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Extreme points and support points of subordination families
with p-valent majorants

by D. J. HaLLEnBECK and KATarRzyYNA TkAczyNska (Newark, Delaware)

Abstract. Let S}, K, and C, denote the p-valent starlike, convex and close-to-convex
analytic functions in the unit disc 4 normalized so as to have p zeros at the origin. We study the
classes delined by subordination to S%, K, and C,. We determine the support points of these
classes and the extreme points of their closed convex hulls. This information is used to solve
extremal problems.

Introduction. Let A denote the set of functions analytic in the open unit
disk 4 =1z: |zl <1, zeC!. Then A is a locally convex linear topological
space with respect to the topology given by uniform convergence on compact
subsets of 4. A function fin A is said to be subordinate to a function F in A
(written f < F), if there is a [unction ¢ in B, such that f = F 0 ¢, where B,
= .p: €A, ¢(0)=0, |p(z)] <1]. For FeA we let s(F) denote the set
f: f <F) and note that s(F) is a compact subset of A.

Let F be a compact subset of A. A function fin F is a support point of
F if there is a continuous linear functional J on A such that ReJ(f)
= max ReJ(g): geF} and ReJ is non-constant on F. We let s(F)
= ,f: f <F for some FeF! and note that s(F) is compact. We [17] let
HF, EHF and suppF denote respectively the closed convex hull of F, the set
of extreme points of the closed convex hull of F, and the set of support
points of F. We let supp |F, J| denote the support points of F associated
with a specific continuous linear functional J.

Let S denote the set of functions in A that are univalent and satisfy f(0)
=0 and f'(0)=1. Let N denote the natural numbers and §”
= fP: f€S, peN|. Let S} denote the family of p-valent starlike functions

with power series expansion f(z) = zP+ Z a,z" (zed). It is known that
n=p+1

J/ €S} if and only if f = g” where g €S and g(4) is starlike with respect to the

origin [19]. A function f is said to be in the family of p-valent convex

Junctions which we denote by K, if and only if zf"(z)/peS}. It is known that

K, =S} [8] It is known ([11], p. 341, [16]) that the class C, of p-valent
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®Q
close-to-convex functions consists of those functions f(z) = zP+ Z a,z"
n=p+1

(z €4) for which there exist g €S} and an a, 0 < a <2r such that

Ree‘“m >0 for 0 <|z| <1.
g(2)

Clearly S5 = C,. In [11], p. 346, it was essentially proved that C, < §”. The
sets HS}, EHS}, HK ,, EHK ,, HC, and EHC, were determined in [11].

In this paper we first determine the sets Hs(S}), EHs(S}), Hs(K,),
EHs(K,), Hs(C,) and EHs(C,). We use this information to significantly
improve results found in [11] dealing with coefficient and integral mean
problems. We also determine the sets supps(S}) and supps(K,). For p =1
these results were proved in [12]. In the case of s(K,) our results for p > 2
provide a striking contrast to the result found in [11], p. 531, when p = 1.
We also prove that supps(C,) = EHs(C,). This result for p =1 was proved
in [2]. All our arguments provide a different proof for the case p =1 than
offered previously.

1. Closed convex hulls and extreme points. It is known [11] that

. p
s = |

mdﬂ()‘)i #EAn},
AL .

where A, denotes the set of probability measures on 04 and that

Zp
EHS: = {m |x| = 1}.

The next lemma is a technical tool needed for determining Hs(S}). Let A, be
the set of probability measures ¢4 x é4.

LeEmMMA 1. For any natural number vy let

G % (% du(x, y): ped }
= ——du(x, y): )
’ ,"43(,“1(1_y2)2y ﬂ y # g
If f€G, and g€Gy, then fgeG,.p.

Proof. The proof of this lemma follows directly from Theorem 1 ([4], p.
415) and the techniques used to prove Theorem 6 ([3], p. 97).

THEOREM 2. Let s(S¥) = \Fog: FeS}, 9eBy). Then

(1 HsSH ={ | o dute, ) ey
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and
P zP
kY . — i
(2 EHs(S}) = {mz)—z,, Ix| =yl = 1}-
Proof. Let fes(S¥). It follows that there exists u, €4, such that
. Xz T’
7) = duy(x, y)
f() [:‘A'!(M(l—yz)z H y__

([12], p. 458: [19]). Now p — 1 applications of Lemma 1 imply that

. xz?
(3) f@= | "Wd#(x, ¥)

l",_'l.x:"A(l -
for some ueA,. Hence (3) implies
P

. XZ
S(S:) CF=% ‘ _-—-_y—zS—Z;;dlu(x, y) [.IEAZ}

cAa x A ( 1

95

and since the latter set is closed and convex also Hs(S}) < F. The kernel
functions xz?/(1 —yz)*? belong to s(S¥) and consequently Hs(S}) > F. This
proves (1). To prove (2) it is enough to show that each function of the
form xz?/(1—yz)*? is in EHs(S%). Let f(z) = xz?/(1—yz)*”. Then f(z) =
xz?+2pxyz?* '+ ... Let a = 1/x, f = 1/xy, and define a continuous linear

functional J by

g0  g*""(0)
Jg) =a o +B 1) for geA.

It is easy to verify that f uniquely maximizes ReJ over

uz?

