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Uniqueness of optimal trajectories
for non-linear control systems

by A. PriS (Krakoéw)

Abstract. A uniqueness theorem for time-optimal trajectories of non-linear
control systems is proved. In the theorem certain regularity conditions for the control
system and smoothness for the surfaces of accessible sets are assumed. In applica-
tions the smoothness assumption is often satisfied for not too large (positive) time.
Two variants of the uniqueness theorem are given.

The non-uniqueness of time-optimal trajectories for control systems.
occurs frequently. Nevertheless a general sufficient condition can be-
given. Under a weak assumption (for instance Lipschitz-continuity in
space variables of a control system) the time-optimal solutions must.
be contained in the boundary of an emission zone [1] (the notion of emis-
sion zone, to be defined later, is closely connected with accessibility of
sets). Therefore it is enough to consider the uniqueness of trajectories.
on the boundary of the emission zone. The uniqueness is proved under-
certain regularity conditions imposed upon a control system and a cer--
tain smoothness condition for the boundary of the emission zone. Two-
variants of the regularity condition for a control system are given. For-
the formulation of the first variant we introduce a suitable distance in
the space of convex sets. In formulating the second variant a kind of
Lipschitz-continuity of first order derivatives in the space of convex
bodies is used. The smoothness condition for the boundary of the emission
zone is satisfied for sufficiently small positive time, provided the control
system satisfies certain regularity conditions, but it is not necessarily
satisfied for large time even for regular control systems.

Notations and definitions. |#| = (22 + ...+ o3)}, zeR",

qg(a, B) =infla—z|, aeR", B c R",

zeB

Q(-Ay B) = sup g (x, B), -A < Rn--

zed
Hausdorff’s distance is defined by the following well-known formula::

r(4, B) = max(q(4, B), ¢(B, 4)).
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After T. Wazewski, we call any convex compact and non-empty
subset of R" an orientor. We say that an orientor function F(¢, z) is of
class L at a point (8, ¥) if and only if there exist such positive numbers d, e
and a neighbourhood N of the point (s, ¥) that for any point (¢, #) of N
and any vector w: |w| = d there exists such an orientor 4 that

(1) r(F(t, & +w), (L=t F(t, 2) +14) < el* for |} <1.

Remark 1. For our purpose the independence of the constant d
on a point from N is essential.

Let 04 denote the boundary of an orientor A. We write W(a, 4)
= {weR": |w] =1,w(r—a)<0 for ved}. For ac0A the set W(a, A)
is non-empty and compact. An orientor is called p-conver, where p is
a positive number, if and only if for each point a<¢dA and each vector
weW(a, A) we have

(2) (—a)w+plr—al2< 0 for zeA.

Let w be a unit vector and A an orientor. Let us define N (w, A)
= {z: we W(x, A)}. Let A, B be orientors. We define

(3) $(4, B) = sup{r(N(w, 4), N(w, B)): lw| =1}.

It is easy to see that s(4, B) is a (metric) distance and s(4, B) > r(4, B).
For strictly convex orientors we have

(4) 8(4,B) =sup{la—b|: aecdA, bedB, W(a, A)nW (b, B) = 0},

where ) denotes the empty set. We shall show that for a family @ of
orientors contained in a given ball § and its subfamily P of p-convex
orientors we have the inequality

() 8{(4,BY < kr(A,B) for AeP,BeQ (1),

where k is a positive constant. Let ac9A, bedB be such points that s(4, B)
=la—bl and W(a, A)nW(b,B) 0. Let we W(a, A)n'W(b, B). If
(b—a) wt+iplb—al2< 0, then (a —b)w > 3p|b—al|? and we get (a —x)w
> 4plb—al? for veB. Hence |a—x| > ip|b—al|? for x<B and therefore
r(4,B)>q(a, B)> iplb—al* = }ps(4, B)%. I (b—a)w-+plb—a*>0,
then for A(x) =(x—a)w+ple—al® we have the inequality h(b)
= 3plb—aj®. Because of the p-convexity of set 4, h(zx) <0 for zeA.
The function h(z) satisfies the inequality |k(z)—h(y)| < kiz—y| for
wveS, yeS, where the positive constant ¥ depends on § and p only. We

() The possibility of extracting this property from the previous proof was
suggested by 8. Lojasiewicz.
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have k|x—b| > |h(x) —h(b)| = 4p|b—a|® for wed, and therefore r(A, B)
>q(4,b)> ipk~'b—al? = }pk~'s(4, B)? and inequality (5) follows.

We recall the following property of Hausdorff’s distance #(B, (1—%B +
+14) = (A, B) for 0 << 1, where A, B are orientors. It is easy to
see that s(A, B) satisfies the same formula

(6) 8(B,(1—-Y)B+i4) = 8(B, 4) for 0<i<]1,

where A, B are orientors.

‘We write the control system in the form intreduced by T. Wazewski [3]
(the orientor form). A vector function «(?) defined on an open interval J
is said to be a trajectory of the control system

(7) o' eF(t, 1),

(of the orientor field F(¢, z)) if it is absolutely continuous on every com-
pact subintegral of J and satisfies the condition &' (t) e F'(t, #(t)) for almost
every ted.

Let D be a given subset of R**'. The union of all trajectories of the
control system (7) having at least one common point with D is called the
emission zone of D with respect to (7) (to the orientor field F'(¢, x)). The
intersection of the emission zone with the hyperplane ¢ = ¢ (projected
on R"™) is called an accessible set for 1 = s.

