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1. Introduction

The purpose of this paper is to review local controllability and/or observability
of the system

(1.1) for almost all t€[0, T], x'()eF(t, x(1)

whose evolution is described by a differential inclusion.

The overall strategy consists in “linearizing” such a differential inclusion
and deriving local results from the global controllability and/or observability
of the linearized differential inclusion.

Results of this nature are useful to the extent where we know how 1o
characterize controllability and/or observability of such a linearized differential
inclusion: we shall provide necessary and sufficient conditions extending
Kalman’s celebrated rank condition and show that in this case, controllability
and observability are dual concepts.

There is no longer any need to justify the use of differential inclusions,
which provide a unifying framework for dealing with closed-loop control
systems

x'=f(@t,x,u), uelUl(t, x)
or control systems defined in an implicit way
S, x,x',uy=0, uelU(t, x)

or systems under uncertainty, where the set-valued map takes into account
disturbances and/or perturbations (or even differential games).

(a) Linearization through derivatives of set-valued maps. Linearization of the
differential inclusion requires naturally a differential calculus of set-valued
maps, which will be presented in the fourth section.
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The idea behind the construction of a differential calculus of set-valued
maps is the simple idea of Fermat and is still the one to which all of us have
been first acquainted during our teens. It starts with the concept of tangent to
the graph of a function: the derivative is the slope of the tangent to the curve.
We should say, now, that the tangent space to the graph of the curve is the
graph of the differential. This is the statement that we take as a basis for
adapting to the set-valued case the concept of derivative.

Consider a set-valued map F: X 3 Y, which is characterized by its graph
(the subset of pairs (x, y) such that y belongs to F(x)).

We need first an appropriate notion of tangent cone to a set in a Banach
space at a given point, which coincides with the tangent space when the set is
an embedded differentiable manifold and with the tangent cone of convex
analysis when the set is convex. At the time, experience shows that four tangent
cones seem to be useful:

(1) Bouligand’s contingent cone, introduced in the 30’s.

(2) Adjacent tangent cone, also known as the “intermediate cone”.
(3) Clarke’s tangent cone, introduced in 1975.

(4) Bouligand’s paratingent cone, introduced in the 30’s.

They correspond to different regularity requirements. The tangent cone of
Clarke is always convex. There already exists a sufficiently detailed calculus of
these cones (see [20], Ch. 4).

Once a concept of tangent cone is chosen, we can associate with it a notion
of dertvative of a set-valued map F at a point (x, y) of its graph:

it is a set-valued map F'(x, y) the graph of which is equal to the tangent
cone to the graph of F at the point (x, y).

In this way, we associate with the contingent cone, the adjacent and the Clarke
tangent cones the following concepts of derjvatives:

(1) contingent derivative,
(2) adjacent derivative,

(3) circatangent derivative, corresponding to the continuous Fréchet
derivative,

(4) paratingent derivative.

Derivatives of set-valued maps (and also of nonsmooth single-valued maps)
are set-valued maps which are positively homogeneous. They are convex (in the
sense that their graph is convex) when they depend in a “continuous” way on
(x, y). Such maps, whose graphs are closed convex cones, are the set-valued
analogues of continuous linear operators, called closed convex processes.

They are presented in the second section, and one can say that almost all
properties of continuous linear operators can be extended to closed convex
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processes (including Banach’s closed graph and open mapping theorems and
Banach—Steinhaus’s theorem).

Therefore, the linearized differential inclusion of (1.1) around a given
solution z(-) will have the form

(1.2) for almost all te[0, T], w(t)e F'{t, z(1), z'(1)){w(r)).

Let S denote the solution map (or the funnel) associating with any initial
state x, the set of solutions to (1.1) starting at x,.

Can such a linearized differential inclusion (1.2) be regarded as a variational
inclusion, in the sense that the set of solutions w(-) of (1.2) starting at some u is
related to the derivative of the solution map at (x,, z(*)) in the direction u?

The answer is positive, and is the object of several variational theorems
presented in the fifth section.

(b) Local controllability. Let R(T, ¢):= {x(T)|xe€ S;(&)} be the reachable set
at time T and let M < R", a closed subset, be the target. We shall say that the
system 1s locally controllable around M if

Oelnt(R(T, &)— M).

This means that there exists a neighborhood U of 0 in R" such that for all ue U
there exists a solution x(:)eS;(¢) such that x(T)eM +u.

We shall say that the linearized system (1.2), where we take for derivative F’
the circatangent derivative, is controllable around C,,(z(T)) (the Clarke tangent
cone to M at z(T)) if

RY(T, 0)— C,,(z(T)) = R",

where RY(T, 0) denotes the reachable set of (1.2) from 0.

Under suitable assumptions, controllability of the linearized system implies
local controllability of the original system.

We derive this result from a general inverse function theorem under
constraints. It states that if the derivative CF(x,, y,) of a set-valued map
F from a Banach space X to a finite-dimensional space Y is surjective, then F is
invertible around y, and its inverse enjoys some kind of Lipschitz property.

This result is a simple form of more powerful controllability resuits
obtained by refinements of set-valued analysis (see [32]).

(c) Local observability. System (1.1) is observed through an observation
map H, which is generally a set-valued map from the state space X to some
observation space Y, which associates with each solution to the differential
inclusion (1.2) an observation y(-) satisfying

(1.3) Vie[0, T], y(t)eH(x().

Observability concepts deal with the possibility of recovering the initial sta-
te x, = x(0) of the system knowing only the evolution of an observation
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te[0, T]— y(t) during the interval [0, T], and naturally, knowing the laws
(1.1), (1.3). Once we get the initial state x,, we may, by studying the differential
inclusion, gather information about the solutions starting from x,, using the
many results provided by the theory of differential inclusions.

The set-valued character leads to two types of input-output (set-valued)
maps:

Sharp Input-Output map which is the (usual) product
VxoeX, I_(xo):=(HoS)(xy):= 1{J H(x(").

x(-)eS(xo)

Hazy Input-Output map which is the square product
VxoeX, 1.(xp):=(HaS)xe):= ()} H(x("))

x(-)eS(xo0)

The sharp Input-Output map tracks the evolution of at least a state starting
at some initial state x, whereas the hazy Input-Output map tracks all such
solutions.

Recovering the input x, from the outputs I _(x,) or I, (x,) means that the
set-valued maps are “injective” in scme sense.

We shall choose the following strategy for studying local observability:

(1) Provide a general principle of local injectivity of the set-valued maps I,
and I_, which derives these properties from the fact that the kernel of an
adequate derivative of I, or I_ is equal to 0.

(2) Supply chain rule formulas which allow to compute the derivatives of
the usual product I_ and the square product I, from the derivatives of the
observation map H and the solution map S.

(3) Use the various derivatives of the solution map S in terms of the solution
maps of the associated variational inclusions provided by the variational
theorems.

(d) Controllability and observability of convex processes. For simplicity,
consider now the case where £ is an equilibrium of a (time-independent) system,
i.e. a solution to

(1.4) 0eF(¢),

where F i1s assumed to be smooth enough, so that its derivative A:= DF(£, 0) 1s
a closed convex process.

