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On the Gross property*

by JaMEs R. CHoike (Stillwater, Oklahoma)

Abstract. If f(z) is a function meromorphic and non-constant in the unit disk
and if f(2) has an asymptotic value q, finite or infinite, along a boundary path L
whose end is the unit circumference, then we prove that the inverse function z = ¢ (w)
of f(2) has the property that each regular functional element of z = @ (w), with center
at wy # oo, can be continued analytically using only regular elements along each

ray arg(w—wy) = 6 up to the point w = oo, except for at most a set of values 6 of
measure zero.

1. Introduction. Let z = @(w) be an analytic function whose domain
is its Riemann surface @. If, for each Q (w; w,), w, # oo, a regular functional
element of z = ¢(w), Q(w; w,) can be continued analytically using only
regular elements along each ray arg(w—w,) = 0 up to the point w = oo,
except for at most a set of values 6 of measure zero, then z = ¢(w) will
be said to have the Gross property. Gross [2] proved that if w = f(2) is
a non-rational meromorphic function in [¢] < + oo and 2z = @(w) is its
inverse, then z = ¢(w) has the Gross property. More recently, Stebbins:
[7] proved that if f(z) is non-constant and meromorphic in |2| <1 and
f(2) has oco as an asymptotic value along a spiral, then the inverse z = ¢ (w)
of f(2) has the Gross property. In this paper we prove that if f(2) is a fune-
tion of class (P*), a larger class of functions than that considered by
Stebbins, then the inverse z = @(w) of f(2) has the Gross property.

2. Definitions and a lemma. Denote by D the unit disk in the
complex plane and by C the unit circumference. By a boundary path of
D we shall mean a simple continuous curve S:2z =s(t), 0 <t <1, in D
such that |s(t)|]—1 as ¢—1. In particular, if args(t)— -+ o or args(f)—— oo
as ¢t—1, the boundary path S will be called a spiral in D. The end of a boun-
dary path 8§, denoted by E(8), will be the set of limit points of § on C.

Suppose that the function f(z) is meromorphic in D and that § is
a boundary path. We say that f(2) tends to a complex value a, finite or
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infinite, along S, if
limf(z) = a for |2|>1, z€¢8,

and a will be said to be an asymptotic value of f(2) along 8.

DEFINITION 1. Let (P*) be the class of functions non-constant and
meromorphic in D which have an asymptotic value a, finite or infinite,
along a boundary path § whose end E(8) is C.

ExAMPLE. The example we give here is due to Bagemihl, Erdos,
and Seidel [1].

Let {n,} be a sequence of increasing positive integers such that

lim n,/n;_, = 4+ o0, n; > 1. Then, let

k—>+oo
n
oo = [ [~ ) )
=1 1‘—1/”5

The function g(z) is holomorphic in D and it possesses %; simple zeros
on the circle |z| = 1—1/n; for j = 1,2, ... Let us, now, denote by y;
the n, circles of radius 1/j2n; with center at the zeros of g(z) on |2| = 1 —1/n;,
and let I'; denote y; with its interior. Then there exists j, > 0 such that

all the I, j > j,, are disjoint. If 4 = D — U I';, then g(z) has the prop-

erty that it converges uniformly to oo in A as l2[—1 [1], p. 137. If we
consider f(2) = 1/g(z), then it is clear that (i) f(2)e (P*), and, hence,
(P*) # @, and (ii) w = 0 is the only asymptotic value for f(z), and, hence,
f(2) is not in the class of functions considered by Stebbins [7].

In the sequel w = f(2) will be a function of class (P*) and z = ¢(w)
will be its inverse function with domain the Riemann surface @. The
functional element ¢ (w;w,), which may be rational or algebraic, shall
serve a double duty, not only representing a functional element of z = ¢ (w),
but also representing a point of the Riemann surface ®. The projection
of Q(w; w,) onto the w-plane is w = w,.

The proof of the main result of this paper depends somewhat on the
theory of transcendental singularities. Because of this, we give the following
background.

DEFINITION 2. Let

A: w =Q(w;w(t), 0<t<1,
with limw(?) = w, be a curve on the Riemann surface @ of z = ¢(w).

i—1
Then the curve A defines a transcendental singularity £ of z = ¢(w)

on @, with projection w = w, if

(i) for any positive number é, § < 1, the system of functional elements
Q (-w; w(t)), 0 < t < 4, defines an analytic continuation (possibly, of algebra-
ic character), but
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(ii) for any functional element @ (w; w,), rational or algebraic, with
center at w = w, the system Q(w;w(t)), 0<?<1, where w(l) = o,
never defines an analytic continuation.