%ﬁ—(l —L‘z)zP: |UI = Iv' = l%

It follows that f e EHs(S}) and (2) holds. This completes the proof.
It is known [11] that

z p-1
[ [[—m—z—pdt]du(x): yeAl}

HK =
P {,ﬁd o(1—x1)

where A, is the set of probability measures on ¢4 and that

- prh!
EHK =<|——-
P %(‘, 1 —x1)??

We next determine the sets Hs(K,) and EHs(K))

dr: (x| = l}.
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Thueorem 3. Let s(K,) = Fog: FeK,, peBy,,. Then

= p—-1 N
(4) Hs(K,) ={ | [-[(:)i-_rv_r)_ﬂdtJd”(x’ y): ,ue/lz}
CAxA1L 0 J )
and
= pXTp_]
) EHs(K,) = {f(lﬁ—w)% de: |x| =yl = l}.
0 - R

Proof. Let f€eEH (K,). Then there is a function FeEHK, such that
f <F ([17], p. 366). Hence for some ¢ €B,

@(2) p-1
43

(6) f@=|

—dT.
o (1—.\‘1)2"”

It follows that

ple@)P ™' @)
1—x@ )" " (1 —xo(2))*

It is easy to prove that there exists vt €A, such that

(7 G =

®) G S Y

(I—xp@) ~ 4,(0-y2)?
It follows from (8) and Theorem 2 that

cn puzP~1! o Xy ._
9 f(2) = . \ '_'1(————1_02)2(,,_.,@(% v) ,:!,(——I—yz)z dr(y).
We conclude that
p—1 <
(10) re= i = Y du(u, vdv(y).

I'Axv'.,1xt‘,l(l —UZ)Z(p— H (l —yZ)Z
We shall show that the expression on the right of (10) can be written as
pxzP !
f ———=;dr(x,w) for some t€A,.
ffxf.a( —wz)?

Clearly 1t is enough to prove it for the integrand. It follows from Theorem 1
([4], p. 415) that

1 1 .
= d
" (1—0z)*P™ 0 (1= yz)? .-“,,(l Zwzyrr K ()
for some pu; €A,. Hence
: puz"" ' xy Cpuxyz””!
7 —
(12 (1—vz)??~ V(1 —yz)? l;’|(l_wz)zpd#1 (w).
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Let dt(x, w) = duy (w)du,(x) where u, is a unit point mass at uxy. Then (10)
and (12) imply that
-1

(13) o= | LS, w.

l,i)\td(l z)
It follows that f has the representation given by the right-hand side of
equality (4). This proves the inclusion

_Z|. pxtP 1
o (1—y1)??

Hence, we also have Hs(K,) contained in the set of functions on the right-
hand side of equality (4). It is easy to verify that each function

(14) EHs(K)) C% \ dr

fAxCa

d,u(r V) /,IEA‘)%

= [——dt, x,yeéd
(1]

is in s(K,). It follows that (4) holds. Since Hs(K,) i1s homeomorphic to
Hs(S¥) through the homeomorphism L: Hs(K,) — Hs(S}) defined by L(g)
= z8'(z)/p we conclude from (2) that (5) holds and this completes the proof.

The third and last subordination family of multivalent functions we
present is s(C,). For p =1, Hs(C,) and EHs(C,) were determined in [12]. In
[11] it was proved that

pl — vt
e, | [‘_L)_)dt

2p+1
cAxcal_ 0 (l ) P

du(x, y): ned, }

and

2ptP (1 —y1)
EHC, = {‘mﬁdﬁ Ix| =yl =1, x#yp.
o .

THEOREM 4. Let Ay be the set of probability measures on ¢A x A x cA.
Then

z =1 _
(15) Hs(C,) = { f {{p:p ()lzwl:r)dr]dy(x, u, v): ,ueAJ}
0 .

a3

and

P=1¢1 —
(16) EH.(C p)_%‘pw (1 —urt)

o ( )2p+l

Proof. Let feEHs(C,). Then there is a function FeEHC, such that
[ <F ({171, p. 366). Hence for some ¢ €B,
@(z) p—1 .
pt? (1= y1)
(17) f@=1

o (1—xt)?r*!

dv: u#v, u = =|x = 1%.

dr {x#y, [xI==1.

7 — Annales Polonict Math. 50.1
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It follows that

, ?(2) )"" 1-yo(z)  ¢'(2)
18 = .
(1% I p((l—xcp(Z))z 1—x9(2) (1 - xp(2))?
It is easy to see that there exists T €4, such that
(19) Lmyold) _ 1zwwz )y

l—x@(z) i 1—wz
It follows from (8), (18), (19) and Theorem 2 that

puz’~'  t—Xywz Xy
(1=v2)2P™ D 1—wz (1—yz

(200  f'@= |

(r0*

¥ dy(u, v)dt(w)dy(y),

where ueA, and v, 1€A4,. We will show that the integrand in (20) has the
form

Copxz” (1 —uz)

(21) ' 2p+ 1 dﬂl (-V, u, U),
(v a3 (I—ez)™
where p, €A,. Theorem 1 ([4], p. 415) implies
1 1 1 .
(22) (l _DZ)Z(p- 1 1—wz (l _yz)z - :"‘..1(1 _ xz)zp+l d‘(l (.\’)a

where 7, €4,. It follows from (22) that

puz?~ ' (1 —Xywz) Xy puxyz?~ 1 (1 — xywz)

e T 7 vy gl Ry T e 2o

dr, (v).
Now define dyu, (x, u, v) = dt;(x)dr,(u)dt, (v), where 7; is a unit point mass
at uxy and 1, i1s a unit point mass at xyw. It follows from (23) that

pxzP~ (1 —uz)
(1 _Uz)2p+l

puz®~ (1 = Xynwz) Xy

(=)™ (1 =w2)(1—=y2)® (,,;f,s

(24)

d#l (xa u, L‘)-

We conclude from (20) and (24) that

o pxzPT (1 —uz)
(25) Ay =

du(x, u, v)

for some peA,. This proves the inclusion

[:[pxt”' Y(1 —ur)

o (1—ovr)?*!

