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On a certain non-linear initial-boundary value problem
for integro-differential equations of parabolic type

by H. Ucowsxr (Gdansk)

Abstract. In this paper we consider & certain initial-boundary value problem
for a system of parabolic equations with funetional non-linear part and with functional
boundary condit_ions. TFhere is derived an a priori estimate of Friedman’s type for
solutions of the above problem. Using this estimale and applying the Leray—Schauder
fixed point theorem we prove theorems on the existence and uniguencss of solutions
of the problem considered.

The above-mentioned results involve as a particular case an initial-boundary
value problem for a system of integro-differential equations with integro-differential
boundary conditions. Moreover, there is proved a theorem on strong integro-differential
inequalities.

In paper [6] some theorems were proved concerning a priori estimates
and the existence of solutions of the first Fourier problem in a bounded
domain for a system of parabolic equations with a linear main part and
with a non-linear operator acting on unknown functions. These theorems
involve a system of integro-differential equations as a particular case.

In this paper we extend the above-mentioned results to the follow-
ing initial-boundary wvalue problem in a bounded domain

0 n
(0.1) Tk = ) a(w, )l + D) bE(@, 1) uy, —uf = A*u
i,j=1 i=1 .
for (z,1)e D x (0, T],
uk(z, 1 )
{0.2) Wﬁ = By, (2,1)eX, (k=1,...,N)
(0.3) uk(m; 0) = "Pk(m)i Ze -l_j’

where A* and B* are some non-linear operators acting on unknown vector-
funetion # = (%, ..., »”); in particular,

(04) 4w =f* (a1, u | [y, (o 15 dy)l,
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(0.5) Bru =1k (w, i, u, {fu-"(y, t)yvi(a, t; dy)},
D

¢
{[vi(@, 15 dv) [y, )ita, 15 ap)}) ()
0 D

Some theorems on the existence of solutions of initial-boundary
value problems for semilinear equations with various boundary condi-
tions can be found in reference [2]. Thesc theorems were obtained under
more restrictive assumptions concerning the behaviour of the non-linear
part of equations and boundary conditions with respect to unknown
functions than those used in the present paper.

1. The estimate of the solution of the linear problem. Let D be a bounded
open domain of the Euclidean space E, of the variables # = (@4, ..., ®,)
and @ = Dx (0, T], T being a positive constant. By X we denote the
side surfaee of @, i.e. ' = 8 X (0, T'], where 8 is the boundary of the

domain D.
We shall derive the estimate of Friedman’s type for the solution

of the problem

(1) Tu= 3 ay(o, Dyt D0 e+ i =, )

=1
(@, t)e @ =Dx(0,7] (0<+<T),
(1.2) u(z,0) =0, xzeD (D— the closure of D),
du (o, t)
ov(w, t)

where 0u(x,t)/0v(w,t) is the conormal derivative (for the definition see
[11, p. 137, 144).
The following assumptions will be needed:

(1.I) The coefficients of the operator L are defined in & and satisfy
Holder conditions:

|ugy (0, ) — @ (2", )] < M o[l —2'|* + [t -],
|bs(z, 1) — b (2", )] < Molw—2'|* (0 <a<1),

le(z, 1) —e(a’, t)] < M,le —a'|%

(1.3) +g(z, u(z, 1) = ki, 1), (o,1)el" =8x(0,7],

where

(!) The meanings of the symbols used here are explained in Sections 1 and 2.
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Furthermore the coefficients b;(x,?) and e(x,t) are continuous with
respect to the variable .
(1.II) The operator L is parabolic in @, i. e. the quadratic form

n
D) i, 1) &y
=1
is positive definite in @.
(LIITI) The surface S is of class C'*® (see [1], p. 135).
(1.IV) The function f(z, t) is continuous in the domain G and satisfies
the local Holder condition with exponent ¢; (0 <a;<1) in zeD, i.e.
for any closed domain D* < D

\f(, 8) —f(2', 1)) < M(D*)lw— o' [

if @, 2’ D*, 0 <t< T, M(D*) being a constant depending on D*

(L.V) The functions g(x,t) and k(xz,t) are continuous on the closed
surface Z.

