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Complete differentials of higher order in linear field modules

by JaN Kusarski (Lodz)

Abstract. Complete differentials of higher order in linear field modules are defined. A
certain necessary condition for the existence of a complete differential of higher order is given. It
is proved that this condition holds in a broad class of linear field modules, which contains
differential modules and modules of vector fields on differential spaces of class %,. Jet-field
modules of a linear field module are constructed. The exactness of the sequence of jet-modules is
examined. A one-to-one correspondence between complete differentials of higher order and
splittings of jet-module sequences is established. An example of a differential space of class 7 is
given in which

1° the module of vector fields over that space in every neighbourhood of a certain point
does not possess any vector basis, i.e. it is not differential,

2° a covariant derivative, i.e. a complete differential of the first order, exists in the module
of vector fields.

Introduction. We consider a manifold M and a vector bundle ¢ over M
and we denote (as usual) by J*(¢) the vector bundle of holonomic k-order
jets of local sections of £ The exact sequence of vector bundles

0 E(TM, §) »JHO-J*1(¢) -0

called the sequence of jet-bundles is well known from the works by R. Palais
([6]), N. V. Que ([9])), D. Spencer ([13], [14]) and others. A differential
operator of order k, corresponding to a splitting of the sequence, is termed
by Palais a complete differential of order k.in a bundle &. In the case k = 1 it
is simply a covariant derivative.

In the present work we consider an arbitrary differential space (M, %)
([5], [10)) instead of a manifold M and an arbitrary linear field module #~
instead of the module of sections of a vector bundle £. Differential spaces
have been examined in the works by R. Sikorski ([11], [12]), W. Waliszewski
([18], [19]) as well as in the works by P. Walczak ([15]-[17]), K. Cegietka
([2], [3]), M. Pustelnik ([8]) and others. Linear field modules defined on
differential spaces were introduced by R. Sikorski ([11]).

In the present work we shall construct a linear field module J*(%) and
an exact sequence of jet-modules analogous to the sequence of jet-bundles
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and we shall prove the equivalence between the definition of a complete
differential as a certain differential operator of order k and as a splitting of
the jet-module sequence. The construction of the module J*(#") will be
possible under certain assumptions about the module %°; the exactness of
the jet-module sequence will occur in certain conditions. These assumptions
and conditions will be examined more precisely for a. class of pseudo-
differential modules, which contains differential modules ([11], [12]) and
modules of vector fields on a differential space of the class %, ([16], [17]). K.
Cegietka in [2] showed that if a linear field module # on a differential space
(M, %) is differential and if 1t is possible to subordinate a smooth partition of
unity to every open covering of the space (M, 1), then there exists in # a
scalar product, and so a covariant derivative also exists. It turns out that the
existence of a scalar product does not imply the existence of a local basis in
the module under consideration. An adequate example will be given at the
end of section 3.

1. Preliminaries. Differential spaces discussed in this paper as well as
the notions of a tangent vector, tangent space, smooth mapping, tangent
mapping, smooth vector field and the denotations 14 and %, have been
adopted from the works by R. Sikorski [10], [12]. A $-module of smooth
vector fields on a differential space (M, %) will be denoted by 2 (M, %) and
the vector subspace of the tangent space (M, €),, pe M, consisting of these
vectors which are values of a smooth vector field will be denoted by (M, %),.

In a differential space (M, ¥) whose topology is Pparacompact and
locally compact, for any open covering there exists a smooth partition of
unity subordinated to this covering; this fact has been proved by K. Cegietka
([2]), M. Pustelnik in [8] proved that the assumption of local compactness
may be replaced by %4-normality. It is easy to show that the assumptions of
‘¢-normality is weaker than that of local compactness (assuming paracom-
pactness) and equivalent to the existence of a smooth partition of unity
subordinate to an arbitrary open covering.

1.1. Differential spaces of class %,. The existence and specification of
the widest class of differential spaces in which the theorem on a dif-
feomorphism holds was a problem raised by Waliszewski and solved by
Walczak in his paper [16]. Paper [17] was devoted to the investigation of
that class.

TueoreM 1.1.1. If (M, ) is a differential space of class %, then the set
M’ of all points pe M for which.

(M, %), =(M, 6),

is open and dense in topology 1.
Proof. The openness of M’ is evident from the definition of this set. For
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a non-negative integer n, let M, be the set of all points pe M for which
dim(M, 6), = n. It is easy to see that

M ={ Int M,.
n

To prove that M’ =M we shall show that every point pe M has a
neighbourhood U €14 such that

(1.1.1) UcMAU.
We take a set U covering p such that dim(M, %), < dim(M, ¥), for
geU. Obviously, if n=dim(M, €),, then

MnU= Lnj (Int M) U) = L"j Int (M, N U).
k=0

k=0

Let A, =M, nU\Int(M,nU),k=0,1, ..., n Since
U\M AU) = U A,
k=0

to show inclusion (1.1.1) it suffices to prove the equality

(1.1.2) : Int(U 4)=0, r=0,1,...,n

k=0
We apply induction on r. Since M, U is open, equality (1.1.2) is satisfied
for r =0. Assume that (1.1.2) is satisfied for an integer r < n. From the
openness of the set Un(Myu...uM,} and the equality A4,,,n
NMou...uM,)nU = @} results

r+1 r

Int(U 4)=(nt U A4)ulntA4,,,=0. qed
k=0 k=0

The above theorem states that, in general, there are “many” vector fields
in a differential space of class %,.

1.2. Examples of differential spaces.

1.2.1. Let M and N be manifolds of class C* and let f: M — N; denote
by 7 (M) and .7 (N) the rings of smooth functions on M and N; then the
differential spaces (f[M], .7 (N);ag) and (f~'[{a}], 7 (M) ), where
ac N are not in general submanifolds.

1.2.2. The differential space (M x N, 7 (M) x 7 (N)} ([13]) is not a mani-
fold if M and N are manifolds with a boundary.

1.23. Let N, N’ be submanifolds of M. The differential spaces
(NN, T (M)y~n) and (NUN', 7 (M)y_n') need not be submanifolds.

1.24. On a manifold M, an arbitrary collection of vector fields

£~ ian



132 J. Kubarski

X, ..., X, defines several subspaces of the space (M, 7 (M)) of the form
(A, 7 (M),), where, for example,

(@) A= {peM; X,(p)=...= X, (p) =0},

(b) A = {peM; the vectors X,(p), ..., X,(p) are lincary independent}.