(26) EH,(C,,)C{ i

(843

dr]dy(x, u, v): ueA3}.

Hence, we also have Hs(C,) contained in the set of functions on the right-
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hand side of equality (15). It is easy to verify that each

, zpxt” (1 —ur)
(2= (!__T)z"”_
is in s(C,). It follows that (15) holds.

Note that if u, = v, then

dt, x,u,vecd

P

9(z) = \ dTGS(K)

0(1

and so ges(S}). Since Theorem 2 1mplles g¢ EHs(S%) we conclude that
g¢ EHs(C,). Now suppose X, uo, UOE("A and uy # vo and assume that

ipxot” '(I—upt) p‘(t” '(l—ut)

2 (I—pgr)2r*? dt d;l(Y u, v).

Ef.hi)‘)'
This is equivalent to

Yot (l—upn) o opT i)
- TR RN (= Al
Hence
Xo(1—uqy2z) - Xx(1—u2)
29 — = ——————du(x, u, v).
*) (T—vpzrt A Ampmyrer ditbo )
It follows from (24) that x, = [ xdu(x, u, v). Define a measure 2 €A, in the

"3
following way: for each measurable subset A of 04, A(A) = u(A x é4 x 04).

Then x, = [ xd/(x) and we conclude that 4 is a unit point mass at xg,
)
therefore (29) implies

l—uyz X 1 —uz

30 —_ = - -
( ) ‘ l)Z(] )2p+l

10y 27" du(xo, u, v).

ot (¢,
A standard argument ([14], p. 58), the assumption u, # v, and (30) shows
that u has to be a unit point mass at (xg, ug, vo). It follows that (16) holds
and this completes the proof.

2. Applications. As one would expect knowledge of the extreme points of
the sets Hs(S}), Hs(K,) and Hs(C,) helps to generalize coefficient and
integral mean results known for the classes S}, K, C,.

Let us recall the concepts of majorization and quasi-subordination.

DeriNniTiON 5. We say that f is majorized by g in A if
f,9eA and  [f(2)I<lg()] (2l <)
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It 1s easy to see that f is majorized by ¢ if and only if there is a function
w €B such that f = wyg, where

B="¢: peA, p@) < 1].

DerIniTION 6. We say that fis quasi-subordinate to g [20] if and only if
there is a function weB and a function ¢@eB, such that f(z)
=w(2)g(p(z). z€4.

THEOREM 7. Let f(z) = Z a,z" be quasi-subordinate to geHK,, and

suppose

- It = A, "
(‘)(I_T)Zplt Z n
Then |a,) < A, for n=p.p+1....

Proof. If is suflicient to consider functions of the form f = wG, where
weB and GeEHs(K,). We see from (5) and the remark made prior to the
proof of Theorem 3 that EHs(K,) = ich: he EHK,, |c| = 1}. The result now
follows directly from Theorem 3.1 in [11], p. 348.

Remark. This generalizes Theorems 3.1 and 3.3 in [I1].

x
THeOREM 8. Let f(2) = Z a,z" be quasi-subordinate to geHC,, and
n=p
SUppose
-I’
1=z Z i

Then la| < A, for n=p, p+1....

Proof. This result follows from (16), the remark made prior to the proof
of Theorem 4 and Theorem 3.2 in [11], p. 349.

Remark. This result generalizes Theorems 3.2 and 3.4 in [11].

THEOREM 9. Let

= oprP! i
feHs(K,), F(z)= t‘i(l —r)zl’dr’ /21, n=0,1,2,..
Then
(31) L™ do < [ IF™ (e d0  for r < 1.
0 0

Proof. Since 2Z2>1 it is enough to consider feEHs(K,) [17]. As
remarked in the proof of Theorem 7, EHs(K,) = \ch: he EHK,, |c| = }.
Hence (31) follows directly from Theorem 4.1 ([11], p. 353).
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THeOREM 10. Let

P

S €Hs(S}), F(2) =rz)2;,

A=21,n=0,1,2,...

Then

2n 2n
(32) {1 (re®)*d0 < | [F™(re®)*d0  for r < 1.
0 0
Proof. Since 4 > 1 (32) follows form Theorem 4.2 ([11], p. 354) and the
fact that EHs(S}) = ich: he EHS}, |c] =1].

THEOREM 11. Let

. z? .
feHS(C).  F@) =0y, Az1Ln=0o0r1
Then
2n . . 2n .
(33) [ 1S (re®)*do < | |F™(reé®)2df  for r <1.
0 0

Proof. In case n = 0 the result follows from Theorem 4.3 ([11], p. 354)

by much the same argument as Theorems 9, 10. For # = 1 one has to appeal
to Theorem 44 in [11], p. 355.