So, local controllability around ¢ and observability of the system at £ can
be derived from the controllability of the closed convex process

(1.5) x'(t)e A(x(1)), x(0)=0,
and the observability of this system through the linear operator H'(¢).
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As continuous linear operators, closed convex processes can be transposed.
Let A be a convex process; we define its transpose A* by

pe A*(q)<=>V(x, y)eGraph 4, <(p, x) <<q, ).
We introduce the adjoint differential inclusion
(1.6) for almost all te[0, T}, —4q'(1)e A*(q(1))
the cones Q; and Q defined by

) Qr:= {v[3g(-), a solution to (1.6) satisfying g(T) = v},
(11) Q:= Tﬂo Qr.

We shall say that the adjoint system is “observable” if Q = {0}.
We denote by R, the reachable set at time T defined by

Ry:={x(T)| x() is a solution to (1.5)}.
We also say that
R:= |J Ry is the reachable set,

T>0
and that the differential inclusion (1.5) (or the convex process A) is controllable
if the reachable set R is equal to the whole space R".
The duality method lies in the following statement:

(1.7) Ry (the positive polar cone of Ry) is equal to Q; and R* =Q,

so that A4 is controllable if and only if A* is observable. Actually, when the
domain of the closed convex process A is the whole space, we can provide
eleven necessary and sullicient conditions [or the controllability of the convex
process A, which will be exposed in the third section.

The contents of this survey are the following.

We recall in the second section properties of closed convex processes, which
we use for characterizing controllability and observability properties of
linearized differential inclusions in the third section.

The fourth section is devoted to an exposition of tangent cones and
derivatives of set-valued maps. We use these concepts to prove the variational
theorems in the fifth section and abstract results on local injectivity and
surjectivity in the sixth section.

The last two sections piece together the above results to prove the local
controllability and local observability results which are the objectives of this

paper.

2. Convex processes and their transposes

A set-valued map from R” to R" is said to be a convex process if its graph
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is a convex cone. It is closed if its graph is closed. It is called strict if
DomA:= {xeR"| A(x)# @} is the whole space.

Let X be a Hilbert space and let G « X be a subset. We denote by G* the
(positive) polar cone of G, the closed convex cone defined by

G':={peX*| VxeG, {p, x)=0}.

The separation theorem implies that the “bipolar” G* ¥ is the closed convex
cone spanned by G. We shall use the following consequence of this fact.

LemMMA 2.1 (closed image Lemma). Let X, Y be two Hilbert spaces, let ¢ be
a continuous linear operator from X to Y and let L be a closed convex cone of Y.
Assume that

Ime—L=Y (surjectivity condition).
Then
o ML) = @*(L")
(see [14]).

We now recall some properties of convex processes from Rockafellar [69],
[68], and [70] and Aubin-Frankowska [20], Chapter 2.

DEFINITION 2.2. Let A be a convex process from R”" to itself. The transpose
A* of A is the set-valued map from R" to itself given by

pe A*(q)<>V(x, y)eGraph(4), <{p, x> <{q, y).

In other words,
(4, )€ Graph(4*)<>(—p, q)e(Graph 4)".

The transpose of A* is obviously a closed convex process and 4 = A** if
and only if the convex process A is closed. When A4 is a linear operator, its
transpose as a linear operator coincides with its transpose as a convex process.

If A is a closed convex process, then
A(0) = (Dom A*)™".

DEerINITION 2.3. Let B denote the unit ball. When 4 is a closed convex
process, we define its norm by

l4ll:=sup inf [Iyll€[0,+ oc].
xeBnDom A yeA(x)

PROPOSITION 2.4. Let A be a strict closed convex process. Then

(a) Vx, yeR", A(x) < A(y)+||All lIx—yl|B (ie, A is Lipschitzian with
Lipschitz constant equal to ||Al]),
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(b) Dom A* = A(0)* and A* is upper semicontinuous with compact convex
images, mapping the unit ball into the ball or radius ||Al],

(c) the restriction of A* to the vector space Dom A* n(—Dom A*) is
single-valued and linear (and thus, A*(0) = 0).

(See [22]))

We observe that we always have

sup {p, xoy < inf (g, y>.

peA*(qo) yeA(x)

LEMMA 2.5. Let A be a closed convex process. For any x,€ Int Dom A, and
qo€ Dom A%,

Sup <p3 x0> = lnf <QO5 y)

peA*(qo) yeA(xo)

(see [68]).

We now extend to the case of closed convex cones the concepts of invariant
subspaces. When K is a subspace and F is a linear operator, we recall that K is
invariant by F when Fxe K for all xe K. When A is a convex process, there are
two ways of extending this notion: we shall say that K is invariant by A4 if, for
any xe K, A(x) < K and that K is a viability domain for 4 if, for any xe K,
A(x)n K # 3. We also need to extend these notions to the case when K is
a closed convex cone. We recall the

DEFINITION 2.6. If K is a closed convex set and x belongs to K, we say that

1
Ti(x):=cl ( U —;;(K—x))
h>0

is the tangent cone to K at x.

LEMMA 2.7. When K is a vector subspace, then, for all xe K, Ty(x) = K and
when K is a closed convex cone, then

VxeK, Tg(x)=cl(K+Rx).
Now, we can introduce

DEFINITION 2.8, Let K be a closed convex cone and A a convex process. We
say that K is invariant by A if

VxeK, A(x)c< Ti(x)
and that K is a viability domain for A if
VxeK, A(x)n Tg(x)# 9.

These are dual notions, as the following proposition shows.
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PROPOSITION 2.9. Let A be a strict closed convex process and let K be a closed
convex cone containing A(0). Then K is invariant by A if and only if K* is
a viability domain for A*.

Proof. By Proposition 2.4(b) the condition A4(0) c K implies that
K* < A(0)* = Dom A*. To say that K is invariant by 4 amounts to saying
that

(2.1) VxeK, VgeTy(x)", inf {q,y>=0.

yeA(x)

Lemma 2.7 states Ty(x) = Rx+K, Tx:(q) = Rg+ K™ . Therefore,

qe Ty(x)*<{q, x> =0, qgeK <=xeTi(g)".
On the other hand, Lemma 2.5 implies that inf (g, y> = sup {(p, x).

yeA(x) peA*(q)
Therefore, condition (2.1) is equivalent to the condition
(2.2) VgeK*, VxeTg-(q)", sup {p,x>=0.
peA*(q)

By Proposition 2.4(b), for all ge K™, the set A*(q) is cofnpact. The separation
theorem implies that 4*(g) has a nonempty intersection with Ty.(q) if and only

if for all xeR", sup <{p, x> = inf <z, x). Since Tx+(g) is a cone, the latter
peA*(q) zeTx *(q)
inequality is equivalent to (2.2). This ends the proof. o

We introduce now the concepts of eigenvalues and eingenvectors of closed
CONVEX Processes.

DEerINITION 2.10. We shall say that A€ R is an eigenvalue of a convex process
A if Im{(A—AI) # R" and that xe Dom A is an eigenvector of 4 if x # 0 and if
there exists A€ R such that Axe A(x).

We observe that half-lines spanned by eigenvectors of A* are viability
domains for A*.

LEMMA 2.11. Let A be a strict convex process. Then A* has an eigenvector if
and only if Im(A—Al) # R" for some AeR.

THEOREM 2.12. Let A be a strict closed convex process. If the largest viability
domain Q for A* is different from {0} and contains no line, then A* has at least an
eigenvector.