1.2.5. Let K be a solid in R". A differential space (K, C*(R"x) and the
k-dimensional skeletons of this solid with the differential structure induced
from R" need not be manifolds. However, the solid may be a union (in the
sense of example 3) of manifolds with a boundary.

1.2.6. Let (M, g) be a Riemannian manifold. Let us fix point pe M and
denote by C(p) the set of vectors ve M, for which the differential (d Exp,), is
not an isomorphism. The corresponding differential subspaces C(p) and
Exp,[C(p)] of the spaces M, and M need not be submanifolds.

1.2.7. We define a structure 4 on the set R of real numbers by the
formula
% =(ScCo)g, where Co = [Rat—|t—s|eR; seR}.

Then dim(R, C), =2 and dim(R, C); = 0 for any point teR.
The spaces in examples 1-6 are obviously of class %,, while in the last
example the space (R, %) is not of class ¢,, according to Theorem 1.1.1.

1.3. Linear field modules.

DeFiniTION 1.3.1. A linear field module is a triple # = (M, ¥), &, %),
where (M, %) is a differential space, @ is a function assigning vector spaces
&(p) to points peM and # is a certain é-module of linear @-fields
satisfying the condition:

If W is a linear &-field such that for any point pe M there exist ,a
neighbourhood U e ¢ of this point and a field Ve #" such that W|U = V|U,
then Wew .

A module #  satisfying the last condition is said to be closed with
respect to localization.

We shall denote by &, (p) the vector space consisting of vectors v e ®(p)
which are the values of fields from the module %"
Suppose that with every point pe M there is associated a linear mapping
L(p): @, (p) » ¥, (p) satisfying the condition
LW)=(M>p—L(p)(W(p))e¥ for Wew';

then L is called a homomorphism of the linear field module (M, €), ¢, #)
into the linear field module (M, 6), ¥, ). Then L: # —» ¥ is a homo-
morphism of %-modules.

A homomorphism of ¥-modules L: % — ¥ induces a homomorphism
of linear field modules if and only if it satisfies the following condition:

if Wew and W(p)=0, then L(W)(p) =0;

if ¥ and # are modules of ¢ and O-linear ficlds on a differential
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space (M, %), then we denote by I (¥, %) the module of all linear ¥-fields
L, where ¥Y(p) = L (®,(p); 04 (p)), peM, such that L(V,, ..., V)e# for
Vi, ..., ke ¥". The module L(7", %) will be denoted by ¥*.

An example of a differential space (M, %), a hnecar field module #” and
a %-linear mapping from 2 (M, %) into #" which is not a linear ¥-field will
be given at the end of section 3. However, if every vector field Ve 2'(M, ©)

equal O at p is of the form V = ) f*W, for some functions f e % such that
i=1

S(p) = 0 and fields W;e Z(M, ), i = 1, ..., n, then every %-multilinear map-
ping from the module Z(M, %) into #" is a linear ¥-field.

1.4. Pseudo-differential modules.

DEerFINITION 1.4.1. A linear field module ((M, %), P, W) is called a
pseudo-differential module if for any point ge M there exist a neighbourhood
Uetg of this point and a differential module ((U, %y), ¥, #’) such that
@(p) < ¥(p) for peU and

(14.1) if Ve¥” and V(p)e®, (p) for any point peU, then Ve¥# .

Differential modules and modules of smooth vector fields on a differ-
ential space of class &, are examples of pseudo-differential modules. Basic
properties of pseudo-differential modules are given underneath:

Tueorem 14.1. If (M, %), ®, #') is a pseudo-differential module, then:

(1) ¥y+(p) = (Py(p))*, where ¥(p) = (P4 (p)*, PeM; ie. for any linear
mapping t. ®,(p) > R there exists a field he #™* such that h(p) =,

(2) if W is a ®y-linear field such that for any field he W* the function
hoW belongs to the ring €, then We W, .

(3) this module is reflexive, i.e. the mapping Hy: W — #W** defined by
the formula Hy (W) =(#*3h—hoWe¥), We ¥, is a linear field module
isomor phism.

Remark. Actually, it will be proved that the relations 1 = (2<3) hold
for any linear field modules.

(a) (1 A 2)=>3. It suffices to prove that ker H,- =0 and im H, = #™**,
If H, (W) =0 for a certain field We #’, then h(p)(W(p)) = O for every field
he #*. From condition (1) follows the equality W(p) = 0. Now consider a
field Le #**. From assumption (1) it follows that for any point pe M there is
exactly one element ve &, (p) such that L(p)(t) = t(v) for t€ ¥ ,-(p). This
defines a certain linear @,-field W for which hoW = (M 3p+—>h(p)(W(p)))
= (M apr—»L(p)(h(p))) = L(h)e¢ for every field he #*. From the assump-
tion (2) it follows that We#'.

(b) (1 A 3)=2.If W is an arbitrary linear @, -field such that hoWe#%
for any field he ¥ *, then (# *a3h—hoWe%)e #**. Hence there exists
exactly one field W’'e#" such that hoW = ho W’ for any field he #™*. In
view of condition (1) we have the equality W = W".
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Proof of the theorem. Obviously, it suffices to check that a pseudo-
differential module fulfils conditions (1) and (2). Let us take a point ge M, a
neighbourhood Uetg of q and a differential module (U, %), 6, ¥7) such
that @(p) < 6(p) for pe U and condition (1.4.2) is fulfilled.

(1) Let t: &@,(q) = R be an arbitrary linear mapping and let o: ()(q)
— R be a certain linear extension of it. Let us take an arbitrary field Fe y™*
such that F(q) = ¢. Obviously, the field F' = F|®,, defined by the formula
(F|®y) (p) = F(p)l @« (p), pe U, is an element of the module (¥ )* and has the
property: F'(q) =t. Taking into account the %-regularity: of the space
(M, 14) ([14]), we see that condition (1) is fulfilled.

(2) Let W be an arbitrary linear &,-field such that ho We% for any
field he#™. In particular, Fo(W|U) = F|®d, o(W|U)e¥ for any field
Fe?™*. Therefore W|U e ¥, and further, from assumption (1.4.1), it follows
that W|Ue# ,. Hence We# . qed.