Remark. Theorems 9, 10 and 1t generalize Theorems 4.1-4.4 in [11].
Theorem 10 also holds for n =0 and 0 <4 < 1.

3. Support points. We first consider s(S}). Let J be a continuous linear
functional on A. It is known [21] that there exists a sequence b, of

a

complex numbers so that E\m <1 and J(f) = Z a,b,, where f(z)

n—% n=0

aw
= ) a,z"is analytic in 4. Clearly if for all k > p, b, = 0 then J is zero on
n=0
s(S}). Hence, if for all k > p, b, =0, then ReJ =0 on s(S}) and J does not
generate any support points of s(Sy). The converse is also true, i.e., if ReJ is
constant on s(S}) then b, = 0 for k > p. Indeed, if ReJ is constant on s(S%)
then ReJ is constant on Hs(S}) and so is constant on HS%. We shall prove
that this latter fact implies b, = 0 for k > p.

LeEmMMA 12. Let

L

zP +k
= A zP

p+k .
(I—Z)Zp k=0

Then there is an ¢ > 0 such that if |xo| <& then zP+ A, xozP " *€HS} for k
=1,2,...
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Proof. For a fixed keN and |x,| -.' the function 1+ 2x,z* belongs to
the class of normalized functions of positive real part in 4. The uniqueness of
the Herglotz representation implies the existence of a probability measure u

or (A such that xo = | x*du(x)and 0 = { x'du(x) for jeN, j # k. It follows
i |
that
+ . zP
(34) P+ A, e = ,ﬂ(l—.T)”de).

It follows from Theorem 2.1 in [I1], p. 343, and (34) that
2"+ A, XozP * €HSY and this completes the proof.

Now the assumption ReJ constant on the set HS} implies that
ReJ(zP+ A, X027 %) is constant for all sufficiently small |xo| and &k =
1.2,... It follows that J(z"**) =0 for k =1, 2, ... since A,,, # 0 for all k.
Notice now that xz? es(S¥) for all |x| <4 by the g covering Theorem, [15], p.
3. We conclude that ReJ(xzP) is constant for all |x| <i. Hence J(z?) = 0.

Therefore a continuous linear functional J on A given by a sequence
‘b, generates a support point of s(S7) if and only if there is k > p such that
by # 0. The situation is analogous in s(K,) and s(C,). We will see later that
functionals whose only non-zero coeflicient is b, generate a great number of
support points in these classes, while support points generated by all the
other functionals must be extreme points of the corresponding closed convex
hulls. We need the following algebraic lemma to proceed with our investiga-
tion.

Lemma 13. Let peN and ay, a,, ..., a,_, be complex numbers such that
a#0,i=1,2,...,p=1l.and a; # aj, i #j,i,je(l,2, ..., p=1). Then there

exist numbers x|, x5, ..., X,_; such that

= [ for k=1
VDL ’
(33) PEA %0 for k=2, ... p—1.

Proof. Consider the system
Uy Xy +dyXo+ ... +d, 1 X,oy =1,

ai X +a3x,+ . +aio x,o, =0,

al”'xp+ab b+ o +abzix, o = 0.
p-1 p—1
The determinant of this system is easily seen to be [] & [] (4;—aj = 0.
i=1 ij=1

i
Hence the existence of the x,, x,,..., x,_, such that (35) holds follows

directly.

p-
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Lemma 14, let a;, x;eC, i=1,2,...,p—1, and let geS®. Then there
exists a complex number wq # 0 such that wx;(z+a;z™? <g whenever
w < |wol, i=1,2,...,p=1, m=23, ...

Proof. Since g €S? there 1s a function f€§ such that g = f?. The
+ covering Theorem ([15], p. 3) implies that there exists wy€C such that
if |w| < |wol then (wx)'?P(z+a¢q;z")<f(z). i=1,2,....p—1, m=2,3,...
Hence wx;(z+a; 2" = [ [(¢(2))]” = g(¢(2)) for some ¢ €B, and this com-
pletes the proof.

TueoreM 15. Let F be a family of functions such that z’ €F < S, and let
J be a conmtinuous linear functional on A. If there exist a function g€ F such
that ReJ is constant on s(y), then ReJ is constant on s(F).

Proof. Suppose g satishies the assumptions of the theorem. Since ¢ €S”
it follows from the L covering Theorem ([15], p. 3) that for all |x| sufficiently
small and m=1,2, ... we have xz""€s(g). Hence ReJ constant on s(g)
implies that J(z") =0 for m=1,2,... Let a,,a,,...,a,_, be numbers
satisfying the assumptions of Lemma 13 and let x,, x,.....x,., be a
corresponding set of numbers whose existence is assured by Lemma 13. By
Lemma 14, wx;(z+«; z™" €s(g) for all complex w with sufficiently small ab-
solute value and i=1,2,....p—1. m=2.3,... Hence ReJ(wx;(z+a;z"™)?)
is constant for all sufficiently small w and so J(x;(z+¢;z7)?) =0, i =1, 2, ...
ceeop—1.m=23,... Therefore

-

1
(36) J[Y xiz+az"] =0, m=23,..

i=1
A short computation using (35) shows that

p—1 )~ 1

! r-1
(37) Y oxz4azm =Y x]z2P+p" " [ Y af x] 2™

i=1 i=1 i=1

Since J(z"™) =0 for m=1.2,... we conclude from (36) and (37) that
J@EPt™ ) =0for m=2,3,...or equivalently J(z"*") =0forn=1,2,... If

f€s(F) then since F S” we have f(z) = Y a,z". Hence J is zero on s(F)
n=p

and this completes the proof.