ExAMPLE 2.13. Let F be a linear operator from R” to itself, let L be a closed
convex cone of controls and let 4 be the strict closed convex process defined by
A(x):= Fx+ L.

A cone K is invariant by A4 if

VxeK, Fx+Lc Tg(x)
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and 4 is an eigenvalue of A if
Im(F—-/I)+ L #R".
The transpose 4* of A is defined by
“i-lp” e
A cone P L™ = Dom A* is a viability domain for 4* if and only if
VgeP, F*qeTu(q).

An element g # 0 is an eigenvector of A* if and only if ¢ is an eigenvector
of F* which belongs to the cone L*.

Other examples of closed convex processes are provided by “circatangent
derivatives” of set-valued maps (see Section 4).

Closed convex processes enjoy most of the properties of continuous linear
operators, and in particular, the fundamental Banach

THEOREM 2.14 (Closed Graph Theorem). A closed convex process A whose
domain is the whole space is Lipschitz, in the sense that
Vx,, x,€X, A(x)) < A(x,)+!||lx,—x,||B
whose open mapping formulation can be stated:

THEOREM 2.15 (Robinson—Ursescu’s Open Mapping Theorem). Assuine that
a closed convex process A: X 3 'Y is surjective. Then there exists a constant
[ >0 such that,

VyeY, 3dAxeA '(y) such that ||x|| <!yl

Banach-Steinhaus’s uniform boundedness theorem can be extended to
closed convex processes:

THEOREM 2.16 (Uniform Boundedness for Closed Convex Processes). Let
X and Y be reflexive Banach spaces and A, a family of closed convex processes
from X to Y, “pointwise bounded” in the sense that

VxeX, 3y,ed,(x) such that supl|yll < +x.
h

Then this family is “uniformly bounded” in the sense that
sup ||4,]| < + co.
h
Hence we can speak of bounded families of closed convex processes, without

specifying whether it is pointwise or uniform. We can deduce this very useful
consequence:
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THEOREM 2.17. Let us consider a metric space U, reflexive Banach spaces
X and Y, and a set-valued map associating to each ue U a closed convex process
A(u): X3Y. Let us assume that

the family of closed convex processes A(u) is bounded.

Then the following conditions are equivalent:
(i) The set-valued map u=3Graph (A(u)) is lower semicontinuous,
(i1) the set-valued map (u, x) =3 A(u)(x) is lower semicontinuous.

(See [65], [23], [11])

3. Controllability and observability of closed convex processes

We start this section by the duality theorem, which characterizes the polar
cones of the reachable sets. Many resuits of this section as well as their proofs
can be found in [22].

We denote by W', T), pe[l, oo], the Sobolev space of functions
xe LP(0, T; R") such that x'(-) belongs to L?(0, T; R").

Let us consider the Cauchy problem for the differential inclusion

(i) x'()eA(x(t)) for almost all te[0, T],
(i) x(@0) =0.
We recall that the reachable set R; is defined by
R;:= {x(T)] xeW"'(0, T) is a solution to (3.1)}.

3.1)

We shall characterize its positive polar cone Rf. For that purpose, we
associate with the differential inclusion (3.1) the adjoint inclusion

() —q'()eA*(q(t)) for almost all te[0, T],
) q(T)=n,

and we denote by Q, < Dom A* the set of “final” values # such that the
differential inclusion (3.2) has a solution:

Qr:={nl 3geW"1(0, T), a solution to (3.2)}.

THEOREM 3.1. Let A be a strict closed convex process. Then Rf = Q.

(32)

Proof (a) We denote by S the closed convex cone of solutions to the
differential inclusion (3.1) in the Hilbert space

X:={xeW"%*0, T)| x(0)=0}.
Consider the continuous linear operator

o X()eX - x(T)eR".
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The transpose 7% maps R" into the dual X* of X and for all ne Rt
(3.3) VxeS, <yfn.xp =<4, 7rx>20.

One can check that S is dense in the W!-1(0, T)-solutions to (3.1) in the metric
of uniform convergence on [0, T]. This and (3.3) yield

(3.4) Rt ={n| yfneS*}.
Let us set
(i) Y:=L*0, T; R x L*(0, T: R"),

(i) L:= {(x, y)e Y| y(t)e A(x(1)) ae.}, |
() D, the differential operator defined on X by Dx = x'.

Then S = (1 x D)™ '(L). The closed image Lemma 2.1 applied to the continuous
linear operator ¢ = (1 x D) states that

(3.5) S* = (1 xD)*(L")
provided that the “surjectivity assumption”
(3.6) Im(lxD)-L=Y

is satisfied.
(b) It can be written
Y(u,v)eY, 3IxeX such that x'()eA(x()—u(®))+v() ae.

Since the domain of A is the whole space, A is Lipschitzian.

The set-valued map F(t, x):= A(x—u(r))+v(r) is then measurable in ¢,
Lipschitzian with respect to x, has closed images and satisfies the following
estimate:

d(0, F(t, 0)) < JIAll w0l + o).

The function ¢—||A]| |fu()l + el being in L'(0, T), we can apply
a Filippov Theorem [30] (see also [26]) which states the existence of a solution
x(-) to the differential inclusion x'(t)e F(t, x(t)), x(0) =0, satisfying:

T
X' ()l < 1141 "1 T § d(0, F(t, 0))dt+d(0, F(t, 0)).
(1)
Thus xe X and the surjectivity assumption (3.6) holds true.
(c) Therefore, by (3.4) and (3.5), we obtain the formula

(3.7 Rt = {n] ytne(1xDy*(L™)}.

Let 7eQ, and let g be a solution to the adjoint inclusion (3.2). By Proposition
2.4(b), g(-)e WI*(0, T) and for all xeS

<’7, X(T)> = <(ql7 Q), (xa x')>Y'
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This is nonnegative by the definition of A*. Thus Q, = Ry. To prove the
opposite, let n belong to RF. By (3.7), there exists (p, g)e L™ such that

(3.8) My ypx) =Lp, x>2+{q, Dx). VxeX.

By taking x so that x(T)=0, we deduce that p= Dq in the sense of
distributions. Since p and g belong to L?, we infer that g belongs to the Sobolev
space W!2(0, T). Thus Dq = q'. Integrating by parts in equation (3.8) and
taking into account that x(0) = 0, we obtain

My ypx> = p—=q', o2+ Lq(T), x(T)) = {q(T), x(T)).

The surjectivity of y, implies that n = g(T). Thus ¢(-) is a solution to (3.2) and
then, n belongs to Q;. This completes the proof. o

We associate now with any ne Dom A* the “solution set™ S;(n) of solutions
to the adjoint differential inclusion (3.2) satisfying g(T) = n and we denote by
Q, the domain of the “solution map” S;:

Qr:={neDom A*| S,(n) # Q}.
We observe that the sequence of the closed domains Q, decreases:
if T,>2T,, then Q; <Qr,.
We introduce the intersection @ of these cones

Q:= m Qy.
T>0
Since the compact subsets $" ' ~ Q. form a decreasing sequence, we observe
that Q # {0} if and only if all the cones Q, are different from 0. We shall say
that Q is the largest viability domain, thanks to the following theorem.

THEOREM 3.2. Let A be a strict closed convex process. Then the closed convex
cone Q is the largest closed convex cone which is a viability domain for A*.

Proof. It is not difficult to prove that Q is a closed convex cone which
contains any viability domain P. [t remains to prove that Q is a viability
domain, i.e. that

VgeQ, A*q)nTylq)#09.

