ANNALES
POLONICI MATHEMATICI
XXXII (1976)

The radius of univalence of certain analytic functions

by P. L. BAJpAr and PREM SINGH (Kanpur, India)

{
Abstract. The authors determine the radii of star].ikeness, convexity and cloge-to-

convexity of the functions f(z) = 217C[CF(2)]’, Oc N, where F(z) are starlike,

14+C
convex or close-to-convex funections.

1. Introduction. Let S denote the class of regular and univalent
functions f(2) in D = {z: |2} < 1} which are normalized by the conditions
f(0) =0, f'(0) = 1. For a fixed a, 0 < a< 1, let C(a) denote the subclass
of 8, consisting of all functions f satisfying the condition

(1.1) Re{ fT'::—;+l} >a for zelD.

Let 8*(a) denote the subclass of S consisting of all functions f satisfying
the condition
#f'(2)
f(2)

Let K (a, 8) denote the subclass of § formed by all functions f for which
there exists some function g(z) ¢C(8) such that

(1.2) >a for zeD.

(1.3) Re{%})a, 0<a<1,0<p8<1,; for zeD.

Functions in the classes C(a), §*(a) and K (a, 8) are known as convex
functions of order a, starlike functions of order a and close-to-convex
functions of otder a and type B, respectively. We shall denote by 8,,n
=1,2,3,..., the class of regular and univalent functions in D having
a Taylor expansion of the form f(2) =z+a,,,2"" +a, 2" +... It
is clear that 8§ =8, 28, 28;,>... 0 4,.

In this paper we shall show that if F(2) is in (8‘(;9)),,, (C(B), or
(E(a, B))n, then f(2) = (1/(1+ C))2'~C[2CF(2)] is starlike of order f, convex
of order g or close-to-convex of order a and type 8 for |2| < r2, respectively.
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Also if F(2)e8, and Re{F'(2)} > pin D, then f(2) = (1/(1 +C))z' C[°F(2)Y
satisfies Re{f’'(2)} > B in {|2| < r;). All our results are sharp. For a suitable
choice of C, g and n the results of 8. K. Bajpai [1], S. D. Barnadi [2]}, A. E.
Livingston [5] and K. 8. Padmanabhan (6] follows as special cases of the
results derived here.

2. We first give the following lemma.
LEMMA 1. The function H(z) =1+c,2"+¢,,.,2*" +... is regular
and satisfiesRe{H (2)} > a (0 < a< 1) for zeD, iff

1 2a—1)2"
2.1) H(z) = +§izan;)‘”(z’,

where ¢ (2) i8 a regular function and satisfies |p(2)| < 1 for zeD.
The proof of the lemma is simple.
Remark. The transformation

1+pw(z)
=7 _1<B<1
p(2) =~ 0@ p
maps the circle 2] << 7 < 1 into the circle
1—-87"|  1-—p/r
. —- < .
(2 2) ’p(z) 1 _,’,En 1 _v,r3ﬂ

THEOREM 1. Let F(2) = 2+a,,,2" " +a,.,2" +... be in (S*(B).,
F(2)=(1/(1+0)C[:°F(2)),C=1,2,3,...,; then f(2) is starlike of order
B for |z| < r2, where

C+26—1
Tn = if C+28—1 #0,

(n+1—B)+V{n+1— )2+ (C+1)(C+26—1) l”"

1 1/n

This result is sharp.

Proof. Since F(z) =z2+a,,,2"" +a,,2"+... is in (8*(B))a,
Re {2F"'(2)/F(z) > B for zeD. Hence by Lemma 1 there exists a function
w(z) = 2"p(2) with |w(2}| < |z|" and regular for ze¢D, such that

2F'(2) <f (z’_(’:,f Ol _ 1+(28—-1)w(?)

(2.3) TR .
F(Z) J‘ tc—lf(t)dt - 1 +’w(2)
0
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for zeD. Solving (2.3) for f(2), we have

(C+1)—(C+28—-1)u(z) [ ¢ o,
(2.4) 16 = g [ 6[ -1 f(t)dt].

Differentiating (2.4) logarithmically and then using (2.4), we obtain

2.5) ') 2CH2B-L)w'(e)  aw'(z)  1+(28—1)w(s)
o f2)  (C+1)+(C+28—1)w(z) 1+w(2) 1+w(2)
_ 2(1 —p)zw'{z} 1+(28 —1)w(2)
T (14w(2))(C+1+(C+28 —1)w(2)) 14w(z)
Therefore
zf' () [1 —w(?) 22w’ (2) ]
. —p=(1- — -
@9 “fa TP TP T ee T T w@)0T1HO+ 261w ()
But
1—w(z)] _ 1—fw(2)?
2.7 °{ 1+w(z)} = TFw@Ep’
and
22w’ (2) }
2:8) R0{(1+w(z))(0+1+(G+2ﬁ—1)w(z))
2 |2| fw’ (2)]

