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On the random version of Wazewski theorem

by AnTONI LEON Dawipowicz (Krakow)

Abstract. In this paper the proof of the generalization of the retract theorem of Wazewski on
the casc of SP-solution of random differential equation is presented.

Introduction. The Wazewski theorem [1] is one of the most important
theorems of the qualitative theory of differential equations. The thesis of it says,
that under some assumptions the differential equation has the solution totally
included in the given open set D. Now, this theorem has a lot of generalizations
and to omit the exact formulations author defines the Wazewski condition as
the thesis of the Wazewski theorem. To obtain more general results the author
does not assume the uniqueness of solution. To prove the random Wazewski
theorem the author used the Nowak method of measurable selectors [2]. In
this paper, the author obtained only the result for SP-solution. The result
formulated for the case of autonomic equation can be in natural way extended
to the case of non-autonomic equation.

1. Formulation of the theorem

DeFINITION 1. The function f: RY— R? satisfies in the open set D the
Wazewski condition if there exists such x,e D for which every solution of the
problem

(1) x'(t) = f (),

(2) x(0) = x,

defined on R, satisfies the property

3) YVt >0 x(t)eD.
Let us consider the differential equation

4) & =1,

where (Q, X, P) is the given complete probabilistic space and /> R*x Q— R? is
some random function. Let £, be a d-dimensional random variable on the
space 2.
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DeFINITION 2. The function ¢: R, x Q - R? is the SP-solution of (4) with
the initial condition

il (¢, -) 1s measurable for every ¢ > 0 and with the probability 1 the function

E(-, w): R, - R" is the classical solution of the Cauchy problem
(1) X'(f) = f(x, m).
2) x(0) = &y().

THEOREM. Let f: RYx Q — R he such that the function f (-, w) is continuous
and satisfies the Wazewski condition and there exist a,, b, >0 such that
If(x. w) < a,|x|+b, with the probability 1. Under these assumptions, there
exists a random variable &,0 Q- R* such that P(,eD)=1 und
P(Vt {(YeD) =1, where ¢ is an SP-solution of (4), (5).

Remark. The assumption of linear growth of f'guarantees the existence of
the solution defined on whole half-line.

2. Auxiliary lemmas. Let us consider the map f: Q,— C(RY) defined as
follows:

(6) Q, = {weQ: f(-, w) is uniformly continuous on R},

(7) oy =[{, w).
Clearly, P(€2,) = 1. Let us consider the space C(R?) with the topology of almost
uniform convergence.

Lemma 1. The function { is measurable.

Proof. To prove the lemma it is sufficient to show that for every
compact sel K < R every f,e C(RY) and every ¢> 0 the set B(e, K, f)

={o: [ f(, 0)—=f, |k < &} i1s measurabie. From the properties of continuous
functions,

. v_vf,,..__,.“ n_l
Ble K fo = U o W6 on=holic < pe

' : ‘ n

=U N jc): [/ (x. w)—f,(x)| < ———Lz} g
n=1xeknQd n+1

Let now F be an arbitrary closed subset of R* and let B,,(F, t) be the set of

all pairs (x,, m)e R x  for which there exists the solution of (1), (2) satisfying
the conditions

(8) Vse [0, (]]x(sh < M,
{9) x()eF.
Lemma 2. The set By (F, 1) is measurable.

Proof. We shall prove that the sct of all pairs (x,, f)e R x C(RY) for
which there exists the solution of Cauchy problem satisiying (8), (9. is closed.
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Let xq—x, and let f, —f almost uniformly. Let x, be a function such that

(10) x, (1) = .Q(, +{ f(x,(s)ds for 0<t' <t
0

and satisfying (8), (9). From the properties of continuous functions follows that

(11) %, ()] < Suplxl + 1 sup [f,(x)] < o
S
and
(12) (0] < sup |f, ().
s

Since f, —f uniformly on the set {x: |x| < M}, it foliows that the sequence x,
contains the subsequence x, uniformly convergent to the function x. But for
every ne N

I

x(t)—x,— [ f(x(s))ds]

(¢

<X ()= X, (O 1o = X, (ON 4 /o, (Vo () =/ (x(9))| s

G

< IX(’,) - ’\-1,,('/)1 + |x0 - x1,.(0)| + J' |f1,.(‘\’1,. (5)) __/'(-\'1"(3))](!3
0

+ [ (o () =f ()| ds = T+ T+ TE+1V.
0

The components 1 and I1 are clearly convergent to zero. III
< tUf,, —fIxi<m;—0. The convergence of 1V to zero follows from the
Lebesgue majorized convergence theorem and the continuity of f. Hence for
every t'e[0, t]

!
x(1') = X+ [ f (x(s))ds.
0
The observation that x is the solution of Cauchy problem for the pair (x,. /)
satisfying (8), (9) and using Lemma | complete the proof. .

3. Proof of the theorem. Lct ¢(w) denote the set of all x, for which every
solution of the problem (1), (2) satisfies (3). Let Q, = {w: ®(w) # @]. From
this assumption it follows that P(Q2,) = 1. We shall prove that @: Q, - .2(R%)
has a measurable selector. Since the space R! is Polish, from the Sainte-Beuve
theorem [3] follows that it is sufficient to prove that graph @ is measurable.
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Let {K,} be a sequence of closed sets such that K, cintK,,, and
D= U K,. Let A(m, n) be the set of all pairs (x,, w) for which every solution of

the problem ('), (2) satisfies the condition
(13) Vie(0, m) x(t)eK

Clearly, graph @ = (1} () A(m, n) and it is sufficient to show that for all
m=1n=1

positive integers m, n the set A(m, n) is measurable. Let us denote by A4'(n, t) the

set of all pairs (x,, w) for which each solution of the problem (1'), (2) satisfies the

condition

(14) x(t)eK,.

Let {F,} be a family of closed subsets of R? such that RAK, = | J Fyn. It is
m=0

obvious that

A = () () URx Q\Bp(Fpm, 1]
M=1n=0
and as a consequence of Lemma 2 follows that A4'(n, t) is measurable. Since
every solution of differential equation is continuous and K, are closed, the
formula

(15) A(m, ny= () A'(n, 1)
teQ

t<m

is true and in consequence @ has a measurable selector. Let ¢, be such selector.
Now, it is sufficient to prove that (4), (5) has a SP-solution. Let
y: Q->2(C(R,, RY) be a multivalued map defined as follows: y(w) is the set
of all x: R, - R? such that x satisfies (1’), (2'). From the assumption follows
that ¢ (w) is nonempty with probability 1. Thus, it is sufficient to prove that
graph y is measurable. Let §: 2x C(R,, RY) >R, U {0} be defined by the
formula

!
(16) ¥(w, x) = sup\x(t)—g’o(w)—jf(x(s), w)ds|.
120
Clearly, i is measurable and graph ¢ = ¢/~ l({O ). Since C(R ., R%) is a Polish
space, it follows from the Sainte-Beuve Theorem [3] that {y has a measurable
selector. Let y: Q— C(R,, RY) be this selector. Define the SP-solution by the
formula

(17 (t, w) =Y (w)(1). o

4. Remarks. These methods cannot be generalized on the case of LP- and
WP-solutions. Since the set {&: P(EeD) =1} is nowhere dense in the
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LP-topology, the author supposes that it is impossible to obtain the analo-
gous result. It may be interesting to give a different formulation of the
Wazewski theorem which would be true for L”- and WP”-solutions of random
differential equations and also for stochastic differential equations with Ito
integral.
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