Assume that Q # {0}. Thanks to the necessary condition of the viability
theorem (see [46]), it i1s sufficient to prove that, for some T> O,

VneQ, 3p(-)eS;(n) which is viable on Q.

Since 1 belongs to Q,7 for all n > 2, there exists a solution.p,(-)€S,{n}. By
the very definition of Q,, we know that p(t)eQ, for all t < nT.
Therefore, the translated function p, (‘) defined on [0, T] by

p.(t):= p,(t+(n—1)T)
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belongs to S;(n) and satisfies for all te[0, T], k <n—1,

Bo) = p,(t+(n—1DT)€Q+(a-1yr © Qa—1yr < Qir-

But S +{n) is compact in C(0, T; R"). Thus there exists a subsequence of p,(-)
converging to some p(-)eS;(y) uniformly on [0, T]. Since for all te[0, T],
k=1, p(t)  Qy, we infer that

p() = ﬂ Qir=0. ©

k21
We translate now this result in terms of reachable sets Ri.
Since 0€ A(0), the reachable cones R(T) do form an increasing sequence.
We define the reachable set of the inclusion (3.1) to be

R:= |J R(T).

T>0

It is a convex cone, which is equal to the whole space if and only if for some
T>0, R(T)=R"

We say that the closure R of R is the smallest invariant cone by A. This
definition is motivated by the following consequences of both Theorem 3.1 and
Theorem 3.2.

THEOREM 3.3. Let A be a strict closed convex process. Then the closed convex
cone R is the smallest closed convex cone containing A(Q) and invariant by A.

We consider now the largest subspace of Q:
Q0N (—Q) c Dom A* n(—Dom 4%*).

PROPOSITION 34. Let A be a strict closed convex process. The subspace
Q N (—Q) is the largest subspace invariant by A* and its orthogonal space R— R
is invariant by A in the sense that:

VxeR—R, A(x)=R—R.

We consider now the cones A(0), A2(0):= A(A(0)),..., A*(0) = A(4*1(0)),
etc. Since 0 belongs to 4(0), these convex cones form an increasing sequence.
We introduce the cone

N:=cl(| 440))

kz1
and the vector subspace
M spanned by N.
THEOREM 3.5. Let A be a strict closed convex process. Then
(@) A(N) =N,
() RcNcMcR-R,
© @n(=Q)c () 40" = [) 440)" = Q.

kz1 k=1

4 — Annales Poionici Mathematici LI
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Remark. When the reachable set R is a vector space, the subsets R, N,
M and R — R coincide. This happens when, for instance, 4 is symmetric (in the
sense that 4(—x) = — A(x)), i.e.,, when the graph of A4 is a vector subspace.

By duality Theorem 3.1, the following dual version of this theorem holds
true.

THEOREM 3.6. Let A be a strict closed convex process. Assume that the
reachable set R is different from R" and spans the whole space. Then A has at
least one eigenvalue.

We shall deduce from the preceding results several characterizations of the
controllability of closed convex processes.

DerINITION 3.7. We shall say that (3.1) is controllable at time T (respectively,
controllable) if R = R" (respectively, R = R"). We shall say that the adjoint
inclusion (3.2) is observable at time T (respectively, observable) if Q, = 10!
(respectively, Q = {0}).

We also observe the following property.

LEMMA 3.8. Let A be a strict closed convex process. The three following
properties are equivalent.

(@ 3Im=1  such that A™0)—A™0)=R",
(39) (b) 3Im=1 such that  A™(0)* = {0},
(0 3Im=1 such that Int A™(0)# O.
It is convenient to introduce the

RANK CONDITION. We say that a convex process A satisfies the rank
condition if one of the equivalent properties {3.9) holds true.

LEmMA 3.10. Consider the strict closed convex process A(x) = Fx+ L, where
FeR"™"is a matrix and L is a vector subspace of R". Then A satisfies the rank
condition if and only if A"(0)— A"(0) = R".

We begin by stating characteristic properties of observability of the adjoint
system (3.2) and then, use the duality results to infer the equivalent characte-
ristic properties of controllability of system (3.1).

THeEOREM 3.11. Let A be a strict closed convex process. The following
properties are equivalent.

(a*) The adjoint inclusion (3.2) is observable.

(b*) The adjoint inclusion (3.2) is observable at time T> 0 for some T.

(c*) {0} is the largest closed convex cone which is a viability domain for A*.

(d*) A* has neither proper invariant subspace nor eigenvectors.

(e*) The rank condition is satisfied and A* has no eigenvectors.
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THEOREM 3.12. Let A be a strict closed convex process. The equivalent
properties (a*), (b¥*), (c*), (d*) and (e*) of Theorem 3.11 are equivalent to the
following properties.

(@) Differential inclusion (3.1) is controllable.

(b) Differential inclusion (3.1) is controllable at some time T > 0.

(¢) R" is the smallest closed convex cone containing A(0) which is invariant by A.

(d) A has neither proper invariant subspace nor eigenvalues.

(€) The rank condition is satisfied and A has no eigenvalues.

() For some m>=1, A"(0)=(—A)"(0) = R".

In the case where the set-valued map A is defined by A(x):= Fx+ L, we
derive known results due to Kalman when L is a vector space of control and to
Brammer, Korobov, Saperstone and Yorke [25], [53], [71] when L is an
arbitrary set of controls containing 0.

4. Tangent cones and derivatives of set-valued maps

We devote this section to the definitions of some (and may be, too many) of the
tangent cones which have been used in applications, in particular, for defining
derivatives of set-valued maps. Unfortunately, for arbitrary subsets, we are
forced to introduce and study several concepts of tangent cones, which
correspond to different regularity requirements.

But the idea is the same: implement one of the possible mathematical
descriptions of the concept of tangency, without requiring a priori a vector
space of tangent vectors, as in differential geometry.

DEFINITION 4.1 (Tangent cones). Let K < X be a subset of a Banach space
X and let xe K belong to the closure of K. We denote by

Sx(x):= U K-x

h>0 h

the cone spanned by K—x.
We introduce the following four tangent cones:
(1) The contingent cone Ty (x), defined by
Ti(x):= {v| liminfd (x + hv)/h = 0}

h—=0+

(from the Latin contingere, to touch on all sides, introduced by G. Bouligand in
1931).

(2) The adjacent cone T¢(x), defined by
Th(x):={v| lim dg(x+hv)/h =0}

h—0+
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(from the Latin adiacere, to lie near, recently used under the name intermediate
cone by Frankowska [32] and the name of derivable cone by Rockafellar).

(3) The Clarke tangent cone Cy(x), defined by
Cy(x):={v] lm dg(x"+hv)/h =0}

h—0+
Kax'—x

(from the Canadian Clarke [26]; we shall use the adjective circatangent to
mentton properties derived from this tangent cone, for instance, circatangent
derivatives).

(4) If L < K is a subset of K, the paratingent cone Pg(x) to K relative to
L at xe L, defined by

Pg(x):= {v| limsupdy(x'+ hv)/h = 0}

h—0+
Lax'—=x

(introduced by Bouligand in 1931).

We see at once that these tangent cones are closed, that these tangent cones
to K and the closure K of K do coincide, that

Cylx) T’;((x) < Ty(x) < Sg(x),
and that
if xelnt(K), then Ci(x)=X.