Levmma 1. If assumptions (1.I)—(1.V) are satisfied, then for amy
7€ {0, I'] problem (1.1)—(1.3) has & wunique solution w(z,t) (2). Moreover,
Jor any 0 < B < 1 we have we Cy(G) and

(1.4) wl§” < K@) (IfIf + 1857 (%),

where y = (1—)/2 and the constant K (B) depends only on the surface S,
the operator L and f.

Proof. The existence and uniqueness of solution of the problem in
question are immediate consequences of Theorem 2 of [1] (p. 144). In
order to prove estimate (1.4) we write (as in the proof of the above-men-
tioned Theorem 2) the solution u(z,?) in the following form

1
(1.8)  w(z,t) = [ [I(w, 15 & 7)p(§ v)dSdv—
[

¢
— [ [ L@ t; & 0)f (5 ) déde = B (2, 1)~ Fa, ).
0o D

(%) By a solution of problem (1.1)-(1.3) we understand a Z,-regular solution,

i. e. continuous in the domain G7, possessing in G* continuous derivatives appearing
in Lu and continuous conormal derivative on X7
(3) By C3(@) we denote the Banach space of all functions u(x, ?) with finite
norm
fulf = 1l + sup [lu (=, 1) —w (', V)] [(lo — 21+~ C1P)],

where |u|f = sup ju(z, t)|.
G
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Using the representation of funetion ¢(w,?), the estimates of function
M(x, t; & 7) (see [1], p. 145), the single-layer potential and the volume
potential (see [2], p. 99, 101), we obtain

plE" < K, (IF15 + I,

K, being a positive constant depending only on the surface §, on the
operator L and on |g|;. Henee, by Theorem 1 of [2] (p. 98, 99),

(1.6) P < KB (I 1) (v = (1—B)/2)-

It follows from the proof of the estimate (228) of [2] (p. 102) that
1.7) P, )—F@@, ) < EB)7Ifl§ le—2'], 2,2eD,0<t<m,
(1.8) |F(z,8)—F (2, 1) < Ko (B)If [ [t —¢'1",  weD, t,1'¢ (0, 7).
Moreover,

(1.9) \FIE < Ky (B) 7 1f1F .

Relations (1.5)—(1.9) imply estimate (1.4).

2. A priori estimates of solutions of the non-linear problem. Let
A¥(B*), &k =1,..., N, be an operator mapping the set 05 (&) of all vector-
functions u(w, 1) =(u1(w, t)y ..., u (, t)} continuous in G into the set
of all functions continuous in & (X).

In this section we derive an a priori estimate of solutions of the
problem

(2.1) Lty* = A*u, (2,1)e@,
(2.2) w(@,0) =0, zeD (k=1,...,N),
o (x, 1)

(2.3) = Bfu, (2,1)eZ.

v (, )
By a solution u(w,?) = (ul(w, t)y ..., u” (a, t)) of the above problem
we shall always understand a Z,-regular solution, i. e. every componecnt
w2, t) (k=1,...,) is a Zeregular function in & (see footnote (2)).
The following assumptions are introduced:
(2.I) Operators L* are parabolic in G and afe C,(G) (0 < a<<1).
The coefficients b¥(z, t) are continuous in @ and satisty the uniform Hglder
condition with respect to the variable z:

b (@, 1) — b (', )| << ML, 2 —'|"
(2.IT) There are positive constants A7,, I, such that for any vector-

function we |J OY(@) and any constants », v (0 <v << T) we have
0<e<l
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|ARuf§™ < ML+ M lulf  (G7F =D x (v 7)),

|BEw|E" & My+Mplul§” (277 = S x (», 1]),

where
‘7\1’

@ kG
i = X ke
k=1

and CY(@) denotes the Banach space of all vector-functions u = (uly...

.oy #7) with finite norm
~

ol = 7 ke
kel -
(2.III) If a vector-function u(x,t)e O (@) satisfies a local Holder
condition in we D (1), then the functions A*u satisfy a local Hélder con-

dition in ze D as well.

TuworeEM 1. Let assumptions (1.III), (2.1)—(2.II1) be fulfilled and
suppose that a vector-function u(x,t) is a solution of problem (2.1)—(2.3).
Under these assumptions if w(z,t) satisfies a local Hdélder condition in
xe D, then, for any 0 < p < 1, we C) (@) and |ul§ < I, where M is a con-
stant depending only on operators L*, the boundary S and on the constanis
M,, M;, a and B.

