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On certain functional equations
for quasiconformal mappings

by J. LawryNowicz (L6dZ)

Introduction. The Cauchy-Riemann equations for analytic funec-
tions- and the Beltrami equations for pseudo-analytic functions do not
give information on the invertibility of these functions if there are no
additional assumptions. Therefore, if we investigate wvarious properties
of conformal or quasiconformal mappings, for instance extremal properties,
we usually have to apply more complicated equations, such as the para-
metric ones, which quarantee the invertibility of a solution, and characterize
a priori the image of the domain considered if the initial or boundary
conditions are known.

In this paper the author obtains a system of two non-parametric
functional equations for quasiconformal mappings of the unit dise onto
itself, applying the Shah Tao-shing method (cf. [7] and [5]). Unfortunately,
one of those equations is obtained in a subclass, and the problem of its
density in the whole class considered remains open. Nevertheless, the
author conjectures that the system of equations constructed always has
a unique solution for a dense subclass of the class of all complex dilatations
(i.e. functions measurable and bounded by constants <1), under suitable
boundary conditions, and that this solution represents a quasiconformal
mapping of the unit disc onto itself.

Analogous results are obtained for quasiconformal mappings of an
annulus onto another annulus, and an analogous conjecture is posed.

Theorems 1 and 2 of this paper have been proved in [7] and [5]. Theo-
rems 3 and 6 concern the first of the equations obtained (in demse sub-
classes) in the cases of quasiconformal mappings in the unit disc and
in an annulus, respectively. Theorems 4 and 7 concern the second of the
equations obtained in the cases of quasiconformal mappings in the unit
disc and in an annulus, respectively. Those equations are presented in
& more symmetric form in Theorems 5 and 8.

The theorems proved in this paper were presented to the Conference
on Analytic Functions in EédZ on the 5™ of September, 1966 (see [6]).
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§ 1. Parametric equations. Let
K={z|z|<1}, K={z |z|<1},
K,={zr<ipl<l), K,=1{zr<lg<1}.

Let “g(z,t)—=g(2) as t>1,”’ for an open set D mean the so-called almost
uniform convergence in D (i.e. the uniform convergence on compact
subsets of D) and the convergence of re{(1/z)g(z,?)} on its closure.

In this paper we need the following lemmas and theorems (see [5]):

LEMMA 1. Let 0 = u(z, 1) be a function defined in K x {t: 0 <1< T),
belonging to C' and bounded by Q*(t) < 1 in absolute value in K for any t
and such that

(1) A uz,t)=e(z) for 10+,

(2) (1/t) [ou(z, t)foz) < k(z) for O0<t<T,

where ¢ and k are bounded. Let Q(t) = {1+ Q*(¢)}/{1—Q*(t)}. Then, for the
Q (1) - quasiconformal mapping w = f(2,1) of K onto itself, generated by the
complex dilatation u so that f(0,t) = 0 and f(1,t) = 1, the following formula
holds in K:

3)  (AW{f(z, )—2}=(1m)z(1—2) l [ o@re1—06-0+
fI<1

+e@A—0(A—2)}dedn  for t>0+ (L= E+in).
THEOREM 1. Let 0 = pu(z,t) be a function defined in K x {t: 0 <t < T},
bounded by Q*(t) < 1 in absolute value and such that the partial derivatives
ouloz, ouloz, oujot, P*ulozot exist and ouloz, ouloz fulfil a global Holder con-
dition with a certain exponent § (0 < 6 < 1). Then the Q(t) - quasiconformal (*)
mapping w = f(z,t) of K onto itself, generated by the complex dilatation u
8o that f(0,t) = 0 and f(1,t) = 1, satisfies in K the equation
@) owjor = (Um)yw(t—w) [f fp(¢, DIL(L—E)(w—0)+
t<1
+oC, DIEA—-D(1—wl)}dEdy (&= E+in),
where the function ¢ is defined by the formula
(8) o(w, t)
1

1 [u(f 0, 1),

(1) The connection between @ (f) and Q*(t) is the same as in Lemma I.

g w10, 0, ) exp(— 2iarg f(w, 0).
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LEMMA 2. Let 0 = pu(z, t) be a function defined in K, x {t: 0 <t < T},
belonging to C' and bounded by Q*(t) < 1 in absolute value in K, for any t
and fulfilling conditions (1) and (2), where ¢ and k are bounded. Then, for
the Q(t)-quasiconformal () mapping w = f(z,1) of K, onto Kpy, generated
by the complex dilatation u so that f(1,t) = 1, where ¢ = R(t) is determined
uniquely, the following formula holds in K, (?):