The Clarke tangent cone Cg(x) is a closed convex cone satisfying the
following properties:

(1) Cx(x)+ Ty(x) = Tx(x) and

(i) Cylx)+ Tk(x) = TR(x).

DErFINITION 4.2. We shall say that a subset K = X is sleek at xe K if the
set-valued map

Kax'3 Ty(x') 1s lower semicontinuous at x

and sleek if and only if it is sleek at every point x of K.

We shall say that K is derivable at xe K if and only if Tg(x) = T,(x) and
derivable if and only if it is derivable at every xe K.

The following property is very useful:

THEOREM 4.3 (Tangent Cones of Sleek Subsets). Let K be a closed subset of
a Banach space. If K is sleek at x € K, then the contingent and Clarke tangent
cones do coincide, and consequently, are convex (see [20]).

ExaMpLE (Tangent Cones to Convex Sets). Let us assume that K is convex.
Then the contingent cone Ty(x) to K at x is convex and

Cx(x) = TR(x) = Tg(x) = Sg(x).
Furthermore any closed convex subset i1s sleek.
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The same is true for the embedded smooth manifolds (see [14]).

Remark. We are led to introduce this ménagerie of tangent cones because
each of them corresponds to a classical regularity requirement. We shall see
that the contingent cone is related to Gateaux derivative, the adjacent cone to
the Fréchet derivative and the Clarke tangent cone to the continuous Fréchet
derivative.

The contingent cone plays a crucial role to characterize the subsets K < R"
which enjoy the viability property: for every x, € K, there exists a solution to
the differential inclusion x’ e F(x) which is viable in the sense that x(t)e K for
all t > 0.

When F is upper semi-continuous with closed convex images and linear
growth, Haddad’s viability theorem (see [46]), an extension of the 1943
Nagumo theorem, states that K enjoys the viability property if and only if

VxeK, F(x)n T(x)#9.

Adjacent tangent cones play an important role in Lebesgue and Sobolev
spaces.

The charm of the Clarke tangent cone (and thus, of sleek subsets) is the
convexity, which allows to state dual formulations and statements by polarity
and transposition. But the price to pay in terms of loss of information for
playing with duality just to be able to conserve some familiar dual formulation
is indeed too high in many situations. This is one of the reasons why we shall
not use normal cones and generalized gradients here.

We now derive from each concept of tangent cone to a subset an associated
concept of graphical derivative of a set-valued map F from a topological vector
space X to another Y.

The idea is very simple, and goes back to the prehistory of the differential
calculus, when Pierre de Fermat introduced in the first half of the seventeenth
century the concept of the tangent to the graph of a function.

The tangent space to the graph of a function f'at a point (x, y) of its graph is
the line of slope f’(x), i.e., the graph of the linear function u—f’(x)u.

It is possible to implement this idea for any set-valued map F since we have
introduced (unfortunately, several) ways to implement the concept of tangency
for any subset of a topological vector space. Therefore, in the framework of
a given problem, we can choose the adequate concept of tangent cone, and
thus, regard this tangent cone to the graph of the set-valued map F at some
point (x, y) of its graph as the graph of the associated “graphical” derivative of
F at this point (x, y).

Since the tangent cones are at least ... cones, all these derivatives dre
at least positively homogeneous set-valued maps (also called processes). This is
what remains of the familiar, but luxurious, requirement of linearity.
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However, they are closed convex processes, i.e., set-valued analogues of
continuous linear operators, when the tangent cones happen to be closed and
convex (this is the case when we use the Clarke tangent cone).

Hence we start with some definitions and notations.

DEFINITION 4.4. Let F: X 3 Y be a set-valued map from a Banach vector
space X to another Y.

We introduce the four following graphical derivatives
(1) the contingent derivative DF(x, y), defined by

Graph(DF(x, y))= TGraph(F)(xa y),
(2) the adjacent derivative D°F(x, y), defined by

Graph(DbF(-xa y))= TCbiraph (F)(x’ _V),
(3) the circatangent derivative CF(x, y), defined by

Graph(CF(xa y)):: CGraph (F)(xs y)’
(4) the paratingent derivative PF(x, y), defined by

Graph(PF(x, y)):= PGraph(F)(x’ ,V)
We shall say that F is sleek at (x, y)e Graph (F) if and only if

(x', y¥)3 Graph(DF(x', y')) is lower semicontinuous at (x, y)
and it is sleek if it is sleek at every point of its graph.

We shall say that F is derivable at (x, y)e Graph(F) if and only if the
contingent and adjacent derivatives coincide:

DF(x, y):= D°F(x. y)
and that it is derivable if it is derivable 2t every point of its graph.

But what about Newton and Leibniz, who introduced the derivatives as
limits to differential quotients? Our first dyty is to characterize the various
“graphical definitions” as adequate limits of differential quotients. Unfortu-
nately, the formulas become very often quite ugly, and nobody in a right frame
of mind would have invented them from scratch if they were nou derived from
the graphical approach.

But all these limits are pointwise limits, which classify all these generalized
derivatives in a class different from the class of distributional derivatives
introduced by L. Schwartz and S. Sobolev in the fifties, for solving partial
differential equations. (Their objective was to keep the linearity of the
differential operators, by allowing convergence of the differential quotients in
weaker and weaker topologies, the price to be paid being that derivatives may
no longer be functions, but distributions.)
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For instance, the contingent derivative DF(x, y) of F at (x, y) is the set-
valued map from X to Y defined by

F N —
peDF(x, y)(u)<liminfd (v, &Lhu—)!) ~ 0
h—0+ h
and the paratingent derivative PF(x, y) of F at (x, y) is the set-valued map from
X to Y defined by

F(x'+hi)—y'
ve PF(x, y)(u)< liminf d(v, (' + i) y) =0,
h—0+ - h

(X" ¥y )P (x,y)
u —u

where — denotes the convergence in Graph(F).
F

When F is lipschitzian around x € Int(Dom(F)), the above formulas become

(1) ve DF(x, y)(u)<liminfd (v, M—#ﬂ) =0,
h— 0+
(1) ve PF(x, y)(uy= liminf d(v, Fx +:u)—y) =0.
h—0+

(x".y )3 (x,¥)

Moreover, if k denotes the Lipschitz constant of F at x, then for every ye F(x)
the derivative DF(x, y) has nonempty images and is k-lipschitzian.

Despite the fact that both adjacent and circatangent derivatives can be
defined as limits of difference quotients for any set-valued map F, the formulas
are simpler when we deal with lipschitzian set-valued maps. Since we use them
only in this context in this paper, we provide their formulas in this limited case.

Assume that F is lipschitzian around an element x € Int(Dom(F)), then the
adjacent derivative D°F(x, y) and the circatangent derivative CF(x, y) are the
set-valued maps from X to Y respectively defined by

ve DPF(x, y)(u)< lim (v, F(x+hu)—y) =0

W0+ h

and

veCF(x, yWu)< lim d(u, Flx +hu)—y) =0.