< .
(1 +w(2)|[(C+14+(C+28—-1)w(2))]
< 2n 2" (1 — |w(2)]?) , .
@ -1+ w ()] | +1+(C+28—1)w(z))|
The last inequality has been obtained by using the known result
[3], p- 290,

n 2" (1 —|w(2)]%)
1— lzlz» ¢

2.9) [0’ (2)| <

Thus from (2.6) we note that f(z) is starlike of order g if

2n |21 — [w(2)}?) _1-lw(@)l
(1= 2|1 +w(@)][[C+1+(C+28—D)w(2))] ~ L +w(2)®
or
n . (0+2ﬂ_1)
210y 2MEC NOHH(O+B D@ _ o 1+ (z)‘
1 —e 14w(z)
14+w(?)
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Since |w(2)| < 12" =" <1 and (C+28—1)/(C+1) < 1, we have from

(C+28-1) c+2p—-1
(2.11) o —g v@ | 1+ g
1+w(2) g 1+ e

Hence, by (2.10) and (2.11), we infer that f(z) is in (8*()), if

2el* _ C+1+(C+28-1)fal"
1—|zP" 1+ 2

or

2n (2"
1—2*
From (2.12) we have

(1+0)=2(n+1—p)|zI"—(0+28 1)z > 0.

(2.12) <(C+1)+(C+26—1) |2/

Let
(2.13) P(r) = (14-0)—2(n+1—=8)r"—(0+28-1)r*".

Thus f(2) will be starlike of order g for |2| < rJ, where 7} is the least’
positive root of the polynomial (2.13) given by

Y = l'—(n+1—ﬂ)+‘/(”+1_B)h+(0+1)(0+2ﬂ—1.) ‘1,“.

C+28—1

To see that result is sharp for each U and n, consider the function

z
F(e) = a8 B 0<p<1.

For this function, we have

o " . o1 ,
s = 157 [

1 [z(1+0)—(0 +28 —1,)z"+‘]

- ¥ (1 —z")Emr=A+1
By direct computation, we obtain
#f'(z) B =(1-p) (0+1)+2(n+1—B)z"—(C+28 —l)z"‘]
f(2) (1—2"(C+1—(C+28—-1)2")

Thus
2f'(2)
J(2)

—p =0 for 2" = —(rp)".
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Hence f(2) is not starlike in any circle |2| < r if r > 72.

THEOREM 2. Let F(2) = z+a,,,2"" +a,,2"*+... be in (C(B)),,
f(2) = (1/1+0))#C[°F(2)),C =1,2,3, ...; then f(2) is convex of order
B for |a| < ra, where

4

{ —(n 41— ) +V (1 — PP +(C+1)(C+2p—1) "
C+26—1
rn = if C+28—1 #0,

1 i/n )
l( | ) if C+2-1 =0,

This result is sharp.
Proof. We have

(L+C)f'(2) = 1+ O)F’(2) +2F" (2)
Fe 1-+2F"(2)
(1+G)RG{F'_(z)} —0+RO{'_—-F,(z) }.

Since F(z)e(C(B)),, Re{l+2F"'(2)/F'(z) > p for zeD, it is easy to
verify that '

or

£z } C+p .
Re () < 0r1 fqr zeD.
‘Hence f(2) are close-to-convex funections of - order (C -+ B)/(C +1) with
respect to F(2) in D. '
To show that f(2) is convex of order g for |z] < r,, we have

zf'(2) = 156 2Ol F (2))] -

Since F(z)e(C(p))n, zF’(z)e(S‘(ﬁ)),,; hence z f’(z) is starlike of order
J for |z] < 3 by Theorem 1. Therefore f(z) is convex of order 8 for |¢| < 73.
To show that the result is sharp for each ¢ and n, consider the function

do
F(z) = : *(1—_'7)(7,,,—')'6:‘5)' ‘(O(ﬂ))n

2F'(2) = (1—'-_?%)(1_——‘) c(ﬂ‘.(ﬁ)),,.
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For this funetion

1 : do '
fl2) = "[z" K= ]
1+0 Gf(l_ )(Bl N1-8)

do
= +0 .
— a™\2/n)1-5) @nyi-9)
1+0[(1 g !‘(1 o)

By direct computation, we obtain

2" (2) (14 0) 4+ 2(n+1—p)2"—(C+28—1)2™
= 1— -
Wrm PR T AT T =62
Thus
;”((j) —B=0 for 2" = —(r2)";

hence f(2) is not convex of order P for any circle |¢| < r, if r > 0.

3. In order to prove our next two theorems we require the following
lemma:

LeMMA 2. If H(z) =1+¢,2"+0,,,2"t +... é8 regular and Re{H(z)}
> a for zeD, then
2n |z|"“'Re{H (2)— a}

Izl!n

Proof. Setting h(z) = (H(2) —a)/(l—a), if we substitute w(z)
= (h(2) —1)/(h(2) +1) in (2.9), we obtain' (3.1). |

THEOREM 3. Let F(2) = 2+ @, ;2" +8,32" " +... be.in (K(a, f))a,
J(@&)=1/1+0)[CF(2)], 0= 1,2, 3, ...; then f(2) is close-to-conved of
order a and type B for |z| < r3, where

{'—(n+1—ﬁ)+1/’(n+ B+ (C+1)(C+2p—1) |
' C+28-1
= if C+28—1 #0,

1 l/n\ }
-{n+1} , if C+28—1 =0.