15. Examples of linear field modules.

15.1. Let £ and n be vector bundles over manifolds M and N, respec-
tively, and lef a: £ > be a morphism of vector bundles, i.e. a smooth
mapping such that a, =al,: &, > np,), peM is a linear mapping, where
fi M- N. Let # be a submodule of the module C*({) consisting of
sections ¢ for which a(p)eker a,, pe M, and ¥~ a submodule of C*(f*#)
consisting of fields ¢ for which a(p)ea,[E,], pe M. The linear field modules

(M, Msp—kera,), #), (M,(M3p—ima,), ¥)

are not, in general, differential modules (i.e. {J ker a, and {J im a, generally
peM peM
are not subbundles of ¢ and f*#n, respectively).

15.2. Let ¢ and n be vector bundles over a manifold M and & a
differential operator of order k from the bundle ¢ into 5. Following Spencer
([13], [14]), we denote by ¢ the corresponding morphism of the vector
-bundle J*(¢) into n, by P,(¢) its I-th extension P,(¢): J**!(£) - J'(n) and by
o,(¢) the unique linear morphism a,(p): S**' T* Q¢ > S'T*® &, 1 > 0, such
that the following diagram is commutative:

0 0
- l ayle) l
Sk+‘T*®f SIT*®é
P
l —1le) l
Jk+l l(é) Jl—l(f)

l l
0 0
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Let g,.; = ker a,(¢p) = S**'T* ® ¢ and R, ,, = ker P,(¢) = J*'!(¢). Adequate
linear field modules (constructed accordingly to the scheme from the former
example) with values in g,,, and R,.,, respectively, are not differential,
in general. '

153. Let M be a manifold. An arbitrary collection of smooth vector
fields X, ..., X, defines a linear field module in which @(p), pe M, is the
vector space spanned by the vectors X, (p), ..., X, (p).

15.4. Let us consider a curve f: (a, b) > R" of class C* and at every.
point pe(a, b) the osculating space of order k to f in the sense of E. Cartan
([1]), vre. the plane in R" spanned by the points: f(p), f(p)+/"(p),
fe)+1" ), ..., f(p)+f®(p). Let us produce a linear field module in which
®(p), pe(a, b), will be the osculating space of order k to the curve f and
all mappings V: (a, b) —» R" of class C*, such that V(p)e @(p), pe(a, b), will
form a linear @-field module. The generated linear field module need not
be differential. A generalization of the above definition of the osculating
space to a curve in the case of a realization f of a manifold M in the
space R", f: M — R" was given by W. Pohl ([7]). Proceeding as above, we
can again define a linear field module which, in general is not differential.

2. Ideals I (M, %). |

DerinTion 2.1. For an arbitrary differential space (M, ) and a point
pe M we define by.induction the sets I¥ (M, %), ke N, in the following way:

(@) 11" (M; €) = 1,(M, %) equals the set of functions f €% for which f(p)
(b) feI** (M, %) if and only if feI¥(M, %) and for any collection of
vector fields X, ..., X, e ¥ (M, %) the equality
- [(Xi, - X9 S1(p) =0
holds. -

Note that:

(2.1) The sets If(M, %), ke N, are ideals in the ring %,

22 If fel**"(M,%), 1<r<k, X,, ..., X,e4(M,%), then
(Xy, ..., X)fel¥T1 "M, ¥), -

(2.3) [((ID (M, €)]r = TP (M, %).

As a rule, inclusion (2.3) cannot be replaced by an equality.

- ExampLe 2.1. Let 4 < R? be the set of points (x, y) for which x = 0 or

y =0 and let D = C*(R?),. Obviously, the dimension of the space (4, D)o,
is equal 2; moreover, since every smooth vector figld on (4, D) is equal 0 at
the point (0, 0), the dimension of the space (A4, D)oo, is equal O.
Consequently - I%(4, D) =I"(4, D) for k> 1. There exists a function
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aellV(4, D) such that (da)oo #0; so aet((l},”(A, D))Z)A and also
a¢((1" (A4, D))a-

TrHeorReM 2.1. For any differential space (M, €), any point pe M and any
positive integer k there exists exactly one linear mapping

ah: ID(M, ) - I, (M, ©),, R)

such that for vector fields X,, ..., X,e ¥ (M, €) and functions f eI (M, €)
the equality

@ N(X1 (), ..., Xe(P) = [(Xy, ..., XD S1(P)

holds. Moreover, the sequence

(k)

(24) 0 I%*D(M, €) o IV (M, ) 2 LX(M, €),, R)—0
is exact if dim(M, %), < .

Proof. The existence of the mapping d, its uniqueness and linearity
may be checked just as in the case when (M, %) is a manifold ([6]). To prove
the exactness of the sequence (2.4) it suffices to show the surjectivity of the
mapping d\° in the case when dim(M, ), >0. Let a: ®*((M, %),)*
— (M, %), R) be the natural linear isomorphism. Let us fix a basis
vy, ..., v, of the space (M,%), and take arbitrary vector fields
X, ..., Xy €Z (M, €) such that X;(p) =v;,,i =1, ..., n. There exist functions
Bi, ..., Ba€€ such that B;(p)=0 and X;(B)=0;, i,j<n ([12]). An
arbitrary element t of the space ®*((M, %),)* is of the form

T= z i,y d:a”ﬂil ®... ®d:;”ﬂik

il““'ik= 1

with uniquely determined numbers g;, . _; €R. «(1) is a symmetric mapping if
and only if the matrix

[ail.....i,,; 1<iy, oo, i<l

is symmetric.
Let now a(r) be an arbitrary element of the space I ((M, €),, R). Let

S 2 1
- a !y,
ay+...ta,=k %1 --+ Sp-
O0<aj....a,<k

B:l Taee 'ﬁ:"a(ul.....au)’

where the number a,,. . ., is equal g, for the sequence iy, ...,
constructed in the following way: at the beginning the number 1 appears a,
times, then the number 2 is repeated a, times etc., the number n occurs a,
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times. It is clear that for a sequence a3, ..., a, such that a} + ... +a, = k and
0<aj,...,a,<k

@3 f) (X1 (), -2 X (P), -0 XalP)s -0 Xalp))

ag

a’j times a;,liymcs
=@ (X7 (), ... X:'(p)
1 ’ ’
- z - 1. o ! a(al.‘...an)(Xall, cees X‘:")(ﬁ‘;l’ e ﬂ:u)(p)
ayt..ta,=k (o PEUMFIRY i
LI dnBO
= z : a ol .a|5"'1_ .6a;,
¢1+---+a,.=ka1!'---‘a,,! (C PP 1+ «-- n-9a; "---"0q,
@Y penry 1"20
= a(d'l,...,dﬁ) = a(T)iXI (p)’ ey Xl (pl, ceny \Xn(p), ceey X"@
al l‘irmes a;.lrrnes

q.ed.