0+ h
(X7 (x.y)

Several remarks are in order. First, all these derivatives are positively

homogeneous and their graphs are closed.
We observe the obvious inclusions

CF(x, ylu) = D°F(x, y)(u) = DF(x, y)(u) = PF(x, y)(u)

and that the definitions of contingent and adjacent derivatives on the one hand,
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the paratingent and circatangent derivatives, on the other one, are symmetric.
When F:= f is single-valued, we set

DI(x):= Df(x.f(0). DY (0):= D¥f(x,f(x)), Cf(x):= Cf{x,f(x)).
We see easily that
Df(x)(u) =f'(x)u if f is Lipschitz and Gateaux differentiable,
D (x)(u) = f'(x)u if f is Fréchet differentiable,
Cf(x)(u) = f'(x)u 1if f is continuously differentiable.

This allows also to define and use derivatives of restrictions F:=f|, of
single-valued maps f to subsets K < X, which are defined by

if K,
)= {gx’ e

If f is continuously differentiable around a point x € K, then the derivative of
the restriction is the restriction of the derivative to the corresponding tangent cone.

The most familiar instance of set-valued maps is the inverse of a nonin-
jective single-valued map. The derivative of the inverse of a set-valued map F is
the inverse of the derivative:

D(F)_l(ya X) = DF(X, y)_la Db(F)-l(y’ X) = DbF(x’ y)—l’
C(F)™!(y, x) = CF(x, y)™!

and enjoy a now well investigated calculus.

The circatangent derivatives are closed convex processes, because their graph
are closed convex cones, i.e., they are set-valued analogues of the continuous
linear operators.

Remark (Kernel of the Derivative). The kernels of the various derivatives
characterize the associated tangent cones to the inverse image.

PROPOSITION 4.5. Let F: X 3 Y be a set-valued map and let (x, y) belong to
its graph. Then

(i) Tp-1y(x) < ker DF(x, y):= DF(x, y)~'(0),
(i1) TP- 1)(x) < ker D*F(x, y).

If F~1 is pseudo-lipschitzian around (y, x), in the sense that there exists | > 0
such that for any (%, y)e Graph(F) in a neighborhood of (x, y), d(%, F~'(y))
< ly—Jll we have

(1) kerDF(x, y) = TF"(?)(x)s
(ii) ker DPF(x, y) = T 15(X),
(iif) ket CF(x, y)  Cr-1(x).
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We now provide chain rule formulas for computing the composition
product of a set-valued map G: X3 Y and a set-valued map H: Y3 Z.

One can conceive two dual ways for defining composition products of
set-valued maps (which coincide when G is single-valued):

DerINITION 4.6. Let X, Y, Z be Banach spaces and let G: X3V,
H: Y3 Z be set-valued maps:

(1) The usual composition product (called simply the product) HoG: X 3 Z
of H and G at x is defined by

(HoG)(x):= | ) H(y).
yeG(x)
(2) The square product HOG: X 3 Z of H and G at x is defined by
(HoG)():= () H().
yeG(x)

Let us recall that there are two manners to define the inverse image by
a set-valued map G of a subset M:

(@) G (M):={x| G(x)" M # 3},
(b) G*(M):= {x| G(x) = M}.
We deduce the following formulas
(1) Graph (FoG) = (G x 1)” Graph (H) = (1 x H)Graph (G),
(i) Graph (FuG) = (G x 1)* Graph (H),

as well as the formulas which state that the inverse of a product is the product
of the inverses (in reverse order):

(1) (HoG)™'(y) = G~ (H™'(y),
(i1) (HoG)™'(y) = G*(H™ ' ().
We begin by the simple result:

THEOREM 4.7. Let us consider a set-valued map G: X 3Y and a set-valued
map H: Y3 Z.

Let us assume that H is lipschitzian around y where y belongs to G(x). Then,
for any ze H(y), we have

DPH(y, 2)oDG(x, y) € D(HoG)(x, z).

Let us assume that G is lipschitzian around x. Then, for all ye G(x) and
ze(HoG)(x), we have

D(HuG)(x, z) = DH(y, 2)oD*G(x, y).
In particular, if G := g is single-valued and lipschitzian around x, we obtain

D(Hg)(x, z)(u) = DH(g(x), z)(¢'(x)u)
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and equality holds true when H is lipschitzian around g(x).

We state now a more powerful result which can be derived from the inverse
function theorem of the next section.

THEOREM 4.8. Let us consider a set-valued map G: X 3'Y and a set-valued
map H: Y3 Z.
We suppose that

Im(CG(xq, yo))—Dom(CH (yg, zo)) = Y.
If the dimension of Y is finite, then

(i) DPH(y,, z4) 0 DG(xy, ¥,) = D(H 0 G)(x,, z,),
(i) DPH(yo, 20)0 D*G (X, yo) = DP(H 0 G)(xg, 2o),
(ii) CH(yg, 20)0 CG(xg, ¥o) © C(H 0 G)(xq, z,).

The next proposition provides chain rule formulas for square products.

PROPOSITION 4.9. Let us consider a set-valued map G from a Banach space
X to a Banach space Y and a single-valued map H from Y to a Banach space Z.
Assume that G is lipschitzian around x*. If H is differentiable around some
y*e G(x*), then

(1) the contingent derivative of HOG is contained in the square product of the
derivative of H and the adjacent derivative of G: for all ue Dom(D*G(x*, y*)) we
have

D(HoG)(x*, Hy*)(u) = H'(y*)oD*G(x*, y*)(u);

(2) if H is continuously differentiable around y* then the paratingent deriva-
tive of HQOG is contained in the square product of the derivative of H and the
circatangent derivative of G: Vue Dom(CG(x*, y¥)) we have

P(HOG)(x*, H(y*))(u) = H'(y*)oCG(x*, y*)(u).

We can extend this theorem to the case where H is set-valued. For that
purpose, we have to define the lop-sided paratingent derivatives P _F(x, y) and
PB,F(x, y) in the following way:

Graph(P,F(x, y)):= Piiiln(x, y)&Graph(P,F(x, y)):= P&k (x, ¥).

THEOREM 4.10. Assume that G is lipschitzian around x. Then

(1) if Y is a finite dimensional vector-space and G(x) is bounded, then

D(HoG)(x, z) < U P, H(y, z)o P,G(x, y),
veG(x)
and
(2) P(HOG)(x, 2) < () PH(y, z)DCG(x, y).

yeG(x)
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Proofs of the above results can be found in [19] and [20].

5. Variational inclusions

We now provide estimates of the contingent, adjacent and circatangent
derivatives of the solution map S associated to the differential inclusion

(5.1) X (t)e F(t, x(t)).

We shall express these estimates in terms of the solution maps of adequate
linearizations of differential inclusion (5.1) of the form

w (t)e F'(t, x(z), X' (£))(w(t))

where for almost all ¢, F'(t, x, y)(u) denotes one of the (contingent, adjacent or
circatangent) derivatives of the set-valued map F(t, -, ") at a point (x, y) of its
graph (in this section the set-valued map F is regarded as a family of set-valued
maps x 3 F(t, x) and the derivatives are taken with respect to the state variable
only).

These linearized differential inclusions can be called the variational inclu-
sions, since they extend (in various ways) the classical variational equations of
ordinary differential equations.

Let x be a solution of the differential inclusion (5.1). We assume that
F satisfies the following assumptions:

() VxelX, the set-valued map F(-, x) is measurable,
(5.2) (1) Vite[0, T], VxeX, F(t, x) is a closed set,
(iii)) 3B >0, k(-)e L}(0, T) such that for almost all te{0, T] the
map F(t,-) is k(t)-Lipschitz on x(t)+ SB.