This theorem can be proved by similar considerations to those for
Theorem 1 of [6], by making use of Lemma 1.

At present we shall consider the case operators A* and B* given by
formulas (0.4) and (0.5).

Let us denote by M, = M, the o-field of all Borel subsets of the
domain D and by 3, the o-field of all Borel subsets of the interval [0, T'].
By u¥(z,t; Q) and (2, t; 2) (k=1,...,N; i =1,2,3) we will denote
finite non-negative measures defined on 9M; and depending on (,t)e @
and (x, t)e X, respectively. ]

We make the following assumptions:

(2.1V) Measures u¥(2,t; Q) are continuous in (z,t)e, uniformly
with respect to QeI%;; more precisely, there exist finite non-negative
measures u; (defined on ;) with the following property: for any point
(%9, to) e G and ¢ > 0 there is a number é > 0 such that if (z,t)e @ and
|2 — 202+ [t — 1] < 6, then for any QeI '

|I"{‘c(‘7’: t; Q)_l‘?(mm te; Q) < ep;(Q).
(2.V) For any closed domain D* = D there exist finite non-negative

measures x; (defined on 9M,) such that for any 2¢M,, z, gge D*, 0 <1< T

(4) L. e. every component w*(z,t) (k = 1,..., N) of the vector-function (g, ?)
satisfies a loeal Hilder eondition in ze« D.
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we have _
Iﬂ?(w; t; Q)‘lf‘?(moa t; A< .‘71:(9) & — a,]*1,

where the constant y, (0 < ¥, < 1) is independent of the domain D,
(2.VI) There is a constant Af, > 0 such that for any Q¢M,

(@, b Q)< Mym(Q) it (z,1)eG
and _
Wi, t; Q)< Mm(Q) if (z,1)eX,

m(§2) being the Lebesgue measure of 2.

(2.VII) Measures »i(x,t; Q) are continuous in (z,t)e 5:, uniformly
with respect to Q2¢Ik; in the sense of assumption (2.IV).
_ (2.VIII) Functions f*(z,?, p,q,7) are continuous in the domain
G x B,y and fulfil the growth condition

|fk(m: Lo, q, )| < M+ Mel(py qy7)ly, Mg, Mg> 0,

where
N

(2, 0, )1 = D) (19 + 1"l + ).

=1

Moreover, the following local Hélder condition is satisfied: for any closed
domain D* =« D and any bounded domain H < E,y we have

|f* (@, t, Dy @, 7)— (2, 4, 2y g, )
< M (DY) |w—a'|2+ M, (H) |(p—p', g—¢', r—1)|"

if za'eD 0<t<T, (p,qr) (p,¢,7)cH, where y,, ys¢(0,1] are
constants independent of domains D* and H, while constants 1, (D*) and
M,(H) may depend on D* and H, respectively.

(2.IX) Functions k*(z, 1, p, g, r) are continuous in the domain X x E,
and fulfil the inequalities

Ihk(‘v; 4oy Q1) < Mo+ Mgl (py g, )y

M, and M4 being positive constants.

In order to prove Theorem 1 for the special case under consideration
of operators 4% and B* we need the following

Levma 2. If assumptions (2.IV)—(2.VIL) are fulfilled and if w(z,1)
is & continuous function in @, then the functions

¢
vi(@,t) = [uk(, 4 do) [uly, <) ph(w, t; dy),
0 D

vi(@, 1) = [u(y, (s, t; dy)
D
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are continuous in G, whereas the functions
:

wi(z,t) = [z, t; do) [u(y, ke, 4 dy),
D

0

wh(z, 1) = [u(y, ok, t; dy)
D

are continuous on . Moreover, the functions v¥(x, t) satisfy the local Holder
condition with exponent y, (occurring in assumption (2.V)) in ze D.

This lemma can be proved by similar considerations to those for
Lemma 4 of [4]. .

