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Diophantine equations involving primes ‘

by J. WoI0IX (Warszawa)

I have proved ([3]) the following theorem: for all integers a, b, ¢,
£, n, m, n satisfying the condition amn(né—mz?) =0 the number of
primes p representable in the form '

_av*+-béo+cf  ay+-bny +on?
o m B n ]

P

‘where @,y are integers, is finite. |
The aim of this paper is to generalize that theorem to the repre-

sentations of primes in the form

1) p=1@_ W

m o
where f and g are polynomials of an arbitrary degree r satisfying certain

restrictions. If » > 2 it happens often (cf. [2]) that the equation
)
(2) f@) _ 9(y)

m n

has only a finite number of integral solutions and then the finite number
of solutions of (1) does not seem of interest. However, the theorem given
below permits to find effectively all the solutions of (1), which at the
present cannot in general be done for (2) even if the number of its so-
lution is finite.

In the sequel |j¢|| denotes the distance between z and the nearest
integer. '

THEOREM. Let f and g be irreducible polynomials of degree r with
integral coefficients and the same highest coefficient a, m and n be non-zero
integers. .

If f and g determine the same normal field and Vmfn is irrational,
then there exist only fimitely mamy primes p representable in the form

@ _g)

p=-~—=

m n
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where @,y are integers. Such primes p either divide mn or ocan be ob-

tained for

[nar=1{/mfn| [na" =1 V/m/n|
3 S GH(f) m—gre=t  or SR
(3) 2| < er H(f) \mar—m/m| Iyl (g)llna"lf/m/nll’

where H (f), H(g) are the heights of f and g respectively, and
or == 24 (r) (2 + 47)n—"2.
Remark 1. In virtue of symmetry |na1{/m/n|/|lnar=1}/m/n|| can be
replaced in the inequalites (3) by

min {I'na,'-ll/ min|  |mar—1y/njm|

nar=3/mfn)|’  |mar=1{/njm||}

It Ymjn is rational and f%) — %y_) is irreducible, then all the

solutions of (2) can be found effectively by the method of Runge.

LevmMa 1. In every algebraic number field of degree r there ewists am
integral basis w, =1, wg, vey Wy SUuch that

(4) ]/ H (2 |w<" < 2rt (14 3r)=~"2V|D| .

i=1 ga=1

The superscripts denote conjugates and D is the discriminant of
the field.

Proof (due to A, Schinzel). Let 2,,2,, ..., 2, be any integral basis
of the field K in question. Clearly" o

r
1= Zaj.Qj,

i=1

where a; are rational integers and (@4 ++.y ar) = 1. By Hermite’s theo-
rem there exists an integral unimodular matrix a¢ such that a;; = ay.
Putting

.
Q= Dlayl (1<i<r)
f=1
we find a mew basis 2y, ..., 2; such ‘that Qf = 1.
Let the field K have 7, real and 2r, complex conjugates so that

;¥ is real for 8 =1,2, ..., 7,
and

QP =™ for s=r41,.,n4n Q<<

(the bar denotes complex conjugate).
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Oongider in the r-dimensional Euclidean space, the ellipsoide H

- Tt r +
2 (ZQ'(B) 2 Z(ZR.Q}(’):I:) 3 nZ(ZJQ"" ’)
§=1 fe=l 8=f1+1 f=1 g=r1+1 © fm=l

E is obtained from the r-dimensional sphere i1+ i <1
by the linear transformation

r

2!)}(‘%; for 1<8sgm,

7=1

r
ve=1{y2 ZR.Q}"):D; for 7 <8<+,

7=1

r
V2 ZJQ}(”.«;} for mtr<s<r

f=1

with the defterminant equal in the absolute value to

|det Q" = VD .

Therefore the volume V of B equals ="} 1+ 3r)/V|D].
On the other hand, the ellipsoide F induces the distance function

@y, ...y @p) = ]/ZIZ‘QI(’) l

gml fe=1

In virtue of the theorem of Mahler (cf. [1], appendix II, Theorem VI)
there exists an integral unimodular matrix ys; such that

(5) V”F(yiu ey Yir) < 270

Fem]
Moreover, it follows from the proof of that theorem (l.c., p. 1567) that
Yyy=0 for j >4, yu=1 (1 <i<7).
r
We put wi= D 442} (1 <4<7r). Clearly w,, .., o i8 an integral
=1

bagis for K and o, = 1.

. Further,
F(yu, oy Yur) = '/ Z |w(a)|
g=1
and by (b)

n 2 1P < 21171+ 3r) =~ YD,

f=1 a=1

q.e.d.
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Remark 2. The constant 2r!I'(1+ 4r)n~"2 could be improved by
usmg more refined arguments from the geometry of numbers.