+00

(6) @){f(z,t)—2}=(1/27) ff 2 2 {'P(E) (z-{—rz.: _ 1+rzvc) ~

— 2, — 29
i<l 9==00 Cz o r C 1-7 t

(©) (L4722l 147\ 0L —rti
e g o) dedn Jor 104 (= tin).
Moreover,
(1) AW{BO—ry~>(12n) [[ re@)+9QB)dedn  for t->0+ .

r<iti<1

THEOREM 2. Let o = u(z, t) be a function defined in K, x {t: 0 <t < T},
bounded by Q*(t) < 1 in absolute value and such that the partial derivatives
ouloz, ouloz, oulot, o*ulozot exist and ouloz, ouloz fulfil a global Hélder con-
dition with a certain exponent 6 (0 < 6 < 1). Then the Q (t) - quasiconformal (1)
mapping w = f(z,1) of K, onto Kgy,, generaled by the complex dilatation u
8o that f(1,t) = 1, where ¢ = R(t) is determined uniquely, satisfies in K,
the equation (2)

¢, 1) (w+ B¢ 14 R™(t)¢
(8)  owfot = (1/2 {9"( ( )_
/ W n)R(tKICIQ e w— R 1—R*()¢

_ e (1 + R™(t)wl _ 14 R™(t)¢ )} dtan
2 A—R"(t)wZ 1—R¥()

(B*(t) = {R()}", L = E+1n),
where @ 18 defined by (5). Moreover, Re C' in {t: 0 <t < T}, and
9) R =(12%) [[ R@{p, v+, 0/ atdy.

RiO<tI<1
§ 2. The first functional equation in the unit dise. We
confine ourselves to quasiconformal mappings whose complex dilatations
belong to C2. It is known (see [2] and [5]) that the class of these mappings

is dense in the whole class of quasiconformal mappings, in the case of
both the unit disc and an annulus. We prove the following

+c0
(*) For the sake of simplicity we apply the notation 3 a, instead of

p=—00
+oo

a,+ J (a,+a.,) provided the last series converges.
y=]
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THEOREM 3. Let ¢ = u(2) be a function of the class C? defined in K
and bounded in it by Q* <1 in absolute value. Let @ = (1+Q*)/(1—Q*).
Then the Q-quasiconformal mapping w = f(z) of K onto itself, generated
by the complex dilatation u so that f(0) = 0 and f(1) = 1, satisfies in K
the equation
(10) 2[00 = 1 (2]03)2m1 + Py(w0) ,

where

1) o) - 20=) { 1(¢) o0 Vg ,
et T l'cL[ 4(1—«:)(w_c)+C(1—C)(1—wi>} i

(12) d=argz, &=relf, n=im{,
1 6 of p—1
(13)  @y(w) = l—l.u(f“(’w))lz {(5{9 “(z)),-/-!(w) -2 (f (’w))} X

X eXp (— 2ia.rg£—”f'l(w)) .

Proof. We apply here Lemma 1 and the proof runs analogously
to that of Theorem 1. For more clearness it is divided into four steps.

Step A. Construction of a suitable function satisfying
the assumptions of Lemma 1. In order to verify that w = f(2)
satisfies equation (10) we construet a suitable function satisfying the
assumptions of Lemma 1; we denote this function by G. By a suitable
function we understand any function of the variable w that maps K
onto itself, the points 0 and 1 being fixed, depends on one real parameter
A% (0 < A9 < A9*), and fulfils in K the condition

(14) (1/48){G(w, 49)— w} = ow/od+ B(w) for AF->0+,

where w = f(2) and B is a function chosen in such a way that G fulfils
also the remaining conditions of Lemma 1.
The proof of Theorem 1 suggests that we should consider the function

(15) G (w, 48) = f(e™°F " (w))/f (¢") .

Clearly, @ maps K onto itself and preserves the points 0 and 1 for any
real A%. Moreover,

. G(w, 4%)—w
Prer
ST ) =) (T 0)f () — wf (6)
= m 25 (¢7) t )

5l 1@ (551@)

zml
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where @ = argz, z = f'(w). Hence
(16) B(w) = w(0w/[0d)= .