Now, by Lemma 2, Theorem 1 implies the following

THEOREM 2. Let assumptions (1.1II), (2.I), (2.IV)-(2.IX) be fulfilled.
Suppose that a vector-function u(w,t) is a solution of problem (2.1)—(2.3)
in the case (0.4), (0.5) and assume that u(z, t) satisfies a local Hilder condition
in weD. Then the assertion of Theorem 1 holds true provided we replace
the constants M,, M, by M,, ..., M,, where My > 0 is a constant bounding
measures ur(xz, t; Q) and Wz, t; Q), QM (5).

3. Existence theorems for the non-linear problem. In this section
we shall prove some theorems on the existence of solutions of problem
(0.1)—(0.3), using an a priori estimate of those solutions which were derived
in the previous section. The particular case (0.4), (0.5) will also be con-
gider.

We make the following assumptions:

(3.I) For any 8 (0 < 8 < 1) operators A*u and By (k =1, ..., N)
are continnous in the space Gj}" (@) in the following sense: if

U Ume OF (@) and  lim [, —ul§ =0,

m—0

then
lim [4%u, —A*u|§ =0 and lim [B*u,,—B*ulf = 0.
m—roo M—r00

(3.IT) The functions ¢*(«) (k = 1, ..., N) are continuous in D together
with the derivatives %, and qu’,‘,imj and, moreover, ‘/”-':izj satisty a local Holder
condition in D.

THEOREM 3. If assumplions (1.III), (2.I), (2.III), (3.I) and (3.II)
are satisfied, then there exists a solution wu(w,t) of problem (0.1)-(0.3);
furthermore, we CF (@) for any §,0 < f < 1.

Proof. We apply the method of Leray—Schauder. Namely, denote
by A the set of all functions ve Cf,vo(G) such that v(z, 0) = 0 for xe D,
Bo (0<By<1) being an arbitrary fixed number. Now we define on the

(%) The existence of such a constant follows from assumptions (2.1V) and (2.VII).
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set <1 x [0, 1] a transformation Z putting Z(», 1) = w, where w is a unique
solution of the problem

LFwk = A[4¥ (04 9)— L"), (2, 1) @,
wh(e, 0) =0, zeD (k=1,...,7N),

ow* (x, t) ay* (@)

G =BGk @0
b)

v®(z, 1)
(existing by Lemma 1). Proceeding further as in the proof of Theorem 4
of [6] and using Lemma 1 and Theorem 1, one can show the existence
of o fixed point v of the transformation Z (v, 1) in the set /1, i. e. Z (v, 1) = ».
It is easy to observe that the function ¥ = v+ 9y is a X -regular solution
of problem (0.1)—(0.3) and, moreover, e CF (G) for any 0 < f < 1. This
completes the proof.

As a corollary of Theorem 3 we obtain the following

THEOREM 4. If assumptions (1.III), (2.I), (2.IV)—(2.IX) and (3.II)
are satisfied, then the assertion of Theorem 3 is valid in the case (0.4), (0.5).

At present we shall prove the stronger version of Theorem 3, ensuring
the uniqueness as well. We retain all the assumptions of this theorem
except (3.I), which is replaced by the following more restrictive condition:

(3.ILI) For any 0 < # < 1 and any bounded subset Qe C7 (@) there
exists a constant I , > 0 such that for any », v (0 <» < v < T) the fol-
lowing inequalities are fulfilled:

|4 — AF0) < My lu—ol§,  |Bfu—BolF” < Mylu—0§
ifu, ve Q. _

THEOREM &. If assumptions (L.III), (2.I)—(2.I1I), (3.II) and (3.II1)
are fulfilled, then problem (0.1)-(0.3) has a unique solution u(z,t) in the
class H of all X,-reqular functions in @ satisfying a local Holder condition
in we D (%). Moreover, we 05 (G) for any 0 < < 1.

Proof. It is sufficient to show the uniqueness of solutions. Suppose
that functions % and o, satisfying a local Holder condition in ze D, are
solutions of problem (0.1)—(0.3). It follows from Theorem 1 that u, ve C5(@)
for any 0 < 8 < 1. In order to prove the identity ¥ = v in G we proceed
a8 in the proof of Theorem 5 of [6], making use of Lemma 1 and assump-
tion (3.II1).