‘Levma 2. Let K be a normal field; a, B integers in K, Na, N B their
norms, m,n rational integers # 0. If p is a rational prime,

N(a) _ N(B)

—_—

m on

ptmn  and p=

then there exists a conjugates of B, say B such that na/f® is an integer,

Proof. Let pi=(p,d?), a=(p, ") (1<i<r). We have
p=(p, Na)|Np; and Np|(p", Na)= (p",pm)=p thus (p)=pp,..p,
is the factorization of (p) into prime ideals. Similarly (»)= q,0s... g
and it follows from the uniqueness of factorization that for some s

P1= Qs P;Iﬂm .
‘ (ﬂm) =p.b,
|V (89)] = |N(B)| = pIn| = N (p,) N (b) = pN(b), |n| = N(b).

Hence b|n and since p,|a

We have

(8) = pibna

and the number na/ﬂ(-’) is integral, q.e.d.
Remark 3. The assumption that K is normal is necessary, as
shows the example

E=Q(2), a=-—-14+2V4, f=38+Vi, m=n=1, p=31.

LEmmA 3. If f, g, m, n satisfy the assumptions of the theorem, &,y are
rational integers, (2) holds and

(6) A>6, |o>AH(f), lyl>AH(qg),
then for a suitable ¢ = +1
@ _/m| 8/ m]
Y ¢ Ar n
Proof. Let

r r
= Za‘mrhia 9(y) = Zbiyr—" ty="by=a,

H(f)= Doax lad, H(g) = max |by.
0 i<y

-31-
Y n| |n

We have

IEb:y i Zaw *I

|ao+2“fw_1l
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Now, by (6)
thus

a+ Z Gzt =
Z biy—¢— 2 agw=?

lw] > 6H(f), |yl >6H(g)>

—3 H(f)  bH(f)—1
=1— H(f)Z(GH f)) >1—6H(f 1_6H(f)—1’

r—1 r—1

<H(glyI™ Z 6™+ H(Nlal™ D) (6H ()"

=0

106, BH(H) \ _8 BH(f)—1
gA( TEED) —1)<A BH(f)—1'

\t m 3|m

5~ l<2l% )
Since -4 > 6, 8gn —- = 5gN (?7) and in particular pebe 0 if 7 is even.
Put

hence

1 if r is odd,

& =

z . .
sgna if » is even.

Clearly #/y and ¢}/mjn are of the same sign. Applying the mean
value theorem we get

. l/—l 1
_._e — -
r

T
(6 is here a mean value between (5) and %

6 r

n:

ml

Proof of the theorem. Suppose that equation (1) holds but
ptmn and none of the inequalities (3) is satisfied. Since ¢r > 6 the as-
sumptions of Lemma 3 are satisfied with

., [0 2 Vmin|
? lmarry mjn))

(M)

Thus for a suitable ¢ = 41
7]

_'ﬂ<iV_
i Ar n

Let ¢ and # be any roots of f and g, respectively. By the ‘assumption
¢ and # generate the same normal field K. The numbers ar—aé and
ay—an are integers in K and by (1)

N(ax—a&) N(ay—an)
~ T am . o

(8)

H
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where N denotes the norm with respect to K. By Lemma 2 for some ¢ < r

v—¢
y—n.

y = ar-n

is an integer (superscripts denote conjugates). We have

(]
y0 = ar-in T f?m, where- 7= (@) (L<i<r).
Now
180 < H(f)+1.
Indeed, either
‘E(‘)l <1

or

0 = |f(£9)] = ol 17— 2 lag) 16917 > 167 —H (N1 |e“’| )
f=1

whence & < H(f)+1.

Similarly |4 < H(g)+1.
It follows that

hence putting

and using (8), we have
E(O
y—q f‘
l/@ o= () 1 E e e}/ )|
n 1—ny l—n"’/y
flm|(6 6 12
m (Z+2Ar) Ar'/ ‘(1““2)

<
On the other hand by Lemma 1 there is in the field K and integral
basis w, =1, w,, ..., o, satisfying (4). We have

r
(%) i
= U+ Z'"’fw(f,a

=2

(9) |8¢] =

where u,, ..., ur are rational integers.
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It follows that

— 61 Wy ... Wy

1 re=1 l7 'm) 1 ) w(ﬂ) GJ(2)

10 — |y —na"e]/ — | =———— | %2 D2 . O
4o na’ 1( ' n|  det(w®)|. ... e
(sr wg) . r)

Let D be the discriminant of K. By the Hadamard’s inequality,
by (9), (4) and (7)

0 Wy ... i
1 62 (0;2) e CD?) 2
det(awf?) [+ oo v o 1/|1)| Zléil gzlw 7|
6,' w(zf) . ms'f)
1 12 r
()
<V|Dl Ar 1+Zl/n2‘w§
J=1 {m1

f\ﬁ]/ }(1-;- )2r!r(1+§)ﬂ-ﬂ=
na"‘ﬂ“.
n

Since w, is a rational integer this contradicts (10) and the proof
is complete.

= In[]al
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