THeorREM 16. supp(S}) = EHS}; supp(K,) = EHK,,.

Proof. This follows easily by standard techniques form Theorem 2.1 in
[11], p. 343.

THEOREM 17.

. B‘(y)z”
supp Hs(S}) = ¢ | ~—-du(yv): ueA,, BesuppBy}.

e
i (l=yz)°P
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Proof. This can be proved by the method used in 18] to prove
Theorem 2.2.

Remark. We recall that supp B, consists of all finite Blaschke products
which vanish at the origin [13], p. 526.

THeoreM 18. supps(Sy) = | f(xz): €S}, |x| =1]. Also real parts of
continuous linear functionals on A not of the form

P (n) 0
J(»—Zb ”

are maximized over s(S%) only by functions in EHs(S}).
Proof. We first show that EHs(S}) < supps(Sy). Let

uﬂp
(1-y2)*”
and define a continuous linear functional J by

1g”(0) 1 ¢®*V(0)
= e

f(z) = lul = |yl =1

for geA.

It is easy to verify that ReJ is not constant on s(S}) and Re J(g) < 1+ 2p for
all g € Hs(S%) with equality only for g = f. This proves the inclusion. It is
also easy to see that for each feS} and each xedd the function f(xz)
supports over s(S7) a functional of the form

(p)
Jg) = &0

€od,
[13], p. 545.

Now suppose [ esupps(Sy), then f = Foe, where F €Sy and by f[am-
iliar arguments ([2], p. 89) and Theorem 15 we conclude that ¢ esupp B,.
We first prove that ¢(z) = uz for some u €d4. Consider the case F e EHS).
Then there is x€d4 such that

| el P 1
(38) fl2) = [1 —xo (z)] (1-xp(2)

It follows from Lemma 4 in [7], p. 82, that

(,0(4 XX,z
(39) 1—x0(z) xp(z) ,Z‘ 4 1—x. 2z’

where 4 =1, 4,20, x,€é4, k=1,2,...,n. Since peN it is easy to
k=1



Extreme points and support points 105

see that (39) implies

pz) - . ()P Xy o X, 27
40 - | = Ay oA .
“40) [l—x(P(Z):I Ky ....zkp=l( “ k")(l—kuZ) (l—xk z)
We deduce from (38) and (40) that
n (X)X oo 2P 1
(41 (2) = (A, o A) P )
) f ) kl....,zkp=] hl kP (l_xklz)"'(] _xkpz)(l _x(p(Z))p
Since y Ay oAy = Y Ay ) A, =1, it follows from Theorem
kl.kz ..... k,,=| k|=| kp:l

1 ([4], p. 415), the Herglotz representation, (41) and Theorem 2 that fis a
finite convex combination of functions in Hs(S}). Since f esupp Hs(S}), each
of these functions must also be a support point of Hs(S}). Theorem 17
implies that

(X)P Xy, - %, 2P 1 iy mz” duts)
(=%, 2)..(1-x, 2 (1—x@@P  &(1—yz? H"

for some finite Blaschke product B and pueA,. Hence

(42)

(i)px"l F EU’)
“ (1 —x, 2).. (l—xk z) Z 11— ) =é[‘md#(y)-
It follows from (43) that (9 xy, X, = [ BO)AR(). Put xo = (R34,

A

and consider the function

h()_[l+ﬂ“d ).

B(y)z

Since j'mdu(y) = xo and B(y)edd for yedd, h(z) is a normalized func-
|

tion of positive real part satisfying h'(0) = 2x,. This implies that

1
h(z)=l+xoz‘
_xOZ
Hence
1+Bb- l+x4z
“—()_d () = 0°
ial—B(y)z 1—xz

If we multiply this equation by 1—x,z, we may write

I l+B A
I+x0z = [(1+B()z)du(y)+ | —(Q—(l — X z)du(y),
r far 1—B(y)z
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where I' = \y: yeéd, B(y) = xo,. If we put z=rx, (0~ r < 1) in (44) and
let » — 1, then the Lebesgue dominated convergence theorem implies that the
second integral in (44) tends to zero. Consequently

L+x0%0 = (T +B(y) xo)du(y)
]

and the delinition of I' implies that | = {du(F). Since B is a linite Blaschke
)

product, I" = 'y, y,, ..., V. for some y,ecd, k=1,2, ..., m. Therefore

(43) implies

Xo n i 1 P B m Xo

(1=x,2)...( —-\'kpZ) =1 1 —NjE

where Y o2, =1, 2, >0, k=1,2,..., m. A comparison of the poles in (45)
k=1

implies that n =1 and hence ¢(z) = uz for some uedd. This proves that if
f=Foe is a support point of s(S}) and Fe€EHS}, then ¢(z) = uz for
ueca.

Now assume that F¢ EH(S}). Therelore, by Theorem 16, F¢supp(S}).
Define a continuous linear functional L. on A by L(g) =J(g¢) for g €A,
where J is the functional which f supports on s(S¥). Since ReL(F)

=maxRe L(f), yet F¢supp(S;), it follows that ReL(g) is constant on Sj.
geSp
In particular

ReJ (“_—(i((;)(zwﬁ ) =ReJ(f) for some xeéd.
Hence
- p
\(l_—(p\(q)-)(f))-z esupps(Sy).