Control systems (orientor fields) can also be considered on differential
manifolds (in particular, on differential submanifolds). The generaliza-
tion is straightforward. We shall consider, as in [2], the orientor field
induced by a field given on a subdomain of R*", on the boundary of the
emission zone. If the orientors are striotly convex and the boundary of
the emission zone is differentiable manifold, the induced orientor field
on the boundary reduces to a vector field, i.e. we get on the boundary
an ordinary differential equation. The uniqueness of solutions of this
equation implies in our case the uniqueness of time-optimal trajectories
for the control system.

ASSUMPTION A. Let the emission zone of a closed set contained in a
half-space t < q, with respect to an orientor field F(t, ) be represented in
a neighbourhood of a point (q, v) by the inequality

(8) 9(t, @) <0,

where the function g(t, x) is of class C' and its derivatives G2,y o0y 9z, OFE
Lipschitz-continuous in = and do not vanish simullaneously at the point
(g, v).

THEOREM 1. Suppose Assumplion A. Let the orientor field F(t, »)
be continuous (in Hausdorff’s topology and satisfy the condition

(9) s(F(t, z), F(t, 9)) < kle—yl,
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where k i8 a constant and s(A, B) is defined by (3), and let the orientors
F(t, 2) be p-convex, p > 0, on a neighbourhood of the point (q, v).

Under these assumptions the solutions of the initial problems for the
ordinary differential equation induced by the orientor field F(t, z) on the
boundary of the emission zone are unique in a meighbourhood of the point
(g, v).

Proof. We shall show that the right-hand side of the induced ordi-
nary differential equation is Lipschitz-continuous in # and the uniqueness
property will follow. '

Let (s, v),(s,2) be any points of the boundary of the emission
zone in a sufficiently . small neighbourhood of (¢, v). We have ¢(s, v)
= ¢g(8, #) = 0. Consider the functions

h(u) = g8, ¥) + 92, (8 UL+ . + 2, (8 Y) U,y
J(w) = gi(s, 2) + gz, (85 2)Us + ... + gy (8, 2) Uy

It can be seen that the set ¥ = #(s,y) (set Z = F(s,2)) is con-
tained in the half-space h(u) < 0 (the half-space j(u) < 0) and the inter-
section of the set Y (set Z) with the hyperplane h(u) = 0 (hyperplane
j(u) = 0) consists of a single point & (point b). The induced differential
equation ' = f(t, ) satisfies the equalities f(s,y) = a, f(s,2) = b.
Let e be such a number that Z is contained in the half-space h(u)+-¢ < 0
and the intersection of Z with the hyperplane % (u)+ ¢ is non-empty. The
intersection consists of a single point ¢. It follows from (9), (4), that |c —a|
< k|z—y|. If ¢ = b the proof is complete. Suppose b # ¢. Let we W (b, Z),
we W(c,Z). In virtue of (2) we have plc—b|2<< —(¢c—b)w, plb—c|?
< —(b—¢)w. Weget 2p|c—b[2 < (b—¢)(w—w) and it follows that 2p |c — b|2
Lb—c|lw—w|. Hence 2plc—b) < |w—w| for weW(b,Z), We W(c, Z).
Consider the vectors d = (g, (s,2), ..., 4,,(5,2)), d = (931(8’ Yy ee-
01 9z,(8,y)). It is easy to see that |d|™'de W(b,2), |d|"'de W(c, Z).,
Therefore, 2p b —e¢| < ||d|'d— |d|~"d| < %, |y —2|, where %, is a suitable
constant, in virtue of Assumption A. We obtain |a —b] < la—¢|+ ¢ —b]
<(k+3p7'k,)|2—y|. We have proved the Lipschitz-continuity of the
induced equation. The proof of Theorem 1 is thus complete.

Remark 2. The metric s(A, B) in condition (9) cannot be replaced
by Hausdorff’s distance r(4, B). An example of a Lipschitz-continuous
(in Hausdorff’s metric) .orientor field with the induced equation without
the uniqueness property is given in [2].

THEOREM 2. Assume Assumption A. Let the orientor field F (i, x)
be continuous on a neighbourhood of point (q, v) and of class L at. (q, v)
and let the orientors F (i, x) be p-convex, p > 0.

Under these assumptions the solutions of the imitial problems for the
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differential equation induced by F(t,x) on the boundary of the emission
zone are unique in a neighbourhood of point (q, v).

Proof. We shall show that our assumptions imply (9) and Theorem 2
will follow from Theorem 1.

Let (t, ), (¢, y) be points from a sufficiently small neighbourhood
of (g, v). We assume z +# y; for z =y (9) is trivial. We apply (1) for
w=(y—z)dly—o|~,t = jy—z|d~". We getr(F(t,y), (1Y) F(t, x)+14)
< et% In virtue of (5) we have

(10) s(F(t,y), L= F(, ) +14) < Feil.

For (t, ») from a sufficiently small neighbourhood of (g, v), F(t, x)
are contained in a common ball because of the continuity of F(i¢, ).
In virtue of (1) the sets A are contained in a common ball for arbitrary
w; |w| = dand (¢, x) from a neighbourhood of (g, v); therefore s (F(t, z), A)
< m, where m is a constant independent of (¢, ) or w. In virtue of (6)
s(F(t, x), (1 -1 F(t, #) +14) < Im. Hence in virtue of (10)

8(F(t7 z), F(t, y)) < (m+-kte')d™ |y — o).

Remark 3. Theorem 2 can be reformulated for the control system
in the form ' = f(t,z,u),ueU.
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