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Multiple solutions for a nonlinear
second order differential equation

by DANG DiNnH Har (Ho Chi Minh)

Abstract, I is proved that a certein nonlinear periodic second order boundary value problem
has at Jeast two solutions.

Consider the following periodic boundary value problem:
(1) x"(t)+ecost - x"”—2esint x' + asinx = 4esint,
(2) x(0)—x(2n) = x'(0)—x'(2n) = 0.

For 0<e <1 and |¢f <3, equation (1) governs the periodic motions of
a satellite in the plane of its elliptical orbit (see [1]). The problem was recently
treated by Petryshin and Yu in [5], where the existence of a solution of (1}-(2)
was established for

0<e<(2/mlel and (8/2+3)e+2lel <1,

using the degree theory for A-proper mappings. In [4], we proved that in fact
(1)H2) has at least one solution for |e] < 1 and a arbitrary. The purpose of this
note is to establish the following multiplicity result:

THEOREM 1. Let |e| < 1 and let a be any real number. Then (1)+2) has at least
two solutions not differing by a multiple of 2m.

Proof. Let H be the space of absolutely continuous 2n-periodic function
u such that ¥ € L?(0, 2n), with the inner product

2n

(u, v) = u(0)(0)+ | a()u'v'dt,

where a(t) = 1 +ecost. Then H is a Hilbert space. We denote its norm by |'|.
Define the C!-functional &: H—R by

&(u) = 2_[“ [a®(Hu'?/2 +aa(t)cosu+4dea(s)sint-uldt.
0
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Then & is weakly lower semicontinuous. Indeed, let (u,) be a sequence in
H such that u,—u (— denotes the weak convergence). Then (see [2])

a(t)u,—a()w’ in I?(0,2r) and wu,—u uniformly on [0, 2n]

from which it follows that liminf®(u,) > ®(u), as claimed.

Now, we claim that @ attains its minimum on some open ball B(0, R) in H.
Let R > 0. Since @ is weakly lower semicontinuous, ¢ attains its minimum on
the closed ball B’(0, R). Let u be its minimum point. Since @ is 2n-periodic,
there exists xe H such that

&(x)=du) and |x(0) < 2n.

Integrating by parts now gives

2n

®(x) = | [@*O)x'*/2+2a%(t)x’ + aa(t)cos x]dtd((|x|% — x (0)1%)
0

2n
—4 [ a®(t)dt —2ne (1 + le]).
0

Since ®(x) < $(0), this implies that xe B(0, R) if R is chosen sufficiently large,
which proves the claim. For this R, it is easy to see that x is a solution of
(1)—(2). We now produce a second solution that does not differ from x by
a multiple of 2n. We can (and shall) assume that the local minimum at x is
a strict minimum (for otherwise there is nothing to prove). We shall apply the
following Brezis—Coron—Nirenberg variant of the mountain pass lemma:

THEOREM A [3]. Assume F is a Gateaux differentiable function on a Banach
space E and DF: E— E* is continuous from the strong topology of E into the
weak* topology of E*. Assume x,€E and:

(i) There exist a neighborhood U of x, and a constant g such that F(u) = ¢
for every u on the boundary of U and F(x;) < .
(i) There exists y¢ U such that F(y) < o.
(iii) F satisfies the condition:
(PS). Whenever a sequence (u,) in E is such that F(u,)—c and DF(u,)—0 in

E*, then c is a critical value of F, where ¢ = inf max F(u) = o, & denotes the
Ped ueP
class of paths joining x, to y, and DF is the derivative of F.

CONCLUSION. c is a critical value of F.

We shall now venify the assumptions of Theorem A for F = ¢ and x, = x.
Once this is done, it follows that there exists a critical value ¢ of @ with
¢ > ®(x) and the corresponding critical point is a solution of (1)-(2) that does
not differ from x by a multiple of 2n, completing the proof of Theorem 1.
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Verification of (i). Let r >0 be chosen such that ®(u)> @(x) for
ueB'(x,r), u# x. Let ¢ = Inf{P(u): lu—x|, =r} and U = B(x, ). We claim
that U and g satisfy (1). Indeed, if ¢ = ®(x), then there is a sequence (1) with
[u,— x| = r and ®(u)— P(x). Going if necessary to a subsequence, we may
assume that w,—u in H and u,—u uniformly on [0, 2r]. By the weak lower
semicontinuity of @, we have @(x) > ®(u). Since ue B'(x, r), this implies that
u = x. Hence

2n 2n

[ a*(tyultdt— | a®()x2dt

0 0

from which it follows that |u|gz—|x|y,, and u,—x in H, a contradiction.
Verification of (ii). Let y =x+4+2n. Then y¢ U and &(y) = &(x) < g.

Verification of (iti). Let ceR and let (4,) be a sequence in H such that
&(u,)—c and DP(u,)— 0 in H*. Since @ is 2n-periodic, we may assume without
loss of generality that |u,(0)] < 2r. We then have

D(wy) = 3wyl —4n?)—Bn(1 +el)> —2ma] (L +e])

which implies that (u,) is bounded in H. Consequently, (1) has a subsequence,
still denoted by (u,), such that

(3) w,—~u in H and wu,—u uniformly on [0, 2n].

We have

2n
D&(u)v = | [a®(t)uiv' —aa(t)sinu, v+4ea(t)sint-v]dt
0

from which it follows by (3) that

2n 2n
[ a2(uvde— [ a®(t)u'v'dt
0 0

uniformly for |v|, < L
Since u,(0)—u(0), this implies that u,—u in H. Hence #(u)=c and
D®(u) =0, ie., c is a critical value.
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