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of order 2
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Abstract. Let M be a differentiable manifold. We denote by T,*M its cotangent boundle of
order r. T* M = T* M is just the cotangent bundle of a manifold M. Let f: T} M - T* M be
the canonical vector bundic epimorphism. Then K = ker f is a vector subbundle of T;*M. The
main theorem of this note is the following

THEOREM. There is one-to-one correspondence between the set of all vecior subbundles L of
TEM such that TYM =K@ L and the set of all linear connections without torsion on M.

1. Introduction. Let M be a manifold of dimension n. Diflerentiability
means always differentiability of class C’. By TM, T*M, TM, T*M, (M),
A*(M) and C’ (M) we denote, respectively, the tangent space at x, its dual
space, the tangent bundle, the cotangent bundle, the module of all differenti-
able vector fields, the module of all covector fields and the ring of all
diflerentiable functions on M.

For a point x of M we write

(T*M)= Jof: feC’ (M), f(x) = 0],

where j.f denotes the r-jet of f at x. (T,*M), is a vector space with the
natural vector space structure defined by the formula

aief+ajf’ = jlaf+af’),
where a, a'eR, f, f'eC’' (M), f(x) = f'(x) = 0. Using the standard methods

we can define a differentiable structure on

M = U (T*M),

xeM

such that
. T*M M, n(jif)=x

will be a vector bundle over M. This vector bundle will be called the
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cotangent bundle of order r. T;* M is 1somorphic in a natural way to T*M.
Namely, each element j!f of T*M defines a linear mapping

Jxft TM3X —(Xf)(x) = ‘7;(10}')|1=06Rs

where 7(0) = X. Now, the mapping
T M3jlf -7 e T*M
defines the natural vector bundle isomorphism between T*M and T*M. In

the sequel we will always identify T*M with T*M using the above
isomorphism.

Let (U, ¢) be a chart on M and ¢ =(x',..., x"). We define
G: 1 '(U)=R"xR"xQ,x ... xQ,, &=, x;, x;

fgig s il...i,),
where
Q= i(a;. ;)eR": a

and for A=jfen "(U)c T*M

is symmetric|

iy

‘(f(p'

(\‘ (‘(‘

X (A) =X (x), X, (A= ( (x), s=1,....r.
(x"'(U), @) is now a chart on T*M — it is called the induced chart.

In this note we will consider only cotangent bundles of order 1 and 2.
We remark that in the case of cotangent bundles of order 2 we have the

following “transformation formula™. If (U, ¢) and (U’, ¢') are two charts on
M and if we denote

(o™ Hx!,...,x" = (x"(x" ., xM, ., x" (x',..., x"),
(o " H(x' . x") = (x"(x"....,x"),...., x"(x",...,x7)),

then ((ﬁ'O(‘ﬁ- ]) (xi, Xis xij) = (xil, Xi's xi'j')y where
X =x(xY LX), X=X

(1.1) Cx (xj+ X
Xpj = Xy T X; .
T XA BT T CXJ

2. The main theorem. Let
p: TXM3jif > jif eT*M.

B is the canonical vector boundle epimorphism. K =kerf is a vector
subbundle of T3*M, since if we denote by B, the restriction of g to the fibre

(T* M), then the function x — dimker f8, is constant (dimker 8, = ("; I)). If
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(U, ¢) is a chart on M, we can consider the induced charts on T;*M and
T*M. The epimorphism B is represented in these induced charts by the
mapping

B: (X, x;, Xi5) - (X', x;).
Hence, the vector subbundle K is defined in the induced chart (x', x;, x;;) by
the equations

x=0, i=1,....,n.

In this note we prove the following theorem.

TueOREM. Let f: T*M — T* M be the canonical vector boundle epimor-
phism defined as above and let K = ker B. There is one-to-one correspondence

between the set of all vector subbundles L of T¥M such that ;M = K® L
and the set of all linear connections without torsion on M.

Let us remark that a vector subbundle L of T M complementary to K is
isomorphic to the cotangent bundle T*M.

We will prove this theorem in the next section. Firstly, for a given vector
subbundle L of T3 M complementary to K we will construct a linear connection
without torsion on M. Secondly, we will prove that a connection I without
torsion on M will determine a vector subbundle L of T;*M complementary
to K. The proof will be carried in a few steps.

3. Proof of the main theorem. We fix a vector subbundle L of T M such
that K@ L= T*M. For a point x of M, L, denotes a fibre of L over x.
L, is a vector space of dimension n, where n = dim M.