Consider the adjacent variational inclusion, which is the “linearized”
inclusion along the trajectory x

w'()e DPF(t, x(1), ' (1))(w(t)) ae. in [0, T],
(5.3)
w(0) = u,

where ue X. In Theorems 5.1, 5.2 below we consider the solution map S as the
set-valued map from R" to the Sobolev space W'1(0, T; R"). We provide first
a short proof of a result from [32].

THEOREM 5.1 (Adjacent variational inclusion). If assumptions (5.2) hold true
then for all ue X, every solution we W'1(0, T; X) to the linearized inclusion (5.3)
satisfies we D*S(x(0), X)(u). In other words,

{w(*)| w'(t)e D°F(t, (t), ())(w(?)), w(0) = u} = D*S(x(0), X)(u).
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Proof. Filippov’s theorem (see for example [13], Theorem 2.4.1, p. 120)
implies that the map u— S(u) is pseudo-lipschitzian on a neighborhood of
(x(0), X(*)). Let h, >0, n =1,2,... be a sequence converging to 0. Then, by the
very definition of the adjacent derivative, for almost all te[0, T],

(54) lim d(w’(t), F(e, x@) +:"w(’»_’?(’) ) 0.

Moreover, since X'(t)€ F(t, x()) a.e. in [0, T, by (5.2), for all sufficiently large
n and almost all te{0, T]

d(x'(t)+ h,w'(t), F (¢, X(6)+ h,w(0)) < h,(Ilw (Ol + k@]l w(o)l).

This, (5.4) and the Lebesgue dominated convergence theorem yield

n— n

T
(5.5) yd(x' @)+ h,w'(t), F(t, X(t)+ h,w(1)))dr = o(h,),

where lim o(h,)/h, = 0. By the Filippov Theorem (see for example [13],

Theorem 2.4.1, p. 120) and by (5.5) there exist M >0 and solutions
V,€S(X(0)+ h,u) satisfying

Iyn—X —h,wllLyo.7:x) < Mol(h,).
Since (y,(0)—x(0))/h, = u = w(0), this implies that
yn__ i ! . il

—~=w in CO, T; x); limyh —w in L'(0, T; X).

n n—oc n

lim
n—ao

Hence

h

lim d(w, S()E(O)+h,,u)—.f) _o.

n—x

Since ¥ and w are arbitrary, the proof is complete.

Consider next the circatangent variational inclusion, which is the lineariza-
tion involving circatangent derivatives:

w'(t)e CF(t, x(t), X'(¢))(w()) ae. in [0, T],
w(0) = u,

(5.5)

where ue X.

THeOREM 5.2 (Circatangent variational inclusion). Assume that conditions
(5.2) hold true. Then for all ue X, every solution we W"'(0, T; X) to the
linearized inclusion (5.5) satisfies we CS(x(0),x)(u). In other words,

{w()l w(t)ye CF(t, x(t), X' (0))(w(2)), w(0) = u} = CS(x(0), X)(u).
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Proof. By Filippov’s theorem, the map u— S(u) is pseudo-lipschitzian on
a neighborhood of (x(0), X(-)). Consider a sequence x, of trajectories of (5.1)
converging to x in W''0, T; X) and let h,—>0+. Then there exists
a subsequence x; = x,, such that

(5.6) lim x)(f) = () ae. in [0, T].

j—id_‘.

Set A; = h,. Then, by definition of circatangent derivative and by (3.6), for
almost all te[0, T]

(5.7) lim d (w’(t),

jox

A j

F(t, xj(t)—l—;.jw(t))—x}(t)) —0o

Moreover, using the fact that x(f)e F(t, x,()) a.e. in [0, T], we obtain that for
almost all te[0, T]

d(x5(0)+ 4w (1), F(t, x, 0+ Aw(@)) < a;(Iw @l + k@llw @),

This, (5.7) and the Lebesgue dominated convergence theorem yield
T

(5.8) Q0+ 4w 2), Ft, x;(0)+ 2w(0)det = o(4),
0

where lim o(4))/4; = 0. By the Filippov Theorem and (5.8), there exist M > 0
j—
and solutions y;e S(xj(0)+}.ju) satisfying
y;—x;— AWl io.1:x) < Mo(h)).

Since (yj(O)—xj(O))/lj =y = w(0), this implies that

limyjh;xj —w in CO,T: X): lm¥ X —w in LY0, T; X).
Jj—w© nj j—w. n;
Hence
(59) lim d(w, S(-"f(OHI; hn,-u)—xf) _0.
jmwo nj

Therefore we have proved that for every sequence of solutions x, to (5.1)
converging to x and every sequence h,—»0+, there exists a subsequence
x; = x,, which satisfies (5.9). This yields that for every sequence of solutions x,
converging to x and h,—0+

lim d(w, S(x"(0)+h,,u)—x,,> _o.

h

n—w n

Since u and w are arbitrary, the proof is complete.
We consider now the contingent variational inclusion
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w'(tyecoDF(t, x(t), x'())(w(t)) ae. in [0, T],
w(0) = u.

(5.10)

THEOREM 5.3 (Contingent variational inclusion). Let us consider the solution
map S as a set-valued map from R to W'™(0, T; R") supplied with the weak-*
topology and let X(-) be a solution of the differential inclusion (5.10) starting at x,,.
Then the contingent derivative DS(x,, X(*)) of the solution map is contained in the
solution map of the contingent variational inclusion (5.10), in the sense that

(5.11) DS(xo, X())(u) = {w(-)| W'(1)ecoDF(t, £(t), & (1)(w(r), w(0) = u}.

Proof. Fix a direction ue R" and let w(-) belong to DS(x,, x(-))(u). By the
definition of the contingent derivative, there exist sequences of elements
h,—0+, u,—u and w,(-})— w(-) in the weak-* topology of W!*(0, T; R") and
¢ > 0 satisfying

0 W@l <c ae in [0, T],

(5.12) (i) X@+hwi()eF(t, x(t)+hw,(t)) ae. in [0, T],
@) w,(0)=u,.

Hence

(i) w,(-) converges pointwise to w(-),
(5.13)

(i)  w,(-) converges weakly in L'(0, T; R"} to w'(-).
By Mazur’s Theorem and (5.13) (i), a sequence of convex combinations
v, (6): Z azw(t)
converges strongly to w'(*) in L'(0, T; X). Therefore a subsequence (again

denoted) v,,(-) converges to w'(-) almost everywhere. By (5.12) (i) and (ii) for all
p and almost all te[0, T]

1
wi(t)e (i_z_F(t’ x(1) +h,,wp(r))—i’(t)) Nnc¢B.
P
Let te€[0, T] be a point where v,(t) converges to w'(t) and x’ t)eF(r, x(1)).
Fix an integer n > 1 and ¢ > 0. By (5.13) (i), there exists m such that h, < 1/n

and |lw,()—w()l| < 1/n for all p>=m
Then, by setting

d(y, h):= ;‘(F(t, i(t)+h_v)—.f’(t)) N cB
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we obtain that

v, ek, = co( U @0, h))

hel0,1/n|
yvew(t)+ 1/nB

and therefore, by letting m go to oo, that

w’(t)e%( U &0, h)).
he|0,a|
yew(t)+ 1/nB

Since this is true for any n, we deduce that w'(t) belongs to the convex upper
limit:

w’(t)eﬂa( U e, h)).

nz1 he|0, 1/n|
vew(t)+ 1/nB

Since the subsets @ (y, h) are contained in the ball of radius ¢, we infer that
w'(t) belongs to the closed convex hull of the Kuratowski upper limit:

weco ) ( U e, h)+sB>.
£>0n21 he|0.1/n|
yew(t)+ 1/nB

We observe now that

N ( U o0, h)+aB) < DF(t, x(1), X'(£))(w(?))

