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@
Abstract. Let o/, denote the class of normalized functions f(z) =z+ ), 4,z* regular in

k=n+1
the unit disc. For any natural number n and for real constants A4, B satisfying — 1< A<B<1,

let P,(A, B)={p/p(z2) =1+p,z2"+pps12"* ' +..., regular in E and subordinate to (1+ Az)/
/(1+Bz) in E}. We consider the following three classes:

Un(A, B) = {f/f € o, and [(2)/z€ P,(4, B)}, }
Va(A, B) = {f/f € o, and [’ (2)e P,(4, B)},

W(4, B) = {f/f € o4, and zf"(2)/f (z)€ P,(4, B)}.

In this paper we obtain the radius of starlikeness of the family U,(A, B) and the radii of
convexity of V,(4, B) and W,(4, B). We also obtain some distortion theorems and coefficient
estimates.

The results obtained generalize those of Karunakaran [2], Livingston [3], Padmanabhan
[5] an Nikolaeva and Repnina [4].

1. Introduction. Let o/, = {f/f(z) be regular in the unit disc E and have

the Taylor series about the origin given by f(z) =z+ ). az* for z in E}.
k=n+1

Let 2 = {w/w(z) be regular in E, w(0) =0 = and |w(z)| <1 for z in E}.
For any natural number n and real constants A, B satisfying —1 < A4

<B<\1,let P,(A, B)={p/p(z) =1+ ), p,z* be regular in E and be subor-
k=n

dinate to (1+Az)[1+Bz) for z in E}.
The class P,(A, B) has been introduced by Stankiewicz and Waniurski
[7], who took A and B as fixed complex numbers satisfying |4| < 1, |B| < 1.

They showed that pe P,(A4, B) implies that there exists we B, w(z) = ) w, 2*
k=n

such that p(z) = (1+Aw(2))/(1+Bw(z)) for z in E. We note that P, (A, B)
= P(A, B), the class introduced by Janowski [1].
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Now we introduce three classes U,(A, B), V,(A4, B) and W,(A4, B).

DerFiNnmioN. For any natural number n and —-1<A<B<1, let
Un(4, B) = {f/fe o/, and [(2)/z€ P,(A, B)}, let V,(A, B) = {f/fe o, and
['(z) €P,(4, B)}, let W,(4, B)={f/fe o/, and zf'(z)/f (z)€ P,(A, B)}.

In this paper we obtain the radius of starlikeness of the family U,(A4, B)
and the radii of convexity of V,(A, B) and W,(A, B). We also obtain some
distortion theorems and coefficient estimates. The results obtained generalize

those of Karunakaran [2], Livingston [3], Padmanalghan [5] and Nikolaeva
and Repnina [4].

2. Lemmas.

LeMMA 2.1. Generalized Dieudonné’s lemma: If w(z) = w,z"+w,,, 2" 1 +
+..., then for |z| <1,

|zI"— |wi?
2"~ (1= z[?)
Proof. Write w(z) = z"®(z), where @(z) is regular in E and |®(2)| < 1
therein. By the well-known theorem of Carathéodory,
1-[@(2))?
1—|z? °
and the assertion follows. The lemma is sharp for the choice
. 2—q)
(1-qz)
Especially note that w(z) = z" and w(z) = —z" give sharp resuits.
LemMA 2.2. For all x >0 and any natural number n,
T4+ x24+x*+.. . +x" 2—nx""1 2 0.
Proof. It easily follows from induction on n.
Lemma 23. If p(z)e P,(A, B), 20, =0, then on |z| =r < 1, we have

lzw' () —nw (2)| <

[®'(2) < zeE,

w(z)=z

Iql <1

p'(2)
Re[ap(z)+ﬂz p(Z)J
—_ — n 2n
>cxz-l-[2azA nB(B—A))r"+A*r if R, <R,,
(1+Ar")(1+ Br")
(A+B) 2 Uty amm
> _nﬂ(B—A)+(B—A)r"'"(l—rz)(Ll K,) (1-ABr*") if R, = R,,
" ‘where

Ry =(L/K)"*, Ry =(1+Ar"/(1+Br"),
Ly =ndAr" '(1—-r3)+1-A%r*,
K, = (B—A)+nBr" ' (1—r2)+1—B2r™",
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The bounds are sharp.
Proof. This is proved by the author in [6].
LemMma 24. If peP,(A, B), on [z] =r < 1, then
(1+Ar")/(1+Br") <re p(z) <(1—-Ar"/(1—Br".
The bounds are sharp.
Proof. See [7].
Lemma 25. If peP,(A, B) and p(z2) = 1+ p,z2"+pps12" 1 +..., then

(1) lpl <B—A, k=nn+l1,...;
N l_BZN)
. 2 < (B 2 _
(ll) k=n|pk| \(B A) (l_Bz) ’ N n, n+1s IARE]
the estimate being sharp only for n=1;
t (B—A)?
(i 3 Ind < g

the estimate being sharp for every natural number n.
Proof. Refer to [7].

