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1. Introduction. This note attempts to supplement in two ways
a recent paper by Ghosh and Srivastav ([2]) on entire functions f(s),
8 = o+, represented by Dirichlet series. First, there are certain for-
mulae stated in that paper (Theorem 2 of this note with D = 0) and
proved in an earlier paper ([8], Theorem 2), involving ¢ and A which are
respectively the order of f(s) according to Ritt ([6], p. 77) and the corre-
sponding lower order. But the proofs of these formulae are defective,
being based on a hypothesis less general than it need be (viz. D =0
instead of 0 < D < oo a8 in Theorem 2 4nfra), and also regardless of
a relevant distinction between ¢, 4 on one hand and g,, A, on the other,
0. and 1, denoting respectively the order of f(s) according to Sugimura
([10], p. 265) and the corresponding lower order. We seek to remove
these defects in the treatment of Theorem 2 of this note. Secondly, Ghosh
and Srivastav prove ([2], Lemma 2) certain formulae for ¢ and A in terms
of M(s) and M'(s) where M (o) is Lu.b. |f(o+4t)| for — co <t < oo and
M’'(c) is the derivative of M (o). This note (in Theorem 3) establishes
similar formulae for M (o) and M'(o) in terms of ¢ and A, where M (o)
is defined as before and M(o) is defined for f'(s) exactly as M (o) is for f(s).
These new formulae are analogues of certain well-known formulae due
to S. M. Shah ([7], Theorems A, 1) for the order and the lower order of
entire functions. The remaining principal result of this note (Theorem 1)
gives a sufficient condition for the orders (or lower orders) of f(s) in the
senses of Ritt and Sugimura, and the corresponding orders of f'(s) to be
all equal to one another.

2. Notation. In the usual notation, adopted also by Ghosh and
Srivastav ([2]), let

(1) f(8)=D anen, s=o+it, 0<i<lip 0>1), ZI—>oo.
1
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be an entire function in the specific sense that the Dirichlet series repre-
senting it is absolutely convergent for all finite s. Also, as usual, let

(2) M(o)= l.u.}). [fle+4t)|, p(o) = max|aec+idn| = |a,|e ,
-0 <™ n=1

where » and hence 4, is a function of o, i.e.
(3) | Iy = Iy = A(9)

say. Furthermore, let the definitions of Ritt order ¢ and Ritt lower
order A, viz.

(4) lim SUP loglog M (o) o

000 inf o A !

be supplemented by the definitions of Sugimura order g, and Sugimura
lower order i,:

. sup loglogu(o) _ o
(8) it = 6 a4
Then o> p, and A> A4, since, by Lemma 1 of the next section,
M(o)> u(s). To have p=yp, and A= 4, it is clearly enough if
log M (o) ~log u(c). A sufficient condition for the last relation is
limsup(lognflogis) < co when ¢ << oo ([11], p. 73; ecf. [10], Satz 5),
n—>0

and is more stringent when ¢ = co ([1], Theorem 2). In the assertion
of Ghosh and Srivastav ([2], p. 93) that limsup(logn/1,;) = 0 is sufficient
n—-o0

for log M (o)~logu(o), the condition limsup(logn/i,) = 0 should be cor-
rected to limsup(logn/logis) < co in conformity with Yu’s statement

n—00

([11], p. 73) to which they refer. However, what is relevant for their
purpose is that limsup(logn/is) < oo is sufficient to make g = g, and
Ti—>00

A = 4, (as shown by Theorem 1 infra) ().
For any finite s, we may differentiate term by term the series in (1)

and obtain a second absolutely convergent Dirichlet series:

oY :
(6) f(s) = aphne®n, 8= g+it.

1
Therefore f'(s) is an entire function in the same sense as f(s) and we can
define M*(o), u‘o), o', A}, ete., for f'(s) exactly like the corresponding
concepts for f(s) in (2)-(5).

(*) When limsup (logn/As) = oo, we may have g > g, and 4 > 4,. In fact, Sugi-
a,—+00

mura has shown ([10], Satz 4) that, when logn/i, = O(log 4,), there is an entire
Dirichlet series for which ¢ > o,.
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3. Lemmas. The following lemmas, required for the theorems
of this note, are for the most part known results. In these lemmas and
in the work which follows, K, K’, N, etc., and ¢ are strictly positive
constants, not necessarily the same at each occurrence, and ¢ (according
to convention) may be as small as we please.

LEMMA 1 (J. Hadamard). For the enlire function f(s) represented
by the Dirichlet series (1),

T—xo

T
ay = h'mziT fe—(°+"‘)"ﬂf(cr+it)dt (n>1).
-7

Landau ([3], p. 788, Satz 35), proving Lemma 1 in a somewhat more
general case, ascribes it to Hadamard.