But as we proved earlier, this implies ¢ (z) = uz for some u € é4. Therefore, if
f = Fogpesupps(S}), then ¢(z) = uz, ueca.
Now let J be a continuous linear functional whose real part is not

constant on s(S;), and ReJ(f) = max ReJ(h). I Re J (g (uz)) is not constant
hex(Sp)

on S} (g€S¥). then Fesupp(S}) and f(z) = yzP/(1 —xz)*? for some x, yedA.

If on the other hand ReJ(g(uz)) is constant on S} then in particular

ReJ{y(uz)) is constant for all geEHS¥. Hence ReJ((uz)"/(l—.\'u:)z")_ is

constant for all xe€dA. Since A(x) = J ((uz)’/(1 —xuz)*?) is analytic in 4 it
follows that J(z") =0 for n > p+1. This implies that J has the form

J(g) _ i b g(n)(o)

!
n=0 n

for geA
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and it 1s clear that then all functions h(uz), heS} support J over s(S}) ([13],
p. 545). In particular we proved that if J is not of the form

J( )_ ﬁ b g(n)(o)

then ReJ(g(uz)) is not constant on S¥ and so f € EHs(S}). This completes
the prool.

Remark. The case p=1 of the previous theorem is in [13], p. 544.

It is known that supps(K,) = ho@: heK,, ¢ esupp By, ([13]. p. 541).
The situation for K, is quite different in the case p > 2.

THeorem 19. Let p> 2. Then supps(K,) = | f(x2): feK,, xecd|. Also
the real parts of continuous linear functionals on A not of the form
L)
J(g) = Z bn’_,'a gEA

u=0
are maximized over s(K,) only by functions in EHs(K,).
Proof. We first show that EHs(K,) < supps(K,). Note that

L{(f () =p tht

defines a linear homeomorphism between Hs(S%) and Hs(K,). Hence, since
we have previously proved that EHs(S}) <suppHs(S}) we conclude
that EHs(K,) <suppHs(K,. But EHs(K,) =s(K, and so we have
EHs(K,) = supps(K,).

Now suppose fesupps(K,). Then f=Foe, FeK, @€eB,, since
K, = 8" ([11], p. 346) we conclude from familiar arguments ([2]. p. 89) and
Theorem 15 that ¢ esupp B,. We will show that ¢(z) = uz for some uedd.
Assume first that f e EHK,. Then we have

w(;) m-r'*l
(46) f2)= ;! mdf (Ix| = 1).
We deduce from (46)
. ez 1 @) l
47 "(z) = .
@ /@ P[l —-xp(2) | (I-xp@) (I-xp)y !

We conclude from (39) that
¢'(2)

) (1—x¢(2)

; (l_xkz)2

where z =1, 24,20, x,eéd, k=1,2,...,n. Furthermore
k=1
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(49) (—"’(2) )p"= S g O Dty 2
Kyoen

[—xp(2) kg TR (U ) (L=, 2)

It follows from (47), (48) and (49) that
(f)pxkl . ..x,,p_ 1 xkz"_ !

1—x, 2)...(1 —xkp_lz)(l—xkz)z'

(50 S @=p ¥ ey

p— 1

Ak
kl""'kp*l=l (
k=1

Theorem 1 ([4], p. 415) implies that f* is a finite convex of functions of the
form

‘. pxzP~!

3 "mdﬂ(X, y), uned,.

Since f esupp Hs(K ), linear considerations imply that
. pxzP!
! ———du(x, y): Ay p.
An argument analogous to' that used in the proof of Theorem 2.2 in
[18] shows that the support points of this family have the form
‘. B(y)z""!
¢a (1= y2)%?
where B is a finite Blaschke product and veA,. Therefore for each choice of

ky, ks ..., k,—y, ke(l,2,..., n) there is a finite Blaschke product B and a
measure ve/; such that

dv(y),

(X)P X, oo X

51 P—jxkzpil (i,{ 1 >pq1
o1 (l—x,‘lz)...(l—x,‘p&lz)(l—x,,z)2 S -xz
. B(y)zr™!
)
LiapE

Equation (51) can be treated identically to (43) in the proof of Theorem 18.
Consequently, v is supported on a finite set I' = |y, V3, ..., Y|, V;€C4, i
=1,2,...,m and we deduce from (51)

Xo 1 n 1 p-1
62 (l—xhlz)...(l—x,‘p_lz)(l—x,(z)2 ( Z, ljl—sz>

j=

Xo
& A=y

™3

m
where x0=(i)"x,‘1...xkrl Z a;=1,a,>0,i=1,2,...,m. Notice that
i=1
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since p > 2 the fact () 4;-1/(1—x;z))""! is not degenerate, and hence a
j=1

comparison of poles iJn (52) imphles that n = 1. Hence ¢{(z) = uz for some
uedd. This proves that if f = Fogesupps(K,) and FeEHK, then ¢(z)
=uz, uecd. When feFopesupps(K,) but F¢ EHK, we argue as in the
proof of Theorem 18 to conclude that ¢(z) = uz. uecA. Since also each
function of the form f(xz), where f €K, and x €04, belongs to supps(K,) we
have completed the proof of the first assertion of the theorem. The second
assertion can be proven in the same way as the second assertion of Theorem
18. This completes the proof.