There exists a differential space (M, ¢) and a point pe M at which
dim(M, %), = co and dim(M, %), < .

ExampLe 2.2. Let (4, D) be a differential space from Example 2.1. Let
us take (M, 6) = X (Ap, D,), where (4, D) =(4,D),m=1,2,..., and a

meN
point pe M such that pr,(p) = (0, 0). It can be proved that dim(M, %), = ©
and dim(M, %), = 0.

LEMMA 2.1. If functions f', ..., f" belong to the ideal I’'(M, ¢) and
gy, ---» gn are arbitrary functions of class €, then

&P (). f'9)= Z (d® ) g:(p).
i=1 i=1

Proof. The proof will be inductive on k. By the linearity of d¥
it suffices to prove the equality for n = 1. Let f eI’ (M, ¥) and geé. When
k =1 the proof is evident. Let k > 1,

dP (f-g)(X1(p), ..., Xi(p) = [(X1, ..., XD(f-9)D(P)
= [(Xx’ sy Xk—i)(Xk(f'g))](P)
=[(X1, s Xa- ) (X ) g+f (X, D)) (P)
= [(Xu e Xk-1)((ka)g)](P)+[(X1, ey Xk—l)(f(th))](p)
=4} M (X )G (X1 (P, -5 Xim 1 (P))+O
= [ V(X /) gPUX 1 (P, -, Xi-1(P))
=dy" V(X ) (X1 (P)s s Xi- 1 (P) 9 (P)
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=Xy, ..oy Xe- ) (X f)1(P) 9(P)
=Xy, X 1) 9 (P)
=4 ) 91X, (), ..., Xu(p). qed
3. Modules of jets. An exact sequence of jet-modules.

3.1. Opening remarks. For an arbitrary linear field module ¥~
=((M, %), ®, #') we shall look for the possibly weakest conditions under
which a linear field module J*(#"), called the module of jets of order k of the
module #°, can be rationally defined.

The notion of jet appeared in Ch. Ehresmann’s work [4]. In the same
series of articles we can find also the notion of a holonomic extension of
order k of a bundle ¢ In the case of linear bundles this notion was
introduced in a way different but equivalent and more useful for us by R.
Palais ([16]) in the course of presenting the theory of differential operators.

The definition of the jet field module J*(#") in the case of a linear field
module is a generalization of this construction.

3.2. Definition of a complete differential of higher order in a linear field
module. Examples.

DeriNiTION 3.2.1. A complete differential of order k in a linear ®-field
module W~ over a differential space (M, %) is defined as an R-linear mapping

D W > (F (M, 6), W)
satisfying the condition .

(3.2.1) (D(f - W))(p) = d°(f—f (P)) ® W (p)+f () (D* W)(p)
for fields We %", points pe M and functions f €% such that

f~f(PelP(M, ).

For k = 1 we have the ordinary definition of a covariant derivative. We
shall further denote (D*W)(p) by Di(W).

ExampLe 3.2.1. A fundamental example' of a complete differential of
order k is the mapping

, d: C=(R") - L (7 (R, C*(R"), C” (R")
define by the formula

@)Xy, .. X)(p) = ) X (p)pri)--. - Xi (P (pri) i, . (P)

igseeer ip=1
for X,, ..., X, smooth vector fields on R" and pr;: R"—>R,j=1, ..., n, the
natural projections.
Thus, in order to evaluate (d*f)(X,,.... X,)(p), the vectors
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X,(p), ..., X, (p) should be extended to vector fields Y, ..., ¥, constant
with respect to the natural covariant derivative in the module 2’ (R", C” (R")
and the following quantity should be computed:

(dkf)(Xli AR Xk)(p) = Xl(p)[(YZ’ e Yk)f]

ExampLE 3.2.2. Let us consider a vector bundle & over a manifold M, a
covariant derivative ¥ in the tangent bundle TM with vanishing curvature
tensor and a covariant derivative V in ¢ such that, whenever X and Y are V-
constant fields defined on an open set U — M, the curvature tensor of V
satisfies

Rf‘fol = - Vlf»f] o,

o being any section of § over U. For vector field X on the manifold M and a
point pe M we denote by X? the V-constant field defined in a certain
neighbourhood of p such that X(p) = X?(p). Let

(Dx,...x,0)(P) = (Vxe (... (Vxp0)..))(p).
The operator D defined in this way is a complete differential of order k.

3.3. The modules Z(#") and Z}(#"). Let us consider a certain vector
bundle ¢ over a manifold M. R. Palais [6] has defined, for an arbitrary point
peM and an integer k >0, a submodule Z}(£) of C*(¢) (the module of
global sections of &) to be equal If(M)C™ (&). It corresponds to these global
sections whose holonomic k-jet at p (in the terminology of Ehresmann) is
equal to 0. If D* is a complete differential of order k in the module C” (&),
then ZX(¢) consists of these sections geZ;~'(¢) for which Dj(o) = 0.

DermviTioN 3.3.1. Assume, for an arbitrary linear field module #~
=((M, %), &, #) and a point pe M, that

(a) ZO(W) = 1% DM, )W, k=0,1,2, ...

(b) ZJ(W)=2Z"(#) and Zg(#),k=1,2,..., is equal to the sub-
module of #” containing these and only these fields WeZ%™ (%) which

can be written in the form W= )Y f'W, f' .. f"eIPM,%),
i=1
Wi, ..., W,e#, such that

S (@ )@ W(p) = 0.
i=1

The modules Z¥ (#) and ZX(#") are closed with respect to localizatios.
It is easy to see that if D* is a complete differential of order k in a linear field
module (M, %), @, #7), then Z:(W) contains those and only those fields
WeZ¥ D(#) for which D§(W) = 0. For an arbitrary open set Uec1y the
following equalities hold:



140

J. Kubarski

(3.3.1) (ZR Ny = ZOH ), (ZE e = ZHW ).
The inclusion

(33.2) ZP(W) < Zy,(W), keN,

cannot, in general, be replaced by an equality

ExampLe 3.3.1. Consider a differential space (R, C*

, C*(R)), a positive
integer r and an assignement ¢ defined by the formula

R, p#0,
i PN
Let us include into the module %" those and only those fields (f*, ..., ") for
which f1, ..., f""'eC*(R) and f"el,(R). Clearly,

ZEW) =SS T eI [ e I8
F S STl = Z5 ().

