent of the
choice of the extension A of .

6.2.4. Remark 6.2.1 and 6.2.3 show that the horizontal projection
Qv+ weT2X - u®wis well defined and that its image which we denote
by ®*TX is a subbundle of ®*TX (with the induced structure). More
explicitly (®°7TX), = [{u®7v: u®v+w e I*X for some w e Z™}].

6.2.5. In order to define T*X for %k > 2 we denote V, = Q@*%™ 1
+ 1AL ... A& andfor £ =& 4 ... L E eV, n =m0t ... +
€V, wewrite §+n = &, + (& +m-1)+ ... +(&+m) € V. Also, for
ueR" eV, EQu =£,Qut ... 1 5Qut0eV,,,.

Define 7% X as the subspace of V, spanned by all ellements of the form
ERu-+n, where £,7e V,_, are as above, 4 € Z™ and

k—1
6.2.6. f¥(w; £k_1®u)+12f“’(w; £ @utm)+f (@; m) =0 for all
=2
fe NX,:‘

The transformation law is easiest to write using induction. For k = 2
it is given in 6.2.1. Suppose that (x, &) — (k(®), Hy_,(x, £)) is the trans-
formation law for 7' X. Then the law for 7% X is given by

(@, EQu+7) > (h(), Hiy (@, §) QW (@, w) + Hy_y (2, 7) +
+Hyyo(@, &5 w)) = (h(z), Hy(@, EQut17)).
We note that all the H’s are computed in terms of any extension % of
the homeomorphism % and that they are independent of the particular

choice of this extension. It is also easy to check that H,(x, -) indeed maps
T"X onto Tk h(X).

7 6.2.7. Remark. If £ = Uy® oo QUy+E 1+ oo 4 & eTEX, then
Ugy +eey Uy € T, X, This follows in the same way as Remark 6.2.1.
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6.2.8. As in 4.3 there is a well defined horizontal projection £,+- ...
voo + £, e TEX - &, € (QFTX), the image of which is a subbundle of @*TX
denoted by ®*TX. ®*TX is symmetric: if %,® ... ®u, € @*TX,,
then u; ® ... ®u;, € ®*TX, for any permutation (iy, ..., ) of (1, ..., k).

6.2.9. The bundle T*X provides a setting for the compatibility
conditions for the derivatives of a function defined on X. If {f®}F,

k
is the jet of derivatives of f at «, then the linear combinations > f®(z; &)

. i=0
with ) £, e T* X, and only those are determined by f|x.

6.3. We consider some examples where the spaces T*X can be deter-
mined more or less explicitly.

I X c 2™ if x € X is a point of homogeneity of X and if dim, X = m,
then T*X = Q%™ }...+ 2™

N
6.3.1. Spaces of polyhedral type. Let X be as in 5.3.5, i.e., X = | J X;,
N i=1
where X,’s are closed convex sets and # = 0 e () X;. We can assume that
=1
[X] = #2™. A function fis in Ny , if and only if f(P;2) = 0,7 =1, ..., N,°
for every x in some neighborhood of 0 or in a convex set with a nonvoid
interior, which contains 0, where P; is the orthogonal projection of #™

onto [X;]. This implies that P, ... P,y'f(0) =0 for ¢ =1,..., N and
{-times
every 1 and that ®*TX, is the orthogonal complement of the subspace
of ®*A™ consisting of all symmetric tensors A satisfying P; ... P;4 = 0,
i =1,..., N. It is immediate that if & e & TX,, then &+ &,_,+ .- +&
€ Tk X. Choosing fe Ny, of the form f(2) = (4,s®2® ... ®%), where
{-times

A e @A™ is symmetric and satisfies P;...P;A =0 for 4 =1,..., N,
we see that the converse is also true, i.e., T* X = (Q*TX +®* 'TX 1 ...
... +TX,). This observation corresponds to the (well-known) fact that the
set of compatibility conditions for derivatives up to order & of a function

defined on a polyhedral set can be split into k sets, each involving only
derivatives of the same order.

6.3.2. As the next example we consider X asin 5.6, i.e.,, X = {# € Z™:
o, =2+ ... +a,_}, 1>2, m>3. The only point of interest is # = 0.
Suppose feNy,. Then by the preparation theorem of Malgrange

flx) = g@)(al,—al,_, — ... ~d)+g_ (&) + ... +0:(8") 5,4 go(a),

where &' = (24, ...,2,_,) and ¢, g;,_,, --., o are C*-functions defined in
a neighborhood of 0. If I = 2 choosing #,, = &+ |#’| we conclude that g, (2")
= go(z’) = 0; for I > 2 we have, with
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@'l = (@ + ..o Fap_ )y G @)+ e (@) ]+ go(2) = 0
for all # in some neighborhood of 0. This implies by a straightforward
argument that all the derivatives of ¢g,,_,, ..., g, are 0 at 0 and it follows
that the functions g,, ..., ¢,_; do not appear in condition 6.2.3. The condi-
tion implies that ®*TX, = ®*%™ for k< | and that ®'TX, is spanned
by the tensors of the form %,® ... ® u;, where u} ... u] —u’{“l cea APt —
— e —uy o up-=0, with w, = (ul, ..., 4", s=1,...,1. It is.
checked directly that if #,® ...®u, € ®‘TX0 for any cho1ce 1<
<< ...<{y <k then u1® ®uk e® TX,, and that this CODdltIOIl
is also necessary provided that #,, ..., %, are linearly independent. This
implies that for I =2 &2TX, = éz'_rxo but ®*TX, ¢ *TX, for k> 2.
The above remarks imply also that the invariant ' TX, distinguishes
between the singularities of X = X, at 0 for different values of I (see 5.6).