We now make some observations about the construction of continuous
linear functionals whose solution sets consist of chosen apriori extreme
points. Suppose f € EHs(S}). We have seen in the prool of Theorem 18 that
there exists a continuous linear functional J such that f is the only function
in Hs(S}) for which the maximum of ReJ is attained.

Consider now an arbitrary set E of extreme points of Hs(S%). Let

szp ~
E= ck=1,2,....n,x,V,€045%.
{(l -y 2)? o }

We would like to construct a continuous linear functional J on A whose
real part is maximized over s(S;) only by functions from E. Notice first
that if this happens then y; # y;, i #j, i, je(l, 2, ..., n). Indeed, this follows
from considering G(y) = J(z°/(1 —yz)??). Since G is analytic in 4, Lemma
6 in [13], p. 539, implies that if M = max|G(y)| then either |G(v)] =M

yeld

for all yedd or |G(y)) =M for finitely many values of y. Clearly,
ReJ(xzP/(1 —yz)??) = Re {xG(y)}. Hence  max ReJ(xz”/(1 —yz)**)= M.

x,yelq

Also x is uniquely determined by G(y). Hence if y; = y; for i # j then x; = x;.
We now show how to construct a functional J with the desired property.
Tueorem 20. Suppose |x,| = |yl =1, k =1,2, ..., n, y; # y; for i # jand

£i(2) = X, 2"/(1 =y, 2)*". There is a continuous linear functional J on A such
that

(53) ReJ(f,) = max ReJ(g)

geﬂS;l
and

ReJ(g) < max ReJ(h) for g+# f, (k=1,2,..., n).

hes(Sp)

Proof. Assume first that x,’s are distinct, by virtue of Theorem 1 in [6]
there is a function G analytic in 4 so that G(y,) = %, for k=1, ..., n and
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IG(y)| - 1 for yed distinct from y,, k =1,2, ..., n. Suppose

P
“

G(z)= ) b,z" and =z"+ Y A, 27Tk

n=0 (]_Z)Zﬂ k=1
We note that 4,,, # O for all k. Set 4, =1. Let ¢, =b,/4,+,, n=0,1,...,
and note that lim Yjc,| <1 since lim /4,,, =1 and lim /b, <1. De-

n—>X n—ao n—+x
b o]
fine F(z) = Z ¢,z". Then F is analytic in 4 and it generates a continuous
n=0

linear functional J. We have

-P % %
(54) J( E ) =x Y A" =xY b,"=xG(y).
n=0

(1—yz)?r n=0
It follows from (54) that
xz?
(55) max ReJ( — )= max Re 'xG(y)! = 1.
Xyt (I —yz)°? Xy
Equality occurs in (55) if and only if |G(y)i =1 and G(y) = x. Clearly the
only functions from s(S}) for which the real part of J is maximal are f
(k=1.2.....n).
Suppose now that the x;’s are not all distinct. Theorem 1 in [6] implies
the existence of a function F analytic in 4 such that F(y) =y, k
=1,2,....,nand |F(y) < 1 for all other yeA. It follows from the interpola-
tion theorem in [S] that there is a linite Blaschke product B such that B(y,)
=x, k=1,2,...,n Deline G(z) = B(F(z)), ze4. Clearly G is analytic in 4
and if we deline functional J as we did before we will have J(xz?/(1 — yz)??)
=xXG(y). Since |[G(y)) =1 only for y=y,, k=1,2,...,nand G(y,) = B(y,)
=x,, k=1,2,...,n, J has the desired property. This completes the proof.
Remark. It is easy to prove an analogous theorem for finite subsets of
EHs(k,).

In the process of determining supps(Sy) we proved that if f
= Fogesupps(Sy), FeSy, peB, and f maximizes over s(S}) the real part
of a continuous linear functional J not of the form

P (k) 0
) Jg =% b,
k=0 '

then F esupp(S}). We next prove a generalization of this result which will be
useful in our examination of supps(C,).

THeoRem 21. Let F be u compact subset of A such that S* < F < S” and
let J be a continuous linear functional on A not of the form (J). Then

(56) supp \F,J| ¢ (Fo¢: FesuppF, ¢esuppB,!.
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Proof. Theorems 15 and 18 give the result in case F = §}. Assume now
that 8% » F. Let J satisfy the assumption of the theorem, and let /' = F oo
be a support point of s(F) associated with J. Theorem 14 implies ¢ esupp B,
since =" €F. Deline a continuous linear functional L. on A by L(g) = J{g ~¢).
If Re I.is constant on F, then since z"eS§%  F it follows that ¢” esupps(F).
Hence since ¢” €s(S}) and by Theorem 15 ReJ is non-constant on s(S¥) we
conclude that ¢”esupps(S}). This is a contradiction of Theorem 18 since
¢"# EHs(S%). 1t follows that FesuppF and so (56) holds.

Remark. This theorem generalizes Theorem 1 in [2] to the p-valent
case.

Theorem 22. suppC, — EHC,,.

Proof. This result may be proved using the methods that were used to
prove the case p=1 in [9]. It 1s only necessary to note that

z pz.p— 1

* P _1-
g(deT(éSUppS” for any |x| = 1;
this follows from Theorem 2.1 in [11] and Theorem 16 in this paper. It is
also necessary to use the fact that C, < S”.