DEFINITION 3. Let r > 0. Suppose that

A: w =Qw;w(), 0<t<1,

with imw(f) = o, defines a transcendental singularity £ on @. Let ¢,

t—00

be the last value for ¢, 0 <! <1, such that |w(f,) —w| =r, counting
from ¢ = 0. Then by an r-neighborhood of £, denoted by U, (L), we mean
all points @ (w;¢) of @ such that |¢c—w| <7 and Q(w;¢) is an analytic
continuation (possibly, of algebraic character) of @ (w; w(t,)) along a curve
lying inside the disk |w—w| <7. If the transcendental singularity lies
above the point w = oo, then the circle we use to define U,(Q) is (w| = r
and the disk used is |w| > r.

LEMMA. Let A: w = Q(w; w(t)), 0 <t <1, with limw(t) = o, define
a transcendental singularity 2 on D. Then t>1
NU,(2) =
r>0

Proof. Suppose that there exists a functional element Q(w;w,)
such that @(w; wy)e (U, (L). Let {r,} be a sequence of positive numbers

>0
which decrease to zero as n—>-+ oo, Then,

Qwsw)e N U(2) s N T, (2).
>0 n=1

Thus, Q(w; w,)e U, (2) for every n. This implies that |w,—of <7, for

every n. Thus, w, = w, and @ (w; w,) = Q(w; w).

Suppose that p is the radius of convergence of @ (w; w). There exists
1y, 0 < t, < 1, 8uch that |w(t) — w|< pforallt, ¢, < ¢ < 1. Thus, by definition
3, Qlw;w(t))e U,(2) for all ¢, t, <t <1. Also, Q(w; w)e Uy(£2). Hence,
for each t, 1, <t <1, Q(w;w(t)) is an analytic continuation of Q(w; w)
along a path lying in the circle of convergence of Q(w; w). It follows,
then, that Q(w;w(?)), for ¢, <t <1, is a direct analytic continuation of
Q(w; w). Thus, we may adjoin Q(w; w) to A4 to complete the analytic
continuation of A for 0 < ¢ < 1. This is a contradiction. Thus,

r>0
The importance of transcendental singularities is that there exists
a one-to-one correspondence between the transcendental singularities
of 2 = p(w) and the asymptotic boundary paths of w = f(z), where 2z
= @(w) is the inverse of w = f(z). This result was first proved for f(2)
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an entire function by Iversen [3]. Later, Noshiro [5] proved this result
for f(2) analytic on a Riemann surface F.

3. The main result.

THEOREM. Let w = f(2)e (P*) and let 2 = p(w) be its inverse. Then
z = @(w) has the Gross property.

Proof. We remark that part of our proof is patterned after the proof
of the Gross Star theorem given in Nevanlinna [4], p. 292-294.,

We continue the regular functional element Q(w;w,) of 2z = ¢(w)
analytically with regular elements along the ray arg(w—w,) = 6 until
either a singular point (algebraic or transcendental singularity) or the
point w = oo is reached. Let §, be the resulting (simply-connected) star-
shaped region in the w-plane made up of such segments.

Let M be the set of values 6 in 0 < 6 < 2= such that the ray
arg (w — w,) = 0 of the star-shaped region §, terminates in a finite transcen-
dental singularity at w = w, and this is the first singularity encountered
on arg(w —w,) = 6 as one continues Q(w; w,) analytically on arg(w — w,)
= @ from w = w,. Since all the zeros of f’'(z) are isolated points, we have
that the set of algebraic singularities is countable. Thus, to prove our
theorem it will suffice to show that m*(M) = 0 (m* (M) denotes the outer
Lebesgue measure of the set M).

Let B> 0. Let Mp = {0: 6 M and |w,—w,| < E}. Since Mp < Mp,

for R, < R, and M = |J M,, m"(M) = lim m*(M,). Thus, it suffices
n=1 n—>+ 00

to show that m*(M,) = 0 for an arbitrary integer n.

Since f(2) ¢ (P*), f(2) > a on a boundary path §: z =s(1), 0<t <1,
with E(8) = C. In order to prove our theorem we must consider the
following three cases: (i) a is finite and w, # a, (ii) a is finite and w, = a,
and (iii) a is infinite.