Theorem 5 implies the following

TuroREM 6. Let all the assumptions of Theorem 4 be fulfilled (with
vs = 1 in assumpiion (2.VIIL)). Assume that for any bounded set H c B,y

(°) More preeisely: a Z,-regular function »(zx, ?) in G belongs to H if and only
if there exists a number 0 < § < 1 such that v (z, 1) satisfics a local Holder condition
with exponent 6 in ze D.
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there exisls a constant IMy; > 0 such that for any (v,1)eX and (p,q,7),
(P, G, 7)e H we have

W@, 4 p, gy 1) — W2, 1, B, T, )| < Myl (0 — By g — 0, r— 7).

Under these assumptions the conclusion of Theorem 5 holds true in the case
(0.4), (0.5).

4. On strong integro-differential inequalities. Now we prove the
following theorem on strong integro-differential inequalities.

THEOREM 7. We assume that operators L* (defined by (0.1)) are para-
bolic in G. Let f*(x,t, p, q,7) and W¥(z,t, p, q,7) be functions defined on
G x Byy and X x E,y, respectively, and assume that these functions are
non-increasing with respect to the variables p, ..., p*7%, p**Y ..., oV, q, 1.
Suppose that funclions u = (u!, ..., u") and v = (v, ..., o~) are Z,-regular
in G (7) and satisfy the following inequalities:

(4.1) Db — A%y > LR — 4kp,  (2,1) e @,

du* av* '
(4.2) o —J_?k-u,>W —BFy, (w,t)eX (k=1,...,N),
(4.3) wk(z, 0) < v*(z, 0), wxeD,

where A* and B* are given by formulas (0.4) and (0.5), respectively.

Under these assumptions uw¥(z,t) < v*(z,t) (k =1,...,N) in G.
" Proof. The method of proving this theorem is the same as that
used in the proofs of Theorems 63.1 and 63.3 of [3]. Namely, suppose
that the assertion of the theorem is false. Then, by inequalities (4.3)
and by the continuity of functions »* and o¥, there exist an index %y (1<k,
< N) and a point (z,, t,)e D % (0, T] such that

(4.4) ‘"'ko(moa 1) = 'vkn(‘l’o: to), 'uk(ms 1) < 'Uk(ma 1), (z, t)e D x [0, ty)
(k=1,...,N).

Two cases are possible: xpe D or 2,¢ 8. In the case where z,e D
relations (4.4) imply that the function wu*o(z,t,) —0*(2,1,) attains its
maximum at the point «,. Hence, using the parabolicity of L* and the
relation

U (aq, to) — VFO (% b)) = 0

(which follows from (4.4)), we obtain
LFo(ufo—ofo) <0 in (4, o).

() The continuity of conormal derivatives of functions v* and »* on X is super-
fluous; instead of that it is enough to assume only the existence of these derivatives.
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The monotonicity of the function f*o and relations (4.4) imply that
AFoy— Afop = 0 in (2, to).
In view of the last two inequalities we have
TFoyko — Trogho A%y — AFp  in (z,, 1),
which contradicts condifion (4.1).
Now let us consider the case wye 8. We denote by dz(w, t)/01%(z, 1)

the directional derivative in the inward conormal direction with respect
to the operator L* (see [1], p. 137). It follows from (4.4) that

9 (uko — oo
LGk Y
_ (zgsto)
Hence, in view of the formula
0z(z, t) ] 0z(w, t)
e = |I¥(z, t)| ———, .
¥ (w, 1) (@, vl ot (w, 1)’
we get
8 (wko — o¥0) <0
O

Relations (4.4) and the monotonicity of the function A* imply that
By — By =0 in (2, t).
Combining the last two inequalities, we conclude that

By - Aake
% —% < Bfoy—BFoy  in (my, t,),

which contradicts condition (4.2).

Since in both possible cases we have obtained a contradiction, the
theorem is proved.

Proceeding as in the proof of Theorem 2 of [5] and using Theoremns
4, 2 and 7 one can prove a theorem on the existence of the maximum and
minimum solutions of problem (0.1)—-(0.3) in the case (0.4), (0.5) and
a theorem on weak inequalities which is the counterpart of Theorem 11
of [56].

Remark. As in papers [4]-[6], all the theorems of this paper con-
cerning the case (0.4), (0.5) remain true if we replace integrals by suitable
functionals depending on parameters w, t.
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