£>0 he|0,1/n|
nz1 yew(t)+ 1/nB

to conclude that w(') is a solution to the differential inclusion

w(f)ecoDF(t, x(1), X' ())(w(t)) ae. in [0, T],
w(0) = u.

Since we DS(x,, X())(u) is arbitrary, we proved (5.11).

6. Local injectivity and surjectivity of set-valued maps

Let & be a set-valued map from a Banach space X to a Banach space Y. We
study its local invertibility (injectivity and surjectivity) at a point (x*, y*) of its
graph.

We shall derive local injectivity of a set-valued map %: X3Y from
a general principle based on the differential calculus of set-valued maps.

For that purpose, we use its contingent and paratingent derivatives
DZ (x*, y*) and P# (x*, y*), which are closed processes from X to Y.

Since 0e D.Z (x*, y*) (0), we observe that the “linearized system”™ D.# (x*, y*)
enjoys the inverse univocity, which in particular implies that the inverse image
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DF (x*, y*)"1(0) contains only one element, ie., that its kernel, which is
naturally defined by

Ker DF (x*, y*):= DF (x*, y*)~1(0),
1s reduced to zero.

THEOREM 6.1. Let F be a set-valued map from a finite dimensional vector
space X to a Banach space Y and (x*, y*) belong to its graph.

(1) If the kernel of the contingent derivatives DF (x*, y*) of & at (x*, y*) is
equal to {0}, then there exists a wneighorhood N(x*) such that

{x such that y*e F (x)} n N(x*) = {x*}.

(2) Let us assume that there exists y > 0 such that & (x* +yB) is relatively
compact and that F has a closed graph. If for all ye F (x*) the kernels of the
paratingent derivatives PF (x*, y) of # at (x*, y) are equal to {0}, then F is
locally injective around x*.

Proof. We provide only the proof of the second statement. The proof of
the first one can be found in [18].

Assume that % is not locally injective. Then there exists a sequence of
elements x!, x2e N(x*), x} # xZ, converging to x* and y, satisfying

Vnz0, y,eF(x)nF(xD).

Let us set h,:= |}xp —xZ|| which converges to 0, and u,:= (x}—x2)/h,.

The elements u, do belong to the unit sphere, which is compact. Hence
a subsequence (again denoted) u, does converge to some u different from 0.
Then for all large n

Va€F (X)) N F (x7):= F(x7 + hu,) 0 F (x7) = F (x* +yB)

so that we deduce that a subsequence (again denoted) y, converges to some
ye Z (x*) (because Graph(#) is closed). Since the above equation implies that

VYnz=0, y,+h0eF(xF+hu,),
we deduce that
0e PZ (x*, y)(u).

Hence we have proved the existence of a nonzero element of the kernel of
P# (x*, y) which is a contradiction. g

Generalizations of this result can be found in [20].

For local surjectivity, we shall obtain furthermore some regularity property
of #~! around y*e % (x*). We need for that purpose the following

DEFINITION 6.2. A set-valued map G from Yto Z is pseudo-Lipschitz around
(y*, z*)e Graph(G) if there exist neighborhoods V of y* and W of z* and
a constant !/ such that
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(i) VyeV, G(y) # 9,
(i) Yy, y,eV, Gly)nWe G(y,)+ 1y, —y.,llB.

THEOREM 6.3. Let F be a set-valued map from a Banach space X to a finite
dimensional space Y and let (x*, y*) belong to the graph of & . If the circatangent
derivative CF (x*, y*) is surjective, then # ~' is pseudo-Lipschitz around
(y*, x*)eGraph(# ).

See [18] for the proof of the above result.
As a corollary we get the following inverse function theorem for single-va-
lued maps under constraints.

COROLLARY 6.4. Let X be a Banach space, Y a finite dimensional space,
K < X a closed subset of X and let x, belong to K. Let A be a differentiable
map from a neighborhood of K to Y. We assume that A’ is continuous at x, and
that

A'(x0)Cglxo) =Y.

Then A(x,) belongs to the interior of A(K) and there exist constants ¢ and | such
that, for all y,, y,€A(xq)+¢B and any solution x,€e K to the equation
A(x,) =y, satisfying {|x,—x,|| < lg, there exists a solution x,eK to the
equation A(x,) =y, satisfying ||lx, —x,|| <!y, —y,ll-

For further extensions of inverse function theorems for maps from
a complete metric space to a Banach space and higher order results, see [37],

[38], [42], [43], [45].

7. Local observability of differential inclusions

Let us consider a set-valued input-output system of the following form built
through a differential inclusion

(7.1) for almost all te[0, T], x'(t)eF(t, x(¥)

whose dynamics are described by a set-valued map F from {0, T]x X to X,
where X is a finite dimensional vector-space (the state space) and 0 < T < 0.
It governs the (uncertain) evolution of the state x(-) of the system. The inputs
are the initial states x, and the outputs are the observations y(-)€ H(x(")) of the
evolution of the state of the system through a single-valued (or set-valued) map
H from X to an observation space Y.

Let S:= Sy from X to C(0, T; X) denote the solution map associating with
every initial state x,€ X the (possibly empty) set S(x,) of solutions to the
differential inclusion (7.1) starting at x, at the initial time ¢ = 0.

In other words, we have introduced an Input-Output system where the

5 — Annales Polonici Mathematici LI
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(1) inputs, are the initial states x,,

(2) outputs, are the observations y(-)€ H(x(-)) of the evolution of the state of
the system through H

l=

Inputs > States - Outputs
! ! l
X3x, ¢ x(-)€ S(x,) = y()yeH(x(")
7 i
Initial States {x (DeF(r, x(t))} Observations
x(0) = x,

It remains to define an Input-Output map. But, because of the set-valued
character (the presence of uncertainty), one can conceive two dual ways for
defining composition products of the set-valued maps S from X to the space
CO, T; X) and H from C(0, T; X) to C(0, T; Y). So, for systems under
uncertainty, we have to deal with two Input-Output maps from X to C(0, T; Y):
the

Sharp Input-Output map, which is the (usual) product
VxoeX, I (x0):=(HoS(xg):= J H(x()).

x(*)eS(xo)

Hazy Input-Output map, which is the square product
VxgeX, [,.(xo):=(HoOS)xe):= () H(x()).

x(-)eS(x0)

The sharp Input-Output map tracks at least the evolution of a state starting
at some Iinitial state x, whereas the hazy Input-Output map tracks all such
solutions.

Opinions may differ about which would be the “right” Input-Output map,
just because they depend upon the context in which a given problem is stated.
So, we shall study observability properties of both the sharp and hazy
Input-Output maps.

Observe that when the observation map is single-valued, the use of
a nontrivial hazy Input-Output map requires that all solutions x(-) e S(x,) yield
the same observation y(-) = H(x(-). Hence we have to study when this
possibility occurs, by projecting the differential inclusion (7.1