Let a be finite and, further, let a * w,. Let p be the radius of con-
vergence of the regular element ¢ (w; w,). Choose an integer # sufficiently
large so that |a—w,| <n. Let p, = 3min(|a—w,|, p). For each integer
m > 1 we define the set W, as follows:

W, = {w: |arg(w—w,) —arg(a—wy)| < n/m and p, < [w—w,| < n}.
Let M, ,, = {0:0e M, and wy¢ W,}. Since M, ,,,2 M,, and M,—

o0
— {arg(a—w,)} = UzM,,'m, we have m*(M,) = lilil m* (M, ). Thus, it
m= m—+o0o

suffices to show that m"'(M,,,m) = 0 for an arbitrary integer m.

Let us, now, assume that m is an arbitrary, but fixed, integer. Suppose,
also, that M, ,, # Q. Since f(z) -a on §, there exists #,,0 <?, <1, such
that f(s(t))e W, for all ¢, t, <t <1. Let 8 :2 = s(t), t, <t <1. Clearly,
E(§8') = E(8) = C. We map the simply-connected region D — S in a one-



On the Gross property 85

to-one conformal manner by { = {(2) onto the disk |{| < 1 in such a way
that the unique prime end P of D — 8! whose impression is ¢ corresponds
to { =1 under ¢ = ().

Let 8" = [8,n{jw—w,] <n}]—W,,. We consider the function F(w)
= {(p(w)) on S*. Then, F(w) maps S* in a one-to-one conformal manner
onto a simply-connected subregion B of |{| < 1. Each ray of §* which
terminates at a transcendental singularity of S* is mapped by ¢(w) onto
a boundary path L in D disjoint from S, and L is mapped by { = {(2)
onto a path in B which terminates at { = 1 (since E(8!) = E(8) = O).

At this point, we remark that the remainder of the proof of case (i),
which we are about to give, will apply also to case (ii) and (iii).

Consider the funection

Fw)—1

) = Fw) =T ()

on §*. The function ¢(w) is a one-to-one conformal map of 8* onto a schlicht
region 8;. Since w, is an interior point of 8%, ¢ = oo is an interior point
of 8;. The point ¢ = 0 is an exterior point or a boundary point of S;. Since

|F (w) — F ()| < | F(w)| + | F ()| < 2,

t(w)—>0 if and only if F(w)—1. Since we have assumed that M, , +# O
there exists a ray arg(w—w,) = 0 of 8* which terminates at a transcen-
dental singularity at w = w,. Along this ray F(w) tends to 1 as w tends
to wy. Thus, ¢(w) tends to 0 as w tends to w, along arg(w —w,) = 6. Hence,,
t = 0 is a boundary point of &,.

Let » > 0. Let 4;(r) be the finite or countable collection of component
arcs of [{| = r which fall into the region S,. These arcs separate the boun-
dary point ¢ = 0 from the interior point ¢ = oo of &§,.

Let A4,(r) be the image arcs of the arcs of 4,(r) under the map w(t)
which is the inverse of {(w). The arcs of 4,(r) are crosscuts of 8* which
separate the transcendental singularities of S* from w = w,. Therefore,
m* (M, ,) is less than or equal to the sum of the variations of arg(w —w,)
on the crosscuts 4,(r). But, the sum of the wvariations of arg(w —w,)
on the crosscuts 4,,(r) is less than or equal to s(r)/d,, where s(r) is the sum -
of the lengths of the crosscuts 4,,(r) and d, is the shortest distance from
w = w, to the crosscuts 4,(r).

We now fix r,, 7,> 0. Since w,e §* corresponds to ooe§; under
i(w) and since 7, is fixed and finite, d, > 0. Then, for 0 <r <y, d,, <d,.
Hence,

m* (My, ) < 8(7)|d, < 8(r) [y,

Thus, it suffices to show that s(r) can be made arbitrarily small by a suitable
- selection of 7.



86 J. R. Choike

Let z = z({) be the inverse of { = £(2). Let ¢ = re. Let

G(t) = f(z(tF ‘t"’_")l.‘_l)).