6.4. We consider now the bundles associated with exterior deriva-
tives.

For z e X = #™ we denote by N%* the space of germs at  of (°-k-
forms in 2™ vanishing on ®*TX in some neighborhood of z (i.e. of functions
in C°L(#™ x (®F 3?”‘)) which are skew symmetric. We define (Q:TX),
as the subspace of ®* 2™ consisting of all tensors & for whieh (dw)(x, &) =0
for every eN}";l, where for £ = 4, ® ... @u,

(dw) (x, &) 2(—1)’ ol (2, 4 ® o @ U QU D e DUy ).

i=1

6.4.1. Remark. If 4,® ... ®u, € (RETX),, then u,,...,u,eT,X.

This is checked by choosmg w e N%¥* of the form o(z,7) =
g(@){n, n), n € @A™, where g € Ny, and 17 e Q1™ are arbitrary.

6.4.2. Remark 6.4.1 implies that the bundle

RETX = | {{oHBETX),: = e X)
with the transformation law
(@, 4, ® ... @up) —> (h(), B (2; 4,)® ... QW (25 wy))

is a subbundle of ®*TX. We denote by f\"TX the image of this bundle
under the natural projection of ®*7TX onto A*TX.

We remark that A*TX could be defined directly by letting (A¥TX),
to be the subspace of /.\"92"‘ spanned by all vectors of the form w, A ... A%,
for which do(z, ;A ... Au,) = 0 for all £ —1 forms » which vanish on

A¥"!TX in some neighborhood of # and by writing down the transformation
law in obvious way.

6.4.3. It is clear from the preceding definition that if w e C°L(A* ! TX)
and if o denotes any C* extension of w to a neighborhood of # € X, then
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the formula do = dl,ikrx), defines a function in (°L(A*TX) and that
i\"TX is the largest subbundle of A*TX for which this definition is
meaningful.

If w e C®°L(A\*¥'TX)and & is a local extension of w, then d@ is a local

extension of dw, also d(d®) = 0. In this sense one should understand the
property that d(dw) = 0 (see [5]).

6.5. To consider the converse to the last statement of the preceding
paragraph, recall that X is locally contractible to # € X provided that
there is a neighborhood U of z in £#™ and a C*-mapping k: U x [0,1] > 2™
such that for every y € X n U we have h(y,t) e X for allt e [0,1], h(y, 1)
=y and h(y,0) = .

6.5.1. PROPOSITION (Poincaréd’s lemma). If w € C*L(A*TX), if X is
locally contractible at x and if dw = 0 in some neighborhood U of » in X
(i.e. as a function in C* L( /~\"’+1TU)), then there is a neighborhood U’ of x in X
and 2 € O°(N\*'TU’) such that o|zkry = dA.

The proof follows the usual argument using the “homotopy” operator
and depends on the remark that T, ,(X x[0,1])=T,X4T, [0,1]:
:= T, X 4 [¢,] and that (u;+1,6,) ® ... @ (4 +7,6,) € (égT(x x [0, 1]))(:,0
if and only if %, ® ... @ u;, € (RXTX), (see 5.4.3).

6.6. We consider some special cases where f\".’l’X can be calculated.
Observe that if x is a point of homogeneity of X, then (A*TX),
= A*T,X.
6.6.1. ExAMPLE. If X is a polyhedral set as in 6.3.1, then #,® ... @ u,
. k
€ ®,TX, if and only if 3 (—1)""'<A%;, 4,Q ... QuU;_, QUi @ ... QuU;)

=1

= 0 for all k-tuples of A;e L(#™, \*'#™) satisfying the condition

k—1-times
p————

N -

P;,...P, AP, = 0fori = 1, ..., N. This implies that 3 A*T X, = A*TX,.
i=1

By an argument similar to the one used in 5, it follows that actually

(A*TX)o = SN*T X,
6.6.2. EXAMPLE. Let X = {z e #™: a2, = 2} + ... +22,_, = |[2'|*}. To

compute (A*"'TX), k>1, let feN3¥ and write f(x, %,® ... @u)

= Ya, i (@) u;...w with the sum extended over the indices 1 <4, < ...
m—1

o<t <m. I ueT, X for some zeX, & 5 0, then u™ = > z, 24
and it follows that

i=1

k
-k —_
Gy @)+ D (=1 (@) 95
i=1
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for #}, = |2’|? and for all indices 1 < ¢, < ... < 4, < m. Denoting a = a;__;,,
@ = @ i 10, 1..0m 20d taking the partial derivative of the above identity
with respect to x; (denoted by ,l), 1 <l < m, we get

k
-1 —k -1 - -
Q@+ 8 mTy T 2 (—=1)*(a;; 2, Ti; T Cgym Ty Zi; a"l'l'aj(wmlwij),l)
i=1

=0 for x2, = |z'|2.

In caleulation of df only the terms where I # 4; appear, in which case

(enlwy), = —ay e, =,
With @, — 0 for all & % I, m the last identity becomes a,+a,, = 0
where z,, = x;and a; —a,, = 0 where z,, = —;. At # = 0 we conclude

that a; = a, = 0 and df(0, %,® ... ®u,,,) = 0 for every uy, ..., Uy,
€A™ It follows that (A*TX), = A*T,X.
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