We choose a chart (U, ¢) on M. Now, the vector bundles T>*M|U
= n~'(U) and T*M|U are trivial. The bundle L|U is also trivial because L is
isomorphic to T* M. Thus we can find n sections of T>*M|U

w,oxU—->TM

such that, for every point x of U, »'(x),..., *#"(x) is a base of L,.
Conversely, if we have n sections »',..., x" defined on U such that
%' (x),..., ¥"(x) are linearly indenpendent for all x, then writing

L= L,,

where L, is the subspace of (T} M), spanned by x'(x),...,x"(x), we see
that L is a vector subbundle of T;*M|U of fibre dimension n. We will say
that L is spanned by sections x',..., x". We prove the following lemma:

LEMma 1. Let
xl, 1 U—> TEM
be sections of Ty MU and let
(3.1) x'(x) = (x, x§ (x), x&3 (x))
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he the equation of ' in the induced chart (n~ ' (U), @). (Of course, x}y = x4.)
Then x',..., %" span a vector subbundle L of T¥M|U such that

L®K|U = TM|U
if and only if for all x
det [xfin(x)]i,j=1,...,n # 0.

Proof. Let e',..., " be the canonical base of R" and |E")

tr,s=1,...,n

E"» = E?  be a canonical base of €. Now, the sections A, i™ i, r,s
=1, ..., n, form a base of (T3 M), for all xe U, where A' and A" are given in
the induced chart (™' (U), §) by the formulas

Ax)=(x,¢,0, i=1,...,n A(x)=(x,0,E™, r,s=1,..., n.

Let us remark that A™ is a section of K for r,s = 1,..., n.
The given sections x',..., »" span a vector subbundle L of T¥ M|U such
that L® K|U = T*M|U if and only if the sections

(3.2) ®, A, i,r,s=1,...,n,

form a base of (T} M), for all xe U. The matrix which transforms the system
{A', A} into (32) has the following form:

.
X0(x) . x(x)

0 I 1

(I denotes the identity matrix of dimension ("'5').) Thus system (3.2) forms
a base of (T3 M), for all xe U if and only if the above matrix is non-singu-
lar for all x. The last condition is equivalent to the following one:

det [x{?(x)] # 0 for all x.

This finishes the proof of the lemma.

We fix a vector subbundle L of T;* M complementary to K and we fix
sections x': U —> T¥M, i =1,...,n, which span LI{U. We suppose that ' is
given by (3.1). According to Lemma 1, for each point x of M the elements

w; (x) = {x{V(x),..., x{(x))e R",
i=1,...,n form a base of R". Thus, for each pair (r, s), the vector

@, (x) = (x357 (%), ..., x5 (x))

in R" is a linear combination of w,, ..., w,. Hence we can find functions I'i;
such that

(33) Wys (x) = ri_,(X)(U,- (x).
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This is equivalent to

(3.3) x9(x) = I (x)x¥(x), j,r,s=1,...,n.
Since w,, = w,,, we have
(34) ri,=rs,.

According to our definition, the functions I, i,r,s = 1,...,n, defined
on U depend on L, on the sections x',...,x" and also on the chart (U, ¢).
The first to prove is

LEMMA 2. The functions I'\; are independent of the choice of the sections

wl K"

Proof. Let x',...,x" and #!,...,%" be two systems of sections of T*M
which span the same vector subbundle L of T;*M|U such that L@ K|U
= T;*M|U. We suppose that these sections are given by the equations

#(x) = (x, xP(x), x7 (x)), % (x) = (x, % (x), 2 (x),

and let w;, @;, w,, @,, I';, T’ be vectors and functions defined respectively
for »,...,x" and #',...,%". According to (3.3') we have

xg) = r;'s x}j)’ f&? = r:‘-siui')-
Since x'(x),...,%"(x) and %'(x),...,%"(x) are two bases of L, there are
functions A4;(x), i, j=1,...,n, such that
(3.5) 7= Al

and A(x) = [Aj-(x)]u is a non-singular matrix for all xe U. Condition (3.5) is
equivalent to

(3.5 )‘c“," = Aj xh, XN = A; xY.
Now we have two formulas
bR l) ) 4 ) Al T e Al
X =50 =T xP A}, 3P =xBA,="rxP A
Hence I, =T,

Lemma 3. The functions Iy are Christofel's symbols of some linear
connection without torsion on M.

Proof. Let x',...,x" be sections which span on U a vector subbundle L
complementary to K. For two charts (U, ¢) and (U’, ¢’) on M the equations
of »' in the induced charts are given respectively by the formulas

(%) = (x, X (x), x(x)),  %(x) = (x, xP (x), Xy (x)).

Let I}, and I'’, be the systems functions defined by means of (U, ¢) and
(U’, ¢), respectiveiy. Thus, by (3.3'), we have

(3.6) x®, =i, xﬁ‘:’, X0 = i x-(’i)'

2 — Annales Polonici Mathematici XLIIL 1| o
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On account of (3.4) it is sufficient to prove(') that

. Axtox Ox (x'" &2
(-7 e =T X o e o o

According to (1.4) we have

I 2.r
X = x}i)'_f_:’ @), = X ox" Oxt x® 6’ X .
Ox) "o oy T ox” oxs

’

and hence, by (3.6),

' (D) 6 X g
x®. =Trf, x'xj —n‘(’x’ xy’,
a] “2 o ) a2
X = x"’(x' o x® x ] (xr’ (x"+ (’xr - )P
re " oxT Ox* ox”’ ("x‘ TEXT Ox X xS

From the above two formulas it follows that

- ox r ox ox° cixd
TS oxd o xS oxt OxS

and this formula is equivalent to (3.7). The proof of Lemma 3 is now
complete.