If the manifold M has a positive dimensions, then for any natural
number k we have

Zy(C* (@) £ Z¢V(C*(©) = 2y~ 1 (C™ ().
In general, the equality on the right does not hold in pseudo-differential
modules (Example 3.3.1) but it holds in differential modules.

Tueorem 3.3.1. If a linear field module (M, %), &, #) is a dzjferennal
module, then Z (W) =Zi(W), ke N, pe M.

Proof. Every field WeZk(#) is of the form Z fi- W, with functions
fiel™(M, %), i=1

, n, satisfying the condition Z d¥ [ ® W(p) =
There exist a neighbourhood U of p and fields V,, . V € % such that the
fields W|U, ..., VJU are a vector basis for the module Wy and WU
=() MAWU,i=1,

j=1

n, for certain functions A/e%. Thus by Lemma 2.1

0=) &P ®W(p=3 /' ® Z 1(p)-Vi(p)
i=1 i=1 j=

=Y (X @A) eV = 21 dP (Y [ 2) @ V(p).
j=1 i=1 j= i=1

From the fact that the vectors Vi (p)

(p) are linearly independent we
obtain the equalities dP () f'4])=0,j=1

., r, and from Theorem 2.1
i=1
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we get the relation ¥/ = Z fTMell*Y(M, %),j=1,...,r. Thus W|U =

(3 STWHU =(), ¥ V)U, which means that WeZP(#). qed.
i=1 j=1

THEOREM 3.3.2. If a differential space (M, ¥) is of class 2, and if
we have (M,%),=(M,%), at a point peM, then Z¥(Z(M, %))
= Z¥(Z (M, ¥)), ke N. Consequently the set of points pe M for which the two
modules are equal is dense in 14 and covers the set M'.

Proof. From Theorem 1.1.1 follows the existence of a nelghbourhood
U of p such that, for any geU, dim(M, %), = dim(M, %), and (M, %),
=(M, 6),. Therefore the module Z(U, 4y} is differential. From the
preceding theorem follows the equality

ZW(Z(U, €y) = ZX(Z (U, %y)).
It is easy to prove the present theorem applying equalities (3.3.1). q.e.d.

3.4. The mapping d'¥ for linear field modules. Condition *k). In ([6])
R. Palais has proved the existence and uniqueness of an R-linear mapping
dy: Zv ' (C* Q) - (M, &), k>l such that if WeZ: '(C*(£)) and
heC“(-f*) then

(3.4.1) d“(ho W) = h(p)od“(W).

Note that hoWels(M). If WeZk '(C*(¥) and W =) f'W, where
i=1

flelfX(M),i=1, ..., n, then
(342 (W)=Y dif' ® Wi(p).
i=1

Indeed, let us consider a field he C*(£*) and vectors vl,'..., v, €M,. From
Lemma 2.1 follows

M=

dEhoW)(vy, ..., v) =

= Z (d:f‘)(hou/:)(p)(vl, LR ] vk)
i=1

d(fi(hoW)(vy, ..., 1)

1

= 3 (@S Nor, .. ) (hOW)(p)
i=1
= h(p}(z (d:fi)(vlv R ] ”t)u/.(P))
i=1

=he(Z 47 @ W), -..r v)
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Applying the formula analogous to (3.4.2) we define the mapping 4\ for
linear field modules. Let (M, %), @, #°) be a linear field module.

DerFiniTiON 3.4.1. We denote by d%, pe M, ke N, an R-linear mapping
dy': Zy" V(9 - L(M, 6),, P ()
such that d)'(f-W)=dP f @ W(p) for feI? (M, 6), We W .

THEOREM 3.4.1. A mapping d¥ exists if and only if the following condition
is satisfied:

xk) if Y STW, =0, where fiel®(M, €), Wie#,i=1,...,n neN, then

i=1
Y dY i@ W(p) =
i=1

. . (k)
There exists at most one mapping d.

Proof. If d® exists and if ) f*W, =0 for f'el(M, 6), W,e #', then

. i=1

T A Fi@W(p) =Y dY(fiW)=d¥(Y f'W)=0, so that condition *k)
i=1 i=1 i=1

is satisfied. The existence and uniqueness of the mapping d% under condition
xk) is a consequence of the property that any ﬁeld WeZ“‘ D(#) is of the

form Z fiW, fel®(M, €), and that dP (W) = Z d® f' ® W;(p) does not
depend on the representation of the field W m thlS form. Thus the last

formula defines the desired R-linear mapping. q.ed.

It follows directly from the definition of a complete differential of order
k that if a complete differential exists in a linear field module, then condition
x k) 1s fulfilled at every point of the underlying space. Condition *k) need not
be satisfied in every linear field module..

ExampLe 34.1. Consider a differential space (R, C*(R)) and the
assignement @ defined as follows: @(p) =0 for p # 0 and ¢(0) = R. Let #~
be the module of the all linear ®-fields. For an arbitrary function f eI\ I§*?
and the field We#  equal 1 at the point 0 we have

fW=0 and d¥f@W(p)+£0.

Remark. Let (M, (f) @, %) be a linear field module. For arbnrary
fields WeZ¥~V(#) and he #* we have

hoWelP(M, %) and d¥(hoW) = h(p)od¥(W).
Proof. Assume that the field W is of the form

Y fiW, for flelP(M,¥), i=1,..,n
i=1
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For any vectors vy, ..., 5, (M, %),

d;“(ho Wivy, ..., 0) = h(P)O(Z a1 @ W.(p))(vy, ..., vy)

i=1

=h(P) (X (T S W)@, s 0)

i=1
= h(p)odP(W)(vy, ..., v). qed.

Condition *k) is satisfied in a fairly broad class of linear field modules
(see Theorem 1.4.1).