LeMMA 2 (Sugimura [10], p. 267; Yu [11], p. 67). With the definitions
of u(o) and A(c) i (2) and (3), we have:

log (o) = logu (o) + [ A(@)da.

LemMMA 3. With the definitions of A(ag), o« and A, in (3) and (5),
we have:

(a) lim sup M = O (Sugi.rnura [10], Satz 1),
(b) hmini-l"g—‘;l("l — 2, (Rahman [4], Theorem 1) .

Rahman [4] states Lemma 3(b) for 1, assuming that limsup(logn/i,)
n—>00
= 0. But all that he makes out is that a = liminf(log 4(as)/o) = A,

since the justification for i, = A, on his assumption, rests on Theorem 1 infra.
Moreover, his proof that a < 4. ([4], p. 205) is incorrect in details, while
his proof that a > A, ([4], pp. 205-206) is needlessly long. Therefore we
insert, for the sake of completeness, the following short proof of the two
parts of Lemma 3 together.

By Lemma 2,

a+1

logu(o+1) =logu(o) + [ A(z)d.

Since u(o) tends to oo with o, we may confine ourselves to all large o
such that logu(o) > 0 and deduce from the last step the following

14*
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inequalities in order, recalling first that A(x) is a monotonic increasing
function of a:

o+l

A(0) < [ A@)dw < logu(a+1),

g

log A(o) _loglogu(c+41) o+1
(7) a < o+1 T !
lim SUP log A(o) < O

yooo 1DF o I
where we use the definitions of (5). Next, supposing that ¢ > ¢,in Lemma 2,
we get successively:
logu(o) < logu(o,) 4 (60— 0y) A(6)~ocA(c) (6—>00),

(8) logloip(o) < o(l)—l;loga_l_logc/’l(o)’

Qt < ].im Sup logA(O')

;-* - g—>00 inf g ’
where we again use the definitions of (5). (7) and (8) together establish

the two parts (a), (b) of Lemma 3.

LEMMA 4. If M (o) and M*(c) are defined as in (2), for the functions f(s)
and f'(8) in (1) and (6) respectively, then

M)/ M(0) >logM(o)o (6> 0y).

Lemma 4 is given in a slightly more general form by Satya Narain
Srivastava ([9]), Lemma 1). It follows from the convexity of log M (o)
as a function of o, proved by Doetsch and recalled by Yu ([11], p. 67).

LEMMA 5. If M (o), M'(o) are defined as in Lemma 4, u(o) is defined
as in (2), and if {Aa} is supposed to satisfy the additional condition

(1a) ].in;supl—oan =D < o0,

then "

(a) M(o) < Ku(e+D+s) (Yu [11], p. 68),
(b) MY o) < K'u(c+D +¢),

where K, K' depend on D and e.

The proof of (b) is exactly like that of (a) given by Yu, but is given
here for completeness. Corresponding to £> 0, we can find a positive
integer N = N(s) such that we have, for n > N,

(9) Ip< e logn < (D+&/d)ly o m < eD+eldin
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where the second inequality is a consequence of (1a). Now, by definitions,

8

co N
(10) Mi(o) < Z[anll,,eﬂn = (2+ ) )]a,,|e(a+n+-)a,.;mg—w+e)au
1 1 N

+
[

< p(@) Ny +p(o+D+s) D Ine~D+on

N+1

The series on the right side of (10) is convergent since, by (9), its general
term is subject to the restriction

lne—(D+e)ln < e—(D+&/2)An < n—(D+e/2)(D+sl4) |

Hence, from (10),
MYo) < Niyu(o) +K,u(c+D +¢&) < (NAy +K,)u(c+D +¢).
This completes the proof of Lemma 5(Db).

4. Theorems. It will be observed that, in the proof of the theorems
which follow, the concurrent use of Ritt and Sugimura orders cannot be
avoided, even if we state Theorem 1 in the attenuated form p = ¢! and
A = A for Ritt orders alone (?).

THEOREM 1. Let the entire function f(s) and ils derivative f'(s) be
given by Dirichlet series (1) and (6) respectively, with {A,} satisfying the
additional condition
logn

7 =D < oo.

(1a) Tltj_{n;sup
Then the orders (or lower orders) of f(s) defined by (4), (6), and the corre-
sponding orders (lower orders) of f'(s) are all equal, i.e.
e=e=@¢ =0, A=hL=1=14.
Proof. By Lemma 1 applied to f'(s), we get for all n > 1,
|an|e74n 2y < M0) .