3. Theorems.
THeorReM 3.1. If fe .o/, belongs to U,(A, B), then

L(a+d) for R, >a+d,
Re f'(z) = < L(Ry) fora—d <R, <a+d,
L(a—d) fora—d>R,,
where
_ nd (1—A2¢2m)
LR =gt v T B-a)
R[{(n—1)B+(n+1)4} r"'l(l-r2)+2(1-ABrz")]+
- (B=A)r'(1-r?)
RZ[nBr"~ (1 —r¥)+1—B?r?"]
(B—A) " 1(1—r3) ’
_[n—=1)B+(n+1)A)r" ' (1 =r?)+2(1 - ABr*")

Rl 2[nBrn—l(1_r2)+1_Bzr2n] 4
_1-4Br* _(B=A4r
CioEEem YT u-Bry

The estimates are sharp.
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Proof.
f(2) _1+A4w(2) ‘
: " 1tBwg) "OE#
Hence
zf'(2) _ _ (B—A)zw'(2)
f@  (1+Aw@)(1+Bw(z))’
, _1+Aw(z)_(B—A)zw’(z)
0 I @ =1 Bwe) +Bw@
Since
S 1+4:z
PO =" <1y, P

we have |z| < r transformed by p(z) to the disc

1—ABr®" (B—A)r"
—d<d, a=—7f5, d="—1—>.
Ip(Z) aI d a 1 _BZ r2n 1 _BZ an

i I
By using Lemma 2.1, we have

zw'(2) w(z) r2"—|w(z)?
@ R B ST Be @ T AL+ Be

_1+4w(2) ) _ 1-p()
= I-I-B—W(Z) YICldS W(Z) = —‘—Bp (Z)— A

- pl)
and

w@  _[1-p@][Bp(2)-A]
[1+Bw(2)]? (B—A)?

Substituting in (1) and (2) gives
Ref'(2)

(1-p(2)(Bp(2)—A)  r*|Bp(z)—A>=|1-p(2)*
= Re p(z)—(B—A)|n Re (B—A)? + T r) (B—A)

_ nA + 1
~(B-4) (B-4)

—{(n—1)B+(n+1) A} Re p(z)+nB Re[p(2)]*—

L

_r*|Bp(z)—Al*—|1-p(2))®
P i(1-r) '
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Putting p(z) = a+u+iv, R = |p(z)| and calling the right-hand side S(u, v), we
have

3) Su,v)= nd + ! x
(B—4) (B—A)
x [-—{(n—1)B+(n+1)A}(a+u)+nB {(a+u)?—v?}—
__R2,2n
B ]
@ a8 _ o[(1—B*r*—nBr"~'(1-r%]
PR (B—A)yr1(1-ry

When B is equal to —ve, the expression in the brackets on right-hand side is
certainly positive, but when B is positive, it cannot be taken for granted as n
may be large, We now prove that it is positive, even when B is positive.

Cramm 1. For —1 <B<1, 1-B*r> > B(1-r?".
Proof. This is equivalent to showing that (1— B)(1 — Br?") > 0, which is
true.

Applying Claim 1 to the expression in the brackets on right-hand side of
(4) we obtain
1—-B2r*—nBr"'(1-r}) > B(1—r*—nBr'(1-r?
=B(1-r)(1+r24+r%+... 471 2—nr"" 1) = e,

since B is equal to +ve and because of Lemma 2.2. Thus the minimum of
S(u, v) is obtained at v = 0. Putting v = 0, we infer

I nA 1
©) S@0=LR®)=F—3+54

[—R {(n—-1)B+(n+1)A}+

I—Bz 2n
+ nBR? —;'Fl(l——rrz) {dz —(R—a)z}]
H nA [B(n—l).+(n+1)A]R+ nB

—_ _ 2
~B-4) (B—4) B-AR*

(1—A2r?" (1-B*r*) R? 2(1—ABr*)R
A= B_A) (1= (B-A) m (1—r)(B-A4)
[(nBr"~*(1—r%+1—B%r27 3

" 1(1—r?)(B—A)
[{(n—1)B+(n+1) A} "t (1—r})+2(1 — ABr?"]
- T rT(1-r})(B-4) '

L(R) = 2R
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This vanishes at R = R, given by

_{n=1)B+(m+1) 4} (1=r)+2(1— ABr™)

R, 2[nBr"~'(1—-r3+1— B*r?]