THeoreM 34.2. Let (M, %), ®, W) be a linear field module. If this
module satisfies at a point p the conditions:

(a) dim &, (p) < o,

(b) ¥y+(p) = (P (p)*, where ¥(q) = (P4 (9)* qeM,
then for ke N

(A) there exists exactly one R-linear mapping
&y ZE (W) - (M, %), Pu (p)
satisfying the equality
(343) d¥P(hoW)=h(p)odlI(W) for WeZ¥ V(#) and heW™*;

(B) the module satisfies condition *k) at the point p and di¥l =d{.

Proof. Assume that conditions (a) and (b) are satisfied at a point pe M.
For an arbitrarily fixed field WeZ{*~ ! (#") there exists the R-linear mapping
¥y (p)3w—d¥ (ho W), where he #™* and h(p) = w; and for any collection

of vectors v;,...,v from (M, %), there exists exactly one element
d¥ (W) (v, ..., v) € Py (p) such that

dP (hoW)(vy, ..., v) = h(p)(d¥ (W) (vy. ..., 1)
for he #™*. The mapping
d(w) = ()k( (M, €),3(vy, ..., ) —dS(W)(vy, ..., ) €Dy (D)
is symmetric and k-linear; it defines a linear mapping
d¥: ZEV(H) = B (M, 6),, Py ().

This is the only mapping which has property (3.4.3) and we have 4 = dl¥.
Now we show that condition k) is fulfilled at the point pe M. Let us
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consider any functions f', ..., f"eI{¥(M, %) and fields W,, ..., W,e #  such
that Y f'W,=0. For any field he #™* and vectors v,, ..., 5, (M, b),
i=1

0=h(@) (@ (L £ W)@, s 00)

=hp(X @S ® WP ., 0

From assumption (a) and (b) follows

Y @@ Wi =0. qed.

i=1

THeOREM 3.4.3. If a linear field module (M, %), &, #°) satisfies at pe M
the following conditions:

(a) dim(M, ¥), < o,

(b) dim &, (p) < o0,

(©) *k),
then the following sequence is exact:

40

(344)  0-ZL(#) = Z¢ V() B Li(M, 9),, 24 (p) — 0.

Proof. It suffices to show the surjectivity of the mapping 4\ in the case
when dim @, (p) > 0. Let us take an arbitrary element te L, (M, ¥),, ®4(p))
and a basis vy, ..., v, of the space @, (p). There exist elements t!, ..., 7"

r

e (M, %),, R) such that t = ) 7' ®uv;. From Theorem 2.1 we conclude
i=1

that there exist functions f', ...,f"eI®(M, %) such that dWfi=r

i=1,...,r. For any fields W,, ..., W,e # such that W,;(p)=v;, i=1, ..., r,

the equality d® (Y f'W) =1 is satisfied. q.ed.
i=1
In what follows we assume that all linear field modules under
consideration satisfy the assumptions of the last theorem.

From the definition of the mapping d% follows the equality: Z}(#)
= ker d¥. Therefore there exists a linear isomorphism

ep: Zy " V(WY Zy (W) - L (M, C), Py (p))

with the property gk(W+Z;(#)) =d¥ (W) for WeZ~(#). The inverse
isomorphism will be denoted by i¥; it will be considered as an injective linear
mapping

i L(M, %), @ (D)) = #/Z5(W).
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Since Zy(#) < Zy Y (#), there exists the canonical surjective linear
mapping
,.:.(k—l): W/Z:(W)—»W/Z;‘"”(W-)

with the kernel ZU{~V(#)/Zi(#) (equal to im if). Hence the following
sequence is exact:

k,(k—1)

k
(345) 0 L((M, €),, Dy (p) B> W/Zh(W) T #/Z¥™ D (#) 0.

DeriniTioN 3.4.2. Consider an arbitrary non-negative number k, a linear
field module (M, %), ®, #") and a point pe M. Denote by

g W osW/ZY W) and jO W > W/ZP(#)
the canonical linear mappings. The spaces
Js(#) = W/Z5#) and  JRH) = H/ZH (W)

will be called the jet spaces, of order k and (k), respectively, at the point p.
For any field WeZ{}™ Y (#)

(34.6) W) = B(@0W)).

Indeed, i} (& (W) = i (5 (W+Z,(#)) = i3 (e (3 (W) = 5 (W).
LemMma 3.4.1. If D* is a complete differential of order k in a linear field

module (M, ), ®, %), then for any point pe M there exists exactly one R-
linear mapping

T,: J5(%) - B, (M, €),, D4 ()
such that Dt = T,oj5. It will be called the mapping linearizing the complete
differential D* at the point p. It satisfies the condition: T,oik = id.
Proof. If there exists a mapping linearizing the complete differential D*
at a point p, then it is defined by the formula
(34.7) T,( (W) = Dy(W);

therefore there exists at most one such mapping.

Consider the mapping T, defined by formula (3.4.7). The formula defines
the mapping T, correctly because if j5(W) = jt(W’), then (W—W')eZ(¥#),
which implies Dy (W—W’) = 0. The equality T,oi =id follows from D%(W)
=dP (W) for WeZ¥ Y (#). qed.

To conclude this subsection we prove one more important fact.

Tueorem 3.4.4. If D* is a complete differential of order k in a linear field
module (M, €), 9, ¥) and T, is the mapping linearizing D* ar a point p, then

ker ri*~ D nker T, = 0.

2 - Annalks Polonici Mathematici XLIV. 2
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Prodf. Let us consider any field We %  such that

JE(Wyeker rg* =V nker T,.

n

Then WeZ% (#) and so W=) f'W for certain functions
i=1

fLo o f"elP(M, %) and fields W, ..., W,e #". Besides,

0=T,( (W) =Dk(W)=D(Y. W)=Y d¥ [ ® W(p);
i=1 i=1

hence WeZ}(#) and consequently ji(W)=0. q.ed.

35. Jet field module of order k and (k). An exact sequence of jet-modules.

DeriniTION 3.5.1. (a) The (k)-order jet field module, k=0, 1, ..., of a
linear field module (M, %), @, #') is the least linear (M3 p— J3(#))-field
module closed with respect to localization, containing all fields of the form:

M3p—jRW)eJ®(#) for WeWw .

(b) The k-order jet field module, k =0, 1, 2, ..., of a linear field module
(M, %), @, #) is the least (M3 pr— Ji(#))-field module closed with respect
to localization, containing all fields of the form:

(i) M>sp—j (W)eJi(w) for We¥,
(i) Msp—ik(S)eJs(#W) for Sel,(Z (M, 6), #).