Our three lemmas imply the following

ProposiTION. If L is a vector subbundle of T¥M such that L® K
=T M, then L defines a linear connection I' without torsion on M. The
Christofel’s symbols of I' are given by (3.3').

Let I' be any linear connection without torsion on M. To finish the
proof of the main theorem we must give a method of reconstruction of a
vector subbundle L of T*M.

We choose a chart (U, ¢) on M. Since T*MIU is a trivial bundle, we
can choose 1-forms w',...,o" on U such that w'(x),...,w"(x) is a base of
T*M for every xeU. Let

o' (x)e xP (x)dx’.
Now, det [x{?(x)];; # 0. We define the sections
®: U->TFEM, i=1,...,n,

(") S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol. 1, New
York-London 1963,
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in the induced chart (' (U), ) by the formula
#(x) = (x, xP(x), xD(x)), x¥(x) = [, () x{’ (x),

where I'l; denote Christofel's symbols of I' in (U, ¢). By Lemma 1, the
sections x!,...,x" span a vector subbundle Lof T M|U such that L&® K|U
= Ty M|U. We now prove further two lemmas.

LEMMA 4. Lis independent of ', i = 1,...,n. ,

Proof. Let @ = x"dx’ be another system of 1-forms on U such that
®!(x),...,@"(x) is a base of T*M for all x in U, and let ¥',...,%" be the
sections of T2 M|U defined by @',...,@". There is a matrix A(x) = [4}(x)];;
such that

& = Al
that is,
%) = A
Now,
50 = FLEP = Tl xp 4, = AL X2 ;
and hence

7 = AjxY,

This means that &",....%x™ span the same vector subbundle as of the
sections x!, ..., x".
LeMMA 5. L is independent of the chart (U, o).

Proof. Let (U, ¢) and (U’, ¢') be two charts on M. We choose 1-forms
o!,...,0" on Un U’ such that w!(x),...,»"(x) is a base of T*M for all
xeUnU'. If

of = xPdxi = Xt dx,

then

We define sections x',...,%" and ‘x',...,’x" using the induced charts
(x~'(U), ¢) and (=~ '(U’), @), respectively. Thus

® (%) = (x, xP(x), x@(x), % (x) = (x, xP(x), x¥) (x)),
where

XD = i, X9 = 7, x9
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and I}, IV, are Christoffel's symbols of I' with respect to (U, ¢) and (U, ¢).
Now,

(l)

A

Oxd ("'x' Ox* Oxd O ) OxP
x(l) =r1 x(l) ]"J - .+ — 7
Cxdax” oxt T Cxd OxTOxS

x.l

A2y d 2 F2 b
i oxmooxt w X @ X i W (X

m X e T e TR e o T e e
By (1.4) it follows that ‘s’ = »'. This finishes the proof of Lemma 5.

The above two lemmas finish the proof of the main theorem, because
using a covering of M by charts we can define a global vector subbundle L
of T*M. Of course, L& K = T;*M (we employ here Lemma 1) and il we
construct for L a linear connection as in Proposition, we obtain the
connection [I'.

4. Remark. In an analogous way we can formulate a theorem which
gives an interpretation of any linear connection (with torsion) on M. To this
end, it is sufficient to replace the cotangent bundle T3*M of order 2 by a
semi-holonomic cotangent bundle T#*M of order 2. The bundle T#M is
defined as follows.

Let atl(M) be an atlas on a given manifold M, n=dimM. In the
disjoint union

F = U Ux!@!R"xR"
(U.p)-atl (M)

<

we define an equivalence relation “~" by the formula

(x, @, X3, X,0) ~ (X, @', X5 X,p00)
if and only if x = x" and
cxtox’ 2x
rs ox” oxs +X X exs”
where (po@ ™ ")(x!,...,x") =(x'(x",...,x"));=1,. .. (cf. formula (1.1)). Now

X = ’C,?(X) Xprs' =

~2*M=‘j—/~i m: T‘Z*M—'M’ n<x’ (P! xl" xf5>=x

where {x, ¢, x;, x,,> denotes the equivalence class in T3* M of (x, ¢, Xx;, x,5),1s a
vector bundle with natural linear structures on fibres. Let
B: T*M>{(x,'p,x;, x> = xdxeT*M.

f is well defined and it is a vector bundle epimorphism. T;*M can be
considered as a vector subbundle of T*M. T*M is given by the equations
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Then B|T¥M = . Let K = ker B. K is a vector subbundie of 73 M. Using
the same arguments as in the proof of our main theorem we can state

THEOREM 2. There is one-to-one correspondence between the set of all
vector subbundles L of T3#*M such that L® K = T¥M and the set of all linear
connections on M.
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