(3.1) \H'(2)] <

se

This result is sharp.
Proof. Since F(2)¢(K(a, p)),, there exists a function G(z)e(8*(8)),
such that for zeD
z2F'(2)
R
°{ @)

>a and Re { 2G'(2) }>ﬂ.

G(2)
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Further, since G(z)¢(8*(p)), from Theorem 1 we have

Re{"” ""}>ﬁ for |2 < 2,

g(2)
where
g(2) = 170° 2" C[°G(2)] .
Therefore
| 2F'(2) ch(z)_of.‘o"f(t)dt
(3:2) G(z) = ) ° .
[ g(yar
0
Let
zg‘;g) = P(z), where P(z) is regular, P(0) =1

and Re{P(z)} >a for zeD.
Thus from (2.13) we have

" (3.3) #°f(2) = O [ f()1°7 dt+P(2) f t9-1g(t)dt.
0 0

Differentiating (3.3) with respect to 2z and then dividing by g(z)
throughout, we obtain

[ 4
z’“c({tc"‘g(t) at

of'(z) .
2 P+ P
g(2) (&) +F1s) 9(2)
Therefore
, 1-0 {11900t
of'(2) i
3.4) R —ay> —a}—|P’
64 Re{T D —als Repio—ap—1p(e)|———
But
). o—1 G(z)
(3.8) 2 y(z) f ©tg(di = CG(2) +2G (2) °

Since G(z)¢(8*(B)),, we have

dF(2)  1+(28—1)w(2)

(3.6) =
G(2) 1+w(2)
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Therefore we have _

{0+ #& (2) }“ _ {0+ 1+ (28 —1)w(z) |

(3.7) G(z) 14w(2)
| C+14(C+28-1)w(2) 7!
- 1+w(2)

Thus, using (3.7) in (3.4), we obtain

wn g

, - 1+w(2) '

>[~R°{P(")“’}_"’P (@) C+1+(C+26—1)u(z) ]
2nlzi*(1 + 12I™)

> R"{P(z)‘“}{l— (1—|z|’")(0+1+(0+2ﬁ—1)lz|")]

— Ro(P(s) —qjf CTD2 0+ 1) |z|"—(0+2ﬂ—1)|z|"}

(1 —=I"C+1+(C+28-1)i2I")

The last inequality has been obtained by using lemma 2 and (2.11).

Therefore f(z)e(K(a, p)), if |2l <rh.

To show that the result is sharp, consider F(z)= G (2) = z/(1 —2™)@/m1-A
€ (8*(B))s; therefore F(z) belongs to (K(a, p)),, where a = §.

TEEOREM 4. Let F(z) =z+a,,,2" ' +a, 2" +... be regular and
have the property Re{F'(2)} > B for zeD, f(z) = (1/(1—0)) 2" C[2°F(2)],
C=1,2,3,...; then Re{f'(2)} > B for |2| < r,, where

, { —n+Vni4(C +1)'}1/~
Tn = .
C+1

This result is sharp.
Proof. Let F'(z) = P(z), where P(0) =1, and Re{P(z)} > B for
zeD. Then we have

(A+0)f'(2) = 2F"(2)+(1+C) F'(2) = zP'(2) + (1 + C) P(2).

Therefore .
(3.9) (L+0)Re(f'(2)—f) = (1 +C)Re{P(z)—p} — |2 P'(2)|
2n|zi

= Re{P(z)—

ﬁ} [ (140C)—2nlz|"—(C+1) lzl"']
1— |z )
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The last inequality has been obtained by using Lemma 2.
Therefore Re f’(2) > g for |2| < r,, where 7, is the least positive root
of the polynomial \

(3.10) (1+0)=2n"—(1+4C)r*" =0

To show that the result is sharp, consider

F1—(28—-1)c"
F(z) = do.
of 1-o"

It is clear that Re{F'(2)} > 8.
Therefore

1 —(28-1)
f(z) = 1+Gzl O[z!———l = ]

_ 2—1—(28—1)2" —(2p—1)"
B 1—|—0’[ 1—2" Of da]'

By direct computation, we have

) _ 1—B [(1+0)+2ne"—(C+1)2™
Fe)—8=17g T |
Thus

P —B=0 fors" = — (K",

and hence Re{f'(?)} » # in any circle jz|<r, if > 7).
C+28—1 = 0 only when C =1, 8 = 0; the results of Susheel Chandra
and Prem Singh [7] follow as special cases of the results derived here.

We are thankful to Professor R. S. L. Srivastava for his valuable
suggestions.
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