--It is clear that for any jet fields S of order k the field
(Map—re®=1(S)) is a jet field of order (k—1). Moreover, the mappings
it: B(Z(M, ), #)->J*(#) and PV JX (W) > JED(#) defined by
the formula *(L)(p)=i%(L,) for Lel,(Z(M,%),#) and peM,
* =Y (L)(p) =rp* V(L) for LeJ*(#) and peM, are homomorphisms of
linear field modules. The following natural mappings are R-linear,

oW I W) and 0. % > JO(W).
Notice also that j°: % —J°(#) is a ¢-linear mapping.
In the sequel of this section we shall examine the sequence
; Aolk— 1)
@5 0-IZM, 9, %) S — T ) -0,
called the jet-module sequence.

Tueorem 3.5.1. If a differential space (M, %) is paracompact and C-
normal, then the mapping r**~V in sequence (3.5.1) is a surjection.

Proof. Let us consider an arbitrary field WeJ*~ ) (#). For any point
peM there exists a neighbourhood UPety of p such that W|U*?

=(Y fif* D W)UP for a certain positive integer n, functions ‘€% and
i=1
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fields Wie#',i=1, 2, ..., n. According to paracompactness, we subordinate
a locally finite family (V,, te T) to the family (U?, pe M), and applying %-
normality we choose a smooth partition of unity (¢,),.+ subordinate to this

covering. We define fields 6,eJ*(#), te T, by the formula 6, = Y f'j*(W)
i=1
and we put 8 = ) ¢, 6,. Obviously 6 eJ*(#"), and since r*~(6,(p)) = W (p)

1eT
for peV,, we have H*"1(@) = W. qed.

The exactness of sequence (3.5.1) at the term “J*(#)” in the case k = 1
will be proved without additional assumptions about the module %". In the
general case it will be proved for a broad class of linear field modules
containing pseudo-differential modules.

To show exactness let us consider an arbitrary field S eker F**~1 and
notice that there exists exactly one field L such that if(L,) = S, for any point
pe M. We shall check that Le (2 (M, 6), #). From the definition of the
module J*(%) it follows that in a certain neighbourhood U of pe M the field
S is of the form

S\U=*ENU+(Y fIF W)U
=1

j i

for some field Lel (Z(M, %), #), a positive integer n, functions
S ...,f"€% and fields W,, ..., W,e #". Since for any point qe U,

0=rkk-b(s)y=rkk-DGEEN+ Y fI(g)j (W)
=1
L)
i=1

then zn: @ W,eZ¢ D(w).
i=1

From equality (3.4.6) one can easily derive the equality

(L) =S, = k(L) +j4( _Zl Si@W)) = ik(Ey)+ik(d¥ ( _Zl f@W)
j= J=

= (L, +d (X S (@ W)
1 .

J=

As i is an injection, we have

J

(3.5.2) L,=£,+dP(Y f/(@W) for qeU.
=1
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To prove exactness it suffices to show that

(Usq—d® (3 f1@W)(Vi (@, ... %(@))e# 7y
ji=1
for W, ..., LheZ (U, 6,).
THEOREM 3.5.2. The sequence
0— L(Z (M, 6), %) 15 J1 (9) =5 J0 (%)

is exact.

Proof. Since Y fi(gW,eZ(#) for qeU, then in particular

j=1
(Y f/W)U =0, and so z": (f =f(q)) W;e Z2(#). Hence
i=1 j=1
=dP(L FW)=dP (L (S @) W)+ d0(Y @ W),
j= j=1 i=1
and this produces the equalities:

(3 P@W)Via) = - (T (7~ @) W)V )

==X 4P( =1 @) ® W@ (V (@)
- - ¥ &S @)V @) W@
- -3 V@Ui-I'@) W)

i=1

=~ L V@UIW@=-(L VUIW)@. aed
i=1 i=

THEOREM 3.53. If a linear field module (M, 6), @, W) satisfies
condition:

whenewer W is a linear ®,-field such that, for any field he W™, the
function hoW is from the ring €, then We ¥,

then the sequence

0 B, (Z(M, 6), #)-5 JH(#)" 2= 14D ()
is exact. |



Complete differentials of higher order - 149

Proof. We shall show that every point peU has a neighbourhood
V < U such that

(Vg d® (3 F/@W(Vi (@, ... %@)e¥y =¥l

j=1

for W, ..., KeZ(V, 6y).

Let us consider a function y € ¢ separating the point p in the set U, ic. a
function y such that y|B, = 1 for some neighbourhood B, of p and y|U, =0
for an open set U, such that Uy u U = M. Obviously,

1 T P @WeZE )
for any ge M. We put V = B,. Then for ge V we have
W03 P QW)= 4L Faw)
It suffices to show that

(35.3) (M3g—d®(y- Y fF@W)( (@, ... L@)e¥.
j=1

j=

For an arbitrary field he #™* it follows from Theorem 3.4.2 that
W (dP (- Y 1 @W) (Vi@ ., V(@)
Jj=1

- (bl 3 P @WK @, - K@)

J

- d;*)(.; v @hoW) (Vi@ ..., V()

J

= (Vi - W 7S @hoW))@
j=1
=Y @IV, ..., W hoW)l(g)
ji=1

=(i S, - WG-ho W)D)(g).  qed.

i=1

Now we present the announced example of a linear field module
(M, €), &, #') for which there exists a ¥-linear mapping L: (M, 6) - #~
which is not a linear ¥-field for ¥ = (M 3g+—L((M, 6y (D,,'(p))).
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ExaMpLE 3.5.1. Consider the differential space
(R, €) = (R, (Sc(lidg, (R3x+>x])})), ).

This space is of class Z,. Let e, e(R, C™(R)), for x # 0 be unitary vector, i.e.
such that e, (idg) = 1. The tangent space (R, %), is 2-dimensional, having as a
basis the vectors e, and @ defined by the formulas:

eo(idg) =1, e(I-)=0; o(dg) =0, o(-)=1.
The vector field ¥V =(R3x+— xe,€(R, %),) is smooth because V(idR)
=idg and V(|-|) =|-|. It cannot be written in the form Z f'W, for any

numbers neN, functions f! ..., f el (R, %) and ﬁelds w,..., W,
e Z (R, ¥). Every vector field We fl” (R, ¥) is equal O at the point 0 and so,

if V= Zf"W,- for functions f* with f(p)=0,i=1,...,n then V(idg)

= Z fiW,(idg). We thus would get the equality idg = Z fig; for certain

functlons fiag,i=1,...,n from the ideal I,(R, %), and this produces
a contradiction:

= eo(idg) = Z eo(fg) =0
Now take a jet field module of order 0 of the initial module and a %-
linear mapping j°: Z' (R, 6) > J°(Z (M, €)). j° is not a linear P-field because
for the vector field V we have

V@ =0 and jO(V)(0)=jS(V)+#0.