The absolute minimum of L(R) is attained at R, only if a—d < R, <a+d
and then it is L(R,). When R, <a—d, L(R) increases, and hence the
minimum is attained at a—d and it is L(a—d). When R, >a+d, L(R)
decreases, and hence the minimum is attained at a+d and it is L(a+d).
Equality of the estimates is achieved

(1) if R;y,>a+d for fi(2)= z((ll_——BA;;') =r,
i) if a-d<R,<a+d for fz(z)=z[—[11:+“‘:1(g;—]

when w,(z) = z" ((12_—;2)), q determined from Re{:g—::g}:w _R,,
(i) if a—d>R, for fi(z)= zﬁiﬁ; z=r

COROLLARY. Putting n =1, we obtain the theorem of Karunakaran [2].
THeoreM 3.2. If f(z)e of, belongs to U,(A, B), then

zf'(2) (B—A)nr" .
Re 1@ > U+AM (4B if Ry < Ry,
(A+B) 2[(L,K,)"*—(1—-ABr*"] .
?l—n(B_A) (B—A)r""l(l—rz) ’ lle ZRZs

where R, and R, are given by Lemma 2.3. The bounds are sharp.
Proof.

f2

plz) == yields vl _F6)

p2)  f(2)

Putting x =0, § = 1 in Lemma 2.3, we obtain the theorem. The bounds are
sharp.

THeoReM 3.3. If fe .o/, belongs to U,(A, B), the radius of starlikeness of
S is yiven by the least positive root of equations (i) or (ii), according as
R, < R, or R, = R,, the equations being

(@) ABr**+[A+B—n(B—A)]r"+1 =0,
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(i) 4ABr*"*2—44Br*"~[(1+n*(B—A)-2n(B+A)]r" >+
+2[(n*—1)(B—A)—2n(B+ A)Jr"* ! —[(1 +n*)(B—A)—2n(B+ A)]r" 1 -
—4r’+4=0.
The results are sharp.
Proof. It follows from the previous theorem and the estimates are

clearly sharp.

Remark. The theorem above is interesting for the following reason. If
feUpA, B) and if g€ -/, is defined by g(z) = Az+(1 — 1) f(z) for some A in
(0, 1], then g(2)eU,(AB+(1—A) A, B). The radius of starlikeness of such
families also follows from the theorem.

THeOREM 34. If fe€ o/, belongs to U,(A, B) we have on |z| =r < 1:

. 1+ Ar 1—Ar"
(i) ril:B:"; §|f(2)| < ril—B:";' The bounds are sharp.
(i) If f(2)=z+ i a, z*, then:

k=n+1
@) |la] <(B—A), k=n+1,n+2,... The result is sharp.
(b) For —1 <B <,

N+1
(i) Y la)* <(B—A4P2(1-B*™{(1-B%), N=n, n+l,...,
k=n+1
(i) Tl < (B A)(1~BY).
k=n+1

The result in (a) is sharp for n = 1 only and the second result is sharp for
every natural number n. The extremal function is of the form

__(1+A4Kz"
= 1+BKzY
Proof. (i) follows by putting p(z) = f(z)/z and using Lemma 24.

Sharpness is attained for f(z) = z(1+ Az")/(1 + Bz") at z = r for left-hand side,
etc.

/() K| = 1.

¥
(ll) f(—)=1+an+lz"+an+2zn+l+“',
z

/@ _ P(@)=14p,2"+pps 2" +...
Z

Result (a) follows from Lemma 2.5 (i). We have sharpness for f(z)
= z(1+ Az")/(1 + Bz").
(b) follows from Lemma 2.5 (ii) and (iii).

Remark. Stankiewicz and Waniurski in [7] have extensively dealt with
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the class V,(A4, B), and reference can be had from them. We only remark that
the radius of convexity of the family V,(A, B) is the same as the radius of
starlikeness of the family U,(A4, B), because f is convex iff zf’ is starlike.
Thus the radius of convexity of the family V,(A, B) is given by Theorem 3.3.