Here, choosing » = » so that |a, |¢"» = max|a,|e’*» as in (2), (3), and
then taking logarithms, we obtain

(12) logu (o) +log A(o) = log|a,|es +1ogi, < log MY(o) .

(*) The referee points out that the part ¢ = p' of Theorem 1 is proved by Q. I.
Rahman, without the assumption (la), in a note [5], accepted for publication earlier
than this note.
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Since 4, > 0, it follows from Lemma 3(b) that, for all sufficiently large o,

log A(6)/Je > —¢ and hence (12) leads to the following inequalities in
succession:

logu(o)—eo0 < log M{o) (0> o),

loglog 1 (o) <'loglog M*(s) +log [1 i gfudl(o-)]

&0

t TogMi(o)’

. sup loglog,u(a) sup loglog M(o)
E inf c E inf o

thely Ao < AL

Next, Lemma 5(b) gives successively:

< loglog M*(o)

, Or
(13)

log MY(o) < logK'+logu(c+D+¢€) (o> ay)
~logu(c+D+e) (s->00),
loglog M'(o) < o(1) +loglogu(o+D +¢),

1
hm sup loglog.M( ) < lim sup loglogu(o+D +¢) i O'—I—D—i-s,
(14) s—oo IDE c+D+¢ o

91 < O« A< e
Lastly, exactly as Lemma 5(b) leads to (14), Lemma 5(a) leads to

or

sup loglogM( ) im SUP loglogu(es+D+¢) o+D+e

chﬂ inf = l_,oo inf cg+D+e € !
or
o< Ox A< 3# ’
while, from definitions, g. << ¢ and A, << 1 universally. Hence
(15) e=20s, A=A,.

Combining (15) with (13) and (14), we obtain
e=or=g,y A=A, =4,

And from this result conclusion (11) is obvious, since we have also o' = p}
and A' = 4, by an application of (15) to f'(s) instead of f(s).

THEOREM 2. Let entire functions f(s8) and f'(s) be defined by Dirichlet
series (1) and (6) as in Theorem 1, {A,} satisfying the additional condition (1a).
Let u(o) be defined for f(s8) as in (2) and u'(o) correspondingly for f'(s)
Then

. sup log[u!(o)/u(o)] o
N ot s

>
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Proof. For f'(8) = D Anane®s, let 1t = 43(c) and AY(s) = 4,1 be defined
1
exactly as ¥ and A(o¢) for f(s) in (2) and (3). Then

#Y(0) = Aplap|em < AYo)p(o) .
On the other hand,

1 1
= 6”' = o+ l d‘v < 1 .
u (o) |av] 7, ’larle < A(a)” (@)
Combining the last two steps, we have the inequality
pHa) 1
A(o) S—”(o) < AY(o).

Taking logarithms of each member of this inequality, then dividing
by o, and finally letting o—»oco, we get by Lemma 3:

es _ 15, SUP loglu'(o)/u(o)] _ o}
}m < E—ﬂo} inf g S 1}. )
After this, the conclusion of Theorem 2 follows at once from that of
Theorem 1.
THEOREM 3. Let entire functions f(s) and f'(8) be given by Dirichlet
series (1) and (6) respectively, with {15} satisfying the additional condition

. logn
1b 1i =

Then, if M (o) and M*(c) are defined for f(s) and f'(s) respectively as in (2),
we have

0.

. sup log[MYa)/[M(c)] o
Lim s s =

Proof. Corresponding to any o> 0, let R be a function of o chosen
in a manner to be indicated presently. Also, let max |a,|ec+®* for n > 1
correspond to » = N, so that, in the notation of (3), Ax = A(c+R).
Then, from the definitions,

(2]
(16) _Ml(o-) < Zlanlg(o+R)1n1"g—Rln
T .
< |aNlea/1_~8R3N2: lﬂe-Rﬁn
T .
< y(a)emNZl"e—Mﬂ
1

oo
< M (o) eRAG+R) Z Ane—Rin,
1
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since (as has been remarked earlier) u(s) < M(o) by Lemma 1. Now
let n(x) denote the number of 4,’s not exceeding z. Then (16) can be
written as:

(= =]