We shall show that an analogous result holds for s(C,) when we
consider only non-trivial functionals. Clearly functionals ol the form
14 ()
, g"(0)
() Jg) =) b..—n,—

n=0
generate support points f(uz), feC,, uecd ([13], p. 545).

THeOREM 23. Let J be a continuous linear functional on A not of the form
(J)). Then

(57) supp is(C,):J, ¢ EHC,,.
Proof. Let J satisfy the assumptions of the theorem. Suppose

fesupp is(Cp): J|. Theorem 21 implies that f = F o¢, where F esupp C, and
¢ esupp B,. By Theorem 22 we know that FeEHC,. Hence

?(2) mn* 1 (1 —yr)
o (I—xt)?rt!

(58) f(z)= dt, x,yecd, x+#y.

Let

Pml(l—y,
F ={ “. puzr('}Z)d‘l(u’ y’ x): ﬂ.EAs},

. 2p+1
o3 (1= x2)

Since f esupp Hs(C,) we conclude from (15) that f"eF. It can easily be



112 D. J. Hallenbeck and Katarzyna Tkaczynska

proved that f"esupp |F, L!, where L is not of the form

p—1 (")(0)
L(g) = nzod o
It follows from (58) that
| 0@ TT'1-yed @) 1
59 "(z) =
(59) S p‘J —x¢(2) ]  1—=xe(2)(1 —x¢ (@) (1 —=xp(z)p~!

It follows from (48), (49) and

1—_}(0(2) i I—x}xkz
(60) 1—x(z) - x(2) ,El N—xz — Xz

that

(61) j"(z) =[)Zp_1 Z ).kl...)h A’m':“jl"-}" X

( (f}"x,(l...xkp_lx,,, 1 1 —Xyx, z 1 1
_(1—x,(lz)...(l—x,‘p_lz)(l—x,,,z)2 1—x,z l—x“zml—xjphlz'
Clearly,
(62) z lkl"‘ikp—limj’k)‘jl"'lj -1 =l.

Koo kp—l P

k=1,m=1

Jpeeees Jp 1=1

Theorem 1 ([4], p. 415), (61) and (62) imply that f'(z) is a finite convex
combination of functions from F. Since f'(z) esupp |F, L) it follows that for
every choice of ky, ..., k,_;, m,k,j,,...,j,-; in |1,2, ..., n} the function

(63)  h(2)
3 () xey - Xa g Xm 2P 1 l-Xyx,z 1 1
_(]—xk]z)...(l—xkp_lZ)(l—xmz)z l=xz 1=x;2z "1-x; 2

is in supp{F, L]. Let a=(.f)"x,(l...x,(p_lx,,,‘ Then |a| =1 and h(z) =
az? '+ ... Since heF we have

(64) a= | udu(u,y,x) for some ped,.
(.93

By arguing as we did near the end of the proof of Theorem 4 we
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conclude that

A1 — v
(65) hp= U2

dulu, y, x).
1a)x1’ler’A (]_x2)2p+1

Now for each measurable subset C of ¢4 x ¢4 deline a probability measure
veA, by v(C) = pu(ia) xC). We can rewrite (65) as

oapzP (1 —yz
(66) he = | %’Q vy, )

for veA,. Define the class

1—yz
F, = {a MJ;M pz"“‘(l(_—xz%dv(y. X): ve/lz}‘
By arguments similar to those used in [9] it can be proved that the support
points of F, consist of finite convex combinations of functions of the form
apz~ ' (1 —yz)/(1=xz)??*", y # x. We have hesupp |F, L) and heF,, where
F, c F. We wish to conclude that hesupp (F,, L}. It is only necessary to
prove that Re L is non-constant on F,. Suppose Re L is constant on F,.

Then
2P (1 —y2)
Re L(—“ TR
is constant for all x, yedd. Note that for each fixed y

Z"'l(l—.vZ))

Al = L((l—xz)z”“

defines an analytic function on 4. Since Re A(x) is constant for xed we
conclude A(x) = A(0) = L(zP~ ' —yz"). Since Re L(z"~! —yz?) is constant for
yeA we conclude L(z") =0 for n=p, p+1, p+2,... This contradicts the
form of L and so we conclude Re L is non-constant on F,. Hence
hesupp |F, L. It follows that

6 h@=ar 'y NI o
i=1 '(l_xiz)zpﬂ, i=1 ' ,
I,‘ZO, x,‘, y,-EaA,X,-#}',-,i=1,2,....,(],

azP™! 1 1—xyx,z 1 1

(l—x,(lz)...(l—Jc,(p_lz)(l—x,,,z)2 l-xz 1-x;2 ml-xjp_]

z

4 1—yz
=azF" 'Y ——
i=zl "(1—x;2)%P"!

Since all the poles of the right-hand side of (68) are of order 2p+1 and the

8 - Annales Polonici Math. 50.1



114 D. J. Hallenbeck and Katarzyna Tkaczynska

sum of the orders of the poles on the left-hand side is 2p+1 we conclude
that  x =...= Xep oy T Xm =X ==X for all (.thoices of
Kyvoooskpoyam, jooojp-1€(1,2, ..., n) and that g = 1. In particular n =1
and therefore ¢(z) = uz for some u€cA. Hence

u'_.- p-1 1 — ’ p-1 1—v

o (1=xt)2r*!

[t follows that feEHs(C,) and (57) is proved.
Remark. In [2] it was proved that (57) holds for p=1.

X FYy.
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