THEOREM 3.5. If fe of, belongs to W,(A, B), then

(1) ' (1 +Br;(B—A)Inl < If(z)l < ( _Brn;(n—A)lw if B#0,

Ar® -

<|f@) <rexp

(ii) r exp if B=0.

n

The result is sharp.
Proof.

zf'(z) 1+A"P(2)

f(2)eW,(A, B) implies @ 11800

where @ is regular in E, #(0)=0 and |®(z)] <1 in E; thus

f’(Z)_ﬁl _—(B=A)z"""'P(27)
fz z = 1+Bz2"®(2)

We have, on integrating from 0 to z on both sides,

z

log fiz). = Re log@ = Re j{%—%}dz

0

|z

_R —(B—A)t" 1 0@t e dt
= e 1+ Bt"é™ & (¢69)

0

|z
< [B=A)@w  dr
|1 + Bt"&™ @ (1)

0

r n—Id B—
s(B—A)ft L B 1B B0
(1]

(1—B")  ~ nB

—A
=—AJ‘"_1dt=TT' ifB=0
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This gives the right-hand side of the inequality. We also have

l zf’ (z) 1+ A4r" _
Re 7@ l+B" on |z| =r <1.
f(2) zf’(2) (1+Ar") _ —(B=A)r
'R"E{l } {f(Z) 1} A+Bm T (+Bm
Moreover,
f@ f& _ -
log ‘T —Re log T} J—(B— )(l+B n)dt
(1]
_ —(B-4) :
=5 log(1+Br") if B#0.

If B=0, log|f(2)/z] = A}t"“dt = Ar"/n. This settles the left-hand side of
the inequality. Sharpn&ssocan be indicated easily.
THEOREM 3.6. If fe W, (A, B), then on |zl =r <1 we have
L+dr o 70 e _1-ar
1+B" = f(2) |f(z) ST
The result is sharp.

Proof. Put p(z) =zf'(2)/f (z) and apply Lemma 24.

Remark. The radius of convexity of the class W,(A, B) will be obtained
from the next section which deals with a more general class.

DEeFiNrmioN 3.1. For each A€[0, 1], define the family
Q.(4, A, B) = {g(2) = & (2)+ (1 — A zf'(2) where fe o, belongs to the
family W,(4, B)}.
THEOREM 3.7. Let g(2)eQ,(4, A, B) and |z| =r < 1. Then

29'(2) a+[2aD—n(B—D)}r"+aD?r*" ]
Re e =>(1-0)+ (15 Dr)(1+Br if R, <R,,
>(1_m)_n(D+B)+2[(L1Kl)l”’—(l—BDrz")] if R, >R,

(B—D) (B=D)yr"~'(1-r?
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where
«a=1/(1—4), D=AiB+(1—)A, R, =[L/K,]'"?
_1+Dr
27 1+B™
K, =[a(B—D)+nB]r~ (1 —r¥)+(1—B?r?".
The estimates are sharp.
Proof. We have g(z) = Af (z2)+(1-2) zf'(z), whers.
#f'(z) _1+Aw(2)
f@@) ~ 1+Bw()’
29'(z) _#f'(2) 1+(1-4[" @) (2)]
g(2) f(@@ A+Q-=4)-[zf"@)f (2)]
_ l+Aw(z)_ (1=-2)(B—A)zw'(2)
T 1+Bw(z) [1+Bw(2)][1+Dw(2)]

L, =nDr""'(1-r¥)+1-D%r?",

w(z)e 4,

LA L (B-DwE
-2 - I+Bw@I[1+DwE)]’

where p(z) = [1+Dw(z)])/[1+ Bw(z)]. Thus

zg'(2) zp'(2)
=(1- —.

P I A TP
Putting § = 1, keeping a and changing 4 to D in Lemma 2.3, we obtain the
result. Sharpness is easy to check and follows from the same lemma.

Remark. Putting 4 = 0, the radius of convexity of the class W, (A4, B) is
obtained. In this, if we put n = 1, several results due to many authors will be
derived at once. Putting n = 1, 1 = § gives special results due to Livingston
[3], Padmanabhan [5], Nikolaeva and Repnina [4] etc.

THEOREM 3.8. The radius of convexity of the class W,(A, B) is given by
the smallest positive root of the following equations according to R; < R, or
R; 2 R;:

Q) 1 +[24—n(B—A)]r"+ A2r?" = 0,
(i) 4A2r2"*2_442r>" L n[4A—n(B—A)]r"* +
+2[(n?—2)(B—A)—4nA]r"* ' +n[4A—n(B—A)]1r" '—4r*+4 =0.

Proof. Put 4 =0 in Theorem 3.7 and simplify. Sharpness is immediate.

The author wishes to thank Professor K. S. Padmanabhan for fruitful
discussion.
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