It remains to verify whether the function @, defined by (15) in
K x {48: 0 < A% < A9*}, satisfies the remaining conditions of Lemma 1,
and, of course, to evaluate in our case the function ¢ appearing in this
lemma. In order to avoid ambiguity we shall write in our case ¢,. Thus,
we introduce in K x {49: 0 < A9 < &9*} the following notation:

(17) w0, 48) = = G(w, 49) | 2. G (w, 49),

(18) @) = Lim ((1/48) o0, 48)) .

The derivatives in (17) exist everywhere in K, because, in view of Theorem
7.3 of [8], the assumption that u ¢ C* implies that fe C?, and thus, by
(15), the function G must also be of class C? for any real A49.

For reasons of arrangement we start with expressing the functions g,
and ¢, in terms of f and p.

Step B. Evaluation of the funetions x and ¢;,. Note first
the identities

(19) owloz = owfoz , ow[oZ = dw[oz

which can easily be verified. Since in our case the functions w— f and w—f,
considered as functions of the variables 2, z, w, W, satisfy the assumptions
of a well-known theorem on implicit functions (see e.g. [3), vol. I, p. 454),
we have

0
(20) af- +f:; 1,
o 2 o
2 ot =

where (21), in view of (19), may be replaced by

(22) a{‘ oz  of oz

% ow " zow 0.
Equations (20) and (22) yield
(23) -2,
0z of* _|of
(24) ow oz /( oz| |z )
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whence by (19) we get

25) == (2 - )
(26) :_;= ajzr/ ( a£ g)

The relations obtained above permit differentiation in formula (17).
In view of (15) we have

@7) a%a(w, A)

= teuelp(en}(Z1@) 2+ fe-sopgiene (1) Z
and
(28) 5‘:’—_ G(w, 49)

oz
szt OW

— eife) (1) 5 + e if e (1)

where 2* = zexp(i49), 2 = f~'(w). Now, applying relations (23) and (24)
to formula (27), and relations (25) and (26) to formula (28), we obtain

st ||z s - |5

2} 9
}%G(w,dﬁ)

and
e ||z r@ = | m10) 5 @ tw, 20
——e|210))__Zi@+e @ (2fm) 2.
Hence

—ew(Z10)  2f@)+eme(Z1w) A
i(w, 49) =

sl Gro-e{aso)_ o

Let us n.ote finally that, according to the notation of our Theorem, by
virtue of the Beltrami equation for w = f(z), we have

(29) 51 [51) = ne)
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Hence
(30) o, 49) = 1) = 0 (2)

62140____ ” (zeldﬂ)”(z)

Dividing both sides of (30) by 4¢ and letting 49 -0+, in view of (18)
and the assumed existence of ou/od, where # = argz, we easily obtain

exp (21, arg é)zf(z) )

_ (0fod) u(2)— 2eu(2) . @
(31) i) = AOVEOZZUE exp (siare £ 1(2)).

Formulae (30) and (31), where z = f~'(w), give the expressions for y,
and ¢,, as desired. In Step D it will be proved that u, can also be ex-
pressed by formula (13).

Step C. Verification of some properties of the function G.
It remains to verify only the following properties of G, which concern
the corresponding complex dilatation u, considered in K x {48: 0 < Ad
< A9*}, where Ad* is chosen sufficiently small:

(32) | e,

(33) lim(w, 49)) < Q3(49) < 1

(34) (1A miw, 48) =g (w) for A0+  (lgs(w)] < go < +00),
(35) (1/49)| (2fow) p(w, 49)] < k(w) < ko < + 0.

In fact, it has been assumed that u ¢ C? and proved that f e C?% and

80, by (31), relation (32) holds. Similarly, relation (33) is obvious, because,
as can easily be seen,

Q1(49) =

l#(ze"‘“’ — ¢*4%u(2)|
ol |e2i40— 1y (26749) u ()]

provided A¥* is chosen sufficiently small.

Now, let us observe that to prove (34), in view of (31) and (18), it
remains to prove that we have
(36) (1/49) p(w , 48) —@y(w)
uniformly in K. So, let ¢, w, A® be arbitrary numbers fulfilling the con-
ditions £> 0, |w| <1, 0 < 49 < A9*, respectively, and let z = f~'(w),
# = argz. Clearly, we have
(37) 1/(1— ju(2))}) <(@+17/4Q .