Then G(t) maps §, onto S*. By the Schwarz inequality

o) =( [ ona)p<( [ & @ran)( [ia)<emr [ 16 @)eras.
44(r) dyfr) Ayl7) 4yr)

But

, dA
| 1€ prdas = ——,

where A (r) denotes the area of that subregion of 8* which contains the
point w = w, and which is bounded by the crosscuts 4,(r). Integrating
between r and r, (r,> r), we get
| ~ (s(r)? ? omr dA

. 8(r))?
(1) fﬂdr< — f —m—-dr = —2m(A(r,) —A(r)) < 2n2n2.

r r dr
r

This inequality holds for all r, 0 < r < 7,.
Let 6 > 0. Suppose s(r) > 6 for all r, 0 <r <7,. Then

7o

2
f (s(:)’ dr > 6210g—ri —+ 00
. r

as r — 0. This contradicts inequality (1) above. Thus, there exists a number
r, 0 <7 <7y, such that s(r) < . Therefore, m*(M,, ) < é/d, . Since &
is an arbitrary positive number, m"'(Mn,m) = 0. This completes the proof
for case (i).

We consider the case with a finite and w, = a. By the lemma above,
there exists p, > 0 such that the functional element Q(w; w,) = Q(w; a)
¢ Up, (), where £ is the transcendental singularity of z = ¢(w) which
corresponds to the asymptotic boundary path 8. Let p* = min(p,, p),
where p is the radius of convergence of @ (w,a). There exists f,, 0 <1, <1,
such that |f(s(t))— o] < p* for all ¢, t, <t < 1. Let 8': z = s(t), {,<t < 1.
We map the simply-connected region D — 8! onto |{| <1 in the same
manner as before by the one-to-one conformal map { = {(2).

Let n be any fixed integer with n > p,. Let §* = S,n {{w —a| < =}.
The function F(w) = {(p(w)) maps 8* in a one-to-one conformal manner
onto a simply-connected subregion B of |{| < 1. The image of 8* under
w = f(2) lies in U,.(2). Each ray of 8* which terminates at a transcenden-
tal singularity is mapped by # = ¢(w) onto a boundary path L in D.
The path L is disjoint from S* in D. Indeed, if not, then any point common

~
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to 8! and L is mapped by f(z) onto a point @ (w; b) with |b—a| < p*.
Then Q(w;b)e Up(R2) and @(w;b) is a direct analytic continuation of
Q(w; a). Hence, Q@ (w; a)e U, (L2). But this is impossible. Thus, L is disjoint
from 8! in D and, hence, L is mapped by { = {(z) onto a path in B which
terminates at { = 1.

We now consider the function ¢(w) on S* of case (i) and we use the
analysis of case (i) to show m*(M,) = 0.

For our last case we begin by assuming a = oo. Then, for a fixed
integer m, the exists ?,, 0 <i, <1, such that | f(s(t))| > |wy| +n for all
t,t,<t<1. Let 8*: 2 = s(t), t, <t < 1. Let { = {(2) be the map of case
(i) which maps D— 8! onto [{| <1. Let 8* —S‘,r\{lw —w,| < n}. We
consider the one-to-one conformal map F(w) = C(tp w)) on 8* which
maps 8* onto a subregion B of |{| < 1. Each ray of 8* which terminates
at a transcendental singularity is mapped by ¢(w) onto a boundary path
L in D disjoint from 8!, and L is mapped by { = {(2) onto a path in B
which terminates at { = 1.

We can now form the function ¢(w) on 8* as in case (i) and once again,
apply the analysis of case (i) to prove m*(M,) = 0. This completes the
proof of our theorem.

Remark. Although the Gross property is a necessary condition
for the inverse function of a function of class (P*), it is not a sufficient
condition. The inverse of the elliptic modular function w = v(2) for the
unit disk has the Gross property, but v(z)¢ (P*).

COROLLARY 1. Let w = f(2)e (P*) and let z = ¢(w) be its inverse
Junetion with Riemann surface ®. Let Q(w; w,) be an arbitrary functional
element (regular or algebraic) of z = @ (w) with center w, lying in |lw—a| <T7.
Then a continuous path L can be found lying inside |w— a| < r, starting
at w = w, and terminalting at w = a, such that there exists an analytic
continuation of Q(w; w,) of algebraic character on @ above L except perhaps
at the endpoint w = a of L (Iversen’s property).

COROLLARY 2. Let f(z)e (P*). If a is a complex value, finite or infinite,
which is taken by f(z) only finitely many times in D, then a is an asymptotic
value of f(z) along some boundary path L of D.

Proof. The proof is the same as that given in Noshiro [6], p. 4-5.
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