17) MY(0)| M (o) < eR40+P [ go—Redn ()
0
— gRAGHR) f — d(ze-F=)n(x)
0

< eR4(°+R)f (e~Rz -z Re—Rz)n(x)dx
0

X (s <]
= eRae+R| | | |(e~B* { g Re—Be)n(z)dx ,
¢ X

where X is chosen so that n(z) < ¢ for > X, such a choice being
possible by condition (1b) in the form lim(logn(w)/logw) =0 a8 x—oo.
In (17),

x X
[ ]<n® [ @+eds,
0 0

and so (17), with our choice of X, gives us

MY(0)/M (6) < KeRAG+R) L oRAw+R [ (¢~Rz | g Ro~Fe)asd
X

o0

— K eRAG+R) 4. gRAG+R) R—(1+8) f-(e—uue+e—uu1+e)du
EX

< KeRAW6+R) | gRA+R) R—(+a([(1 &) +I'(2 + ¢)}
< KeRA0+R) LK ¢RA(+R) B~(1+e) ,

since we may suppose that ¢ < 1. If we now choose

so that
R—>0 (6>00), RA(6+R)<RA(c+1l)=1 (o> 0a),
we immediately get

MY o) M (o) < K'+K [ A(c +1)]t+e
~E{[A(o+1)i+e  (0—>00).
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Taking logarithms of both sides of this inequality and dividing by o,
we get by Lemma 3:

. sup log[M'(c)/ M (0)] _ e.
(18) lim ¢ p <5
if we assume that g, < oo and recall that ¢ is arbitraily small. Since our

present hypothesis (1b) implies hypothesis (1a) of Theorem 1 with D = 0,
we have p, = ¢ and 1, = A by that theorem, and so (18) gives us

(19) lim SuP log[M(o)/M(a)] _ e
sooo INf a Y
On the other hand, Lemma 4 readily yields
. sup log[M*(o)/ M(0)] _ e
(20) ﬂ inf 5 > 5-

(19) and (20) together establish the conclusion of Theorem 3 when g, < oo.
The remaining two cases, 0 < A, < g, = oo and 1, = g, = co, are easily
disposed of. The former case requires only the A-inequalities of (19)
and (20), while the latter case requires only (20).

Finally it may be observed that we may differentiate term by term,
j times (j > 1), the absolutely convergent Dirichlet series (1) defining
the entire function f(s), and obtain another such series whose sum is
the entire function f?(s). For the pair of functions f(s) and f(s), there
are easy generalizations of Theorems 2 and 3 as follows, got by repeated
use of the arguments which prove these theorems.

THEOREM 2'. In the Dirichlet series (1) defining the entire function
1(8), let {An} satisfy condition (1a) of Theorem 2. Let u(o) be defined for f(s)
as in (2) and u’(o) correspondingly for f(s). Then

. p
lim SUP log[#(o)/u(a) 17 _ e
oo IDE c A

THEOREM 3’. In the Dirichlet series (1) defining the entire function f(s),

let {A.} be subject to resiriction (1b) of Theorem 3. Let M (o) and M'(o) be
defined respectively for f(s) and f7(s) as in (2). Then

fira SUP log[Mi(o)[ M()]/ _ o
s—oo iDf c A

References

[1] A. G. Azpeitia, On the mazimum modulus and the mazimum term of an
entire Dirichlet series, Proc. Amer. Math. Soc. 12 (1961), pp. 717-721.

[2] R. K. Ghosh and R. P. Srivastav, On entire functions represented by Di-
richlet series, Ann. Polon. Math. 13 (1963), pp. 93-100.



208 C. T. Rajagopal and A. R. Reddy

[3] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen 2 (Chelsea
Reprint, 1953).
[4) Q. 1. Rahman, A note on entire funciions defined by Dirichlet series, Math,
‘Student 24 (1956), pp. 203-207.
[8] — The Ritt order of the derivative of an entlire funclion, Ann. Polon. Math.
‘this volume, pp. 137-140.
[6] J. F. Ritt, On certain points in the theory of Dirichlet series, Amer. J. Math,
.50 (1928), pp. 73-86,
(7] S. M. Shah, 4 note on the derivatives of integral functions, Bull. Amer. Math.
‘Soec. 63 (1947), pp. 1166-1163.
[8] R. P. Srivastav, On the entire funciions and their derivatives represented
by Dirichlet series, Ganita 9 (1958), pp. 83-93.
[9] Satya Narain Srivastava, A note on the derivatives of an integral function
-represented by Diriohlet series, Rev. Math. Hisp.-Amer. (4) 22 (1962), pp. 246-259.
[10] K. Sugimura, Ubertragung einiger Satze aus der Theoric der ganzen Funktionen
.auf Dirichletsche Reihen, Math. Z. 29 (1928-29), p. 264-277.
[11] Yu Chia-Yung, Sur les droites de Borel de certaines fonotions entiéres, Ann.
:Sci. Ecole Norm Sup. (3) 68 (1951), pp. 65-104.

RAMANUJAN INSTITUTE OF MATHEMATICS
"UNIVERSITY OF MADRAS, INDIA

Regu par la Rédaction le 2. 3. 1964