A scalar product in a linear field module (M, €), ®, #') is a linear field
GeIZ(W, €) such that G(p)(v, v) >0 for 0 #ved,(p) and G*: # - W*
defined by the formula G*(V)(W) = G(V, W) is an isomorphism of linear
field modules.

ExampLE 3.5.2. In the space (R, ¥) from the preceding example every
smooth vector field is of the form f-e, where f €% is a function such that
f(0) = 0. Every linear field he #™* 1s of the form f-e* where f: R—>R is a
function such that f(0) =0, f-idge¥ and f-|-|€%. The function f defined
by the formula f(x) = 1 when x # 0 and f(0) = O can serve as example. We
shall construct a scalar product G in the module Z(R, ¥). We put
G(x)(e,, ;) = 1/x for x # 0 and, of course, G(0) = 0. As every function f € ¥
equal 0 at the point O is of the form f(x) = x-f, (x)+|x] -f2(x), xR, where
f1, f2€%, we see that G(V, W)e ¥ for V, We X (R, ¥). Let us take the vector
field V =f-idg-e for any field he #™* of the form f-e*. Then Ve Z'(R, ¥)
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and G(V, W) = h(W). It is clear that the form G(x), xe R, is positive, and so
G is a scalar product.

In the module &' (R, %) there exists a symmetric covariant derivative
determined by the scalar product just constructed. Notice that if f, ge € and
f(0) =¢g(0) =0, then the function g is differentiable except at zero and the
function h defined by the formula

h(x) =f(x)g'(x) for x #0 and h(0) =

is from the ring %. It is easy to prove that the following formula defines the
generated covariant derivative:

ad—ag'f/(2-id - #0,
(Vf.eg'e)(x)={£)f, g—gf12-i R))(x)e z=0'

4. Complete differentials of higher order in relation to splittings of a
sequence of jet-modules.

DEeFINITION 4.1. A splitting of the exact sequence of jet-modules
0 L(Z(M, 6), #)>J#) > J " D(#) -0
(also a connection in the case k = 1) is an assignment
M3p— T, cJi(¥#)
satisfying the conditions:
(i) 7, is a linear subspace of the space J}(#),
(ii) Jy(#) =T, @ker ri* D, peM,
(i) if P,: Jy(#) —ker re® ™1 is the projection defined by the above
direct sum then for SeJ*(#) the field
P(S)=(M>3p—P,(S,)
belongs to the module J*(#).
TueoreM 4.1, If D* is a complete differential of order k in a linear field
module (M, €), ®, %) and T, is a mapping linearizing this differential at a

point pe M, then the assignment M spr—ker T, is a splitting of the exact jet-
module sequence of order k.

Proof. Theorem 3.4.4 states that ker T, ~ker r*~" = 0. For any ele-
ment j(W)eJX(#), WeW, we have jE(W) = i%(DE(W))+(i%(— DX (W) +
+jX(W)) and (D%(W))eker re*~ Y and, by Lemma 34.1, T,(i(~D(W))+
+j5(W)) = —D(W)+DE(W) = 0; thus condition (ii) is fulfilled. Now con-
sider an arbitrary field S eJ"(“IV) in a certain neighbourhood U of p the field

S is of the form S|U=*ENU+() f/j*(W))U for a certain field

j=1
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teLy\(Z(M, ¢), #), a number neN, functions f',...,f"€e% and fields
Wi, ..., W,e # . Hence

POIU = P(*B)+ ¥ AU
=1

]:

— DU+ Y IU-PRWIU
j=1

J

—RBIU+ Y SIU- (D W)U,
j=1

=(* )+ Z fi-# (D (W)U
j=1

is an element of the module J*(W),. q.ed.

THEOREM 4.2. If (T ),em is splitting of the exact jet-module sequence of
order k, then there exists exactly one homomorphism of linear field modules

T. JX W) - L (T (M, €), #)

such that:

(1)) ker T, =7, pe M,

(i) To*=id.

Moreover, Toj* is a complete differential of order k in the module W .

Proof. Consider the projection P, and the projection R,: JE(#)— 7,
defined by the direct sum J(#)=kerk* V@ 7, peM. Since
P,(js(W))eker rk®* D =im i¥ for We #, there exists exactly one element
s, € L (M, 6),, 4 (p)) associated with We# such that P,(jX(W))=ik(s,).
Hence for We ¥

T, (5 (W) = T,(R, (5 (W) + P, (i (W)) = T,(P,((W)) = T, (is(s,)) = s,.

This proves the uniqueness of the mapping T, and gives the method of
computing it. Now it must be proved that

T(S) = (Mapv—» ’I;,(S,,))GES(I(M, ), ¥)
for any field SeJ*(#). As in the foregoing theorem, S will be given in the
form S)U = *(L)U+(), f/*(W))JU. Then
=1

J
n n
TSIU = T(*E)+ Y fIFMWIU =LU+ Y (f- TEMW))U. -
i=1 j=1
From the exactness of the jet-module sequence of order k follows the

existence of fields £;, j=1,..., n, from the spaces L (Z (M, 6), #) such
that P(j*(W)))=i*(L,). Hence

TS)U = (L+ __il fIE)U.
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It is easy to check that Toj* is an R-linear mapping. Finally, if f €4,

f~f(p)eIP(M, €) and We#, then from (3.4.6) we have

(1]
(2]

(3]
(4

(5]
(61

(7]
(8]

9]
[10]
(1]
[12]
(13]
[14]
[15]
[16]
0n
(18}

[19]

T,0j((f—f (M) W)+ T0j5(f (p) W)
7;( (@ ((r-s ¢ p))W)))+f (p) T,0j5 (W)
=dP(f~f ()@ WP +f (P T,o/s(W). qed.

Tojk(f W)=
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