Moreover, from the assumption of the existence of ou/éd we easily infer
that for a certain # we have

!
1 ot ocm<n.
e¥i48— y (2t ) u(2) 1—lu(2)l?| 2M

On the other hand, it can easily be seen that [(9/6d)u(2)— 2iu(2)| < M*

Annales Polonici Mathematicl XX 11

(38)
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Here M ,' M* < 400, and we can suppose that M = M*. Hence, by a
well-known theorem,

(39) |pe(26742)— €220y (2)| < MAY (0 < A¥ < 79).

Moreover, for a certain %* we have

140y __ p2149
(o) [LEEZIERE) Lo+ 2int)| < o (0 < A9 <.
From inequalities (37)-(40) we immediately obtain
(1) 49) L2040 — ¢ u(z) _ @fod) u(2)— 2ip(2)
62140 i (26749) 1 (2) 1— |u(2)
< Ip(zeidﬂ)_e‘.’.idﬂp (z) 1 _ 1
o 49 62140 — y(26'®) u(z) 1— |u(2)P?

140)_ p2idd P )
+ ’ ou’(ze )Aﬁe ”(z) _ 379#(2)_*_2,&#(2)

._1__< £
1—[u(2)f

in the interval 0 < 4% < min(n, »*). Hence, by (30) and (31), in the
same interval we have

(1A p(w, A9)—pr(w)| <& (lw] < 1),

i.e. uniform convergence takes place in (36). Thus, there exists a function ¢,
which fulfils (34); it is uniquely determined and is expressed by (31).

In connection with the question of the existence of the function %
which fulfils (35) let us notice first that the left-hand side of this inequality
exists in view of (30) and of the previously shown fact that the function f
belongs to C%. The existence of the function %k fulfilling (35) follows from
the fact that the function f belongs to (2, which implies in particular
the existence of o%ufozod. In fact, if for |2] < 1 the derivative 9?u/ozod
exists, then, in view of (30) and 0 < |u(?)] < Q*, the derivative &%y, /owdd
also exists, and we have [(&%/owad)u,(w, 48)| < M** for 0 < 49 < 4%*,
where M** < {oco. Hence we infer that in K x {49: 0 < A9 < 4%}
takes place an estimate |(9/ow) u,(w, A8)— (6/ow) uy(w, 0)] < M**Ad, where
the existence of oy,/ow for &¢ = 0, considered as a corresponding limit,
follows immediately from (30) and, as is easily seen, we have (0/éw) u,(w, 0)
= 0. Thus we may write the last inequality in the form |(1/4%)(d/ow) x
X my(w, 49)] < M**. This means that estimate (35) holds, and that we may
put k(w) = k, = M** identically.

In this way we have proved that the funetion @, constructed in
Step A of our proof, satisfies all the assumptions of Lemma 1.

Step D. The differential equation for the class con-
sidered. In the previous parts of our proof we have constructed the
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function G determined by formula (15) and fulfilling condition (14),
and we have verified that this functions satisfie the assumptions of
Lemma 1. Therefore, applying this lemma to the function @, we obtain
by (14), (15) and (16), equation (10), as desired.

According to Steps B and C of our proof, the function ¢, which
appears in equation (10) is determined by (31) where z = f'(w). To com-
plete the proof of our theorem it remains to reduce the formula obtained
for the function ¢, to form (13). To this end it is sufficient to verify that
if 2= f"'(w), then

arg(8/oz)f (z) = — arg(0/ow)f " (w) ,
i.e.

(41) arg (0/0z)w = — arg (0/ow) f(w) .

Applying a well-known theorem on implicit functions to the functions

2—f"" and Z—f ', considered as functions of the variables w, w, 2, z, we
obtain, as in Step B of our proof, the formula

ow -1 -1 —1
(12) =l ) |t = | S},
which is analogous to (23). Since, as is easily seen, f ' maps Q - quasiconfor-
mally K onto itself, it satisfies in it the Beltrami equation, and, con-
sequently, we have

o)~ |

> (1) 25w = 40017

=1 )| >0.
Thus, by virtue of (42), we obtain the formula

arg (9)oz)w = arg (2jow)f (w) ,
equivalent to (41). In this way the proof of Theorem 3 is completed.

§ 3. The second functional equation In the unit dise.
Now we make the same assumptions as in Theorem 3, and we assume
additionally that f can be continued onto a larger disc {z: |z] < 14 &},
e = ¢(f), with all the properties preserved, so that [f(z)] = const on
any circle |z|=1r, (n=1,2,..), where 14+ ¢=1r, > r,> ... > 1. Clearly,
the class of the functions considered is non-empty, because it includes
the class of all function defined in the whole plane, satisfying the assump-
tions of Theorem 3 on K, preserving all points belonging to the unit
circle 2K unchanged, and defined as the identity inside K. The subclass
mentioned seems to be interesting in itself, and possibly has several in-
teresting extremal properties.

11*
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THEOREM 4. Suppose that ¢ = u(z) is a function of the class C? defined
tn K and bounded in it by Q* < 1 in absolute value. Suppose moreover that

(i) w = f(2) is a Q- quasiconformal mapping (*) of K onto itself generated
by the complex dilatation u so that f(0) = 0 and f(1) =1,

(ii) w = f(2) can be continued onto a larger disc {z: |2| < 1+ ¢}, e = e(f),
with all properties preserved (1), so that |f(z)| = const on any circle |2| = r,
(n=1,2,..), where 1+e=r>r,> ..>1.

Then w = f(z) satisfies in K the equation

(43) ow[op = w(0w[00);=1+ Dy(w) ,
where
1) - o) =210 7() 20 _}ded,
@ == ,“L A—nw—0) | La—H—w) "
(45) e=loglz|, é&é=rel, pn=im{,

1 F . 9 1, )
46 o(W) = ha — £ .
(46) Palt0) 1— Iy('f"l('w))]2 (ag,u(z))z_’_.(w)exp( Z@a,rgawf‘ (w))

Proof. We can obviously modify Lemma 1 in such a manner that
the parameter ¢t tends to 0 over a sequence {t,} strictly decreasing to 0.
We apply the modified lemma to the function

(47) F(w, Ag) = f(e”f (w)) [f(e®)

defined in K x {logr,}. Further reasoning is analogous to the proof of
Theorem 3.
Theorems 3 and 4 imply

THEOREM 5. Suppose that o = u(z) and w = f(2) satisfy the assumptions
of Theorem 4 (*). Then w = f(z) satisfies in K the system of equations

w0z = w(ow[02),—, + ¥ (w) ,

(48) _ i,
w0z = w (0w[0z),1+ Py(w),

where
(49) Ya(w)=

w(1—w) va(L) vall) } _
+ = A —Ldeéd =1,2),
- ,C.L,f T e vl LT

(60) E=ref, n=1im{,

(*) The connection between @ and @* is the same as in Theorem 3.
. () We remark that the theorem is also true if the continued mapping is
@-quasiconformal with a @>0Q.
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) = Zh@) (e )l ) x

z=1

1
1—|y(f"l(w))12:(

. o ._
(51) X eXPp (—Zza,rg%f 1(w)),

1 b7 —1, 1
pi(10) = l—ll‘(f -1(W))|2 {(3_5 ”(z))z-rl(w) + (@I w) ) } x

X exp (— 2iarg %f‘(w)) :
Proof. Let ¢ = log?, # = argz. Hence

dploz = 1/2z d0/0z = 127,
odor = 1/2iz o807 = —1/24% .
Concequently,
w1 (0w ow w_ 1 (ow  ow
oz 2z\0p od)’ 0z  2z\op ' o8]’

Applying now Theorems 3 and 4, we obtain
ow/(oz = w(0w/[02);=1 1 (1/22) {Py(w) — iPy(w)} ,
ow[oz = w (0w/[02) =1+ (1/22) {Dy(w) + 1D, (w)} .
Next we verify directly that
(1/22) {p(w) — iy (w)} = yy(w) ,
(1/22) {pa(w) + i (w)} = y(w) .
Consequently,
(1/22) {Py(w)— iPy(w)} = ¥y(w) ,
(1/22) {Dy(w) + iP,(w)} = ¥y(w) .

Theorem b5 is proved.

§ 4. The functional equations in an annulus. Here we
present the analogues of Theorems 3, 4 and 5 in the case of an annulus.
The proofs are omitted as completely analogous to that of the theorems
mentioned. Clearly, Lemma 1 and Theorem 1 must be replaced in these
proofs by Lemma 2 and Theorem 2, respectively.

THEOREM 6. Let 6 = pu(z) be a function of the class C* defined in K,
and bounded in it by Q* <1 in absolute value. Let Q@ = (1+ @*)/(1—Q*).
Then the Q-quasiconformal mapping w = f(z) of K, onto Kg, generated
by the complex dilatation u so that f(1) = 1, where R i8 determined uniquely,
satisfies in K the equation (%)

(52) ow[od = w(2w[09)eer + Prg(w) ,
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where

+ o
' () w+R* 1+ R”
(53) Dp(w) = (1/27) w {qv ' 'g)
1 Rg'ﬂJ ;; ¢ 'w—R* 1-E%

o) (1 + R*"wl 1+R"')} akdn

t* I—R*wl 1—R*
and 9, & n, ¢ = @,(w) are given by (12) and (13). Moreover,
(54) { | @@+ e@)FEatan=o.

R<[tl<1

THEOREM 7. Suppose that o = u(2) i8 a function of the class C* defined
in K, and bounded in it by Q* < 1 in absolute value. Suppose moreover that

(iy w = f(2) is a Q-quasiconformal mapping (%) of K, onto Kg genera-
ted by the complex dilatation u so that f(1) = 1, where R 18 determined u-
niquely,

(ii) w = f(2) can be continued onto a larger annulus {z: (1—¢*)r

< 2| < 1+¢), ¢ = e(f), e* = e*(f), with all the propemes preser'ued (4), so

that |f(2)] = const on any circle |z] = r, and |2 =13 (n = ...y) where
I1+e=n>rn>.>1, (1l—ce)r=rm<r<.<r

Then w = f(2) satisfies in K, the equation (2)

(55) owfop = w(0w[0g)s=1+ Per(W) ,
where
1 29 29
56 b = (1 [2(9) ’w+R 1+ R C) _
(36)  Pun) = 2“)R<.c.<1 g ;@ e o

76 (1+R2 wl  1+R7% )}m
& U—R"w¢ 1—R% n
and o, & n, ¢ = @,(w) are given by (45) and (46). Moreover,
(57) [ @)+ @l/F dedn = 0.
R<If<1
THEOREM 8. Suppose that ¢ = u(z) and w = f(2) satisfy the assumptions
of Theorem 7 (%). Then w = f(z) salisfies in K, the system of equations (2)

ow[oz = w(0w[02);<1 + Yir(w) ,

(68) _ _
ow|oz = w(ow/ez),—1 + Ver(w),
where .
- N ¢ AN {%(C) (w+R2'c 1+R”'c)
(59)  Vanlw) = (1/2r) Mfﬂ | 2w

29 295
_ %(C)(1+R wl 1+R2f)}dgda; (n=1,2)
;2 R”w¢ 1—R™
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and &, 9, y = p(w), v = y(w) are given by (50) and (51). Moreover,

(60) [ wald)e+va@)B)dtdn=0 (n=1,2).
R<itl<1
References

[1] L. V. Ahlfors, Lectures on Quasiconformal Mappings, Princeton 1966.

[2] L. Bers, On a theorem of Mori and the definition of quasiconformality, Trans.
Amer, Math. Soc. 84 (1957), pp. 78-84.

[3] G. M. Fichtenholz, A Course of Differential and Integral Calculus (in Russian),
3 volumes, Moscow 1962/3.

[4] O. Lehto and K. I. Virtanen, Quasikonforme Abbildungen, Berlin—Heidel-
berg-New York 1965.

[5] J. Lawrynowicz, On the paramelrization of quasiconformal mappings in an
annulus, Ann. Univ. M. Curie-Sklodowska, Sectio A, 18 (1966), to appear.

[8] — On certain funotional equations for quasiconformal mappings, Proceedings
of the Conference on Analytic Functions, L.odZ 1966, p. 14.

{7] Shah Tao-shing, Parametrical representation of quasiconformal mappings
(in Russian), Science Record N. 8. 3 (1859), pp. 400-407.

[8] L. I. Volkoviskii, Quasiconformal Mappings (in Russian), Lvov 1954.

INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES
LABORATORY IN LODZ

DEPARTMENT OF MATHEMATICS, IMPERIAL COLLEGE OF SCIENCE AND TECHNOLOGY
UNIVERSITY OF LONDON

Regu par la Rédaction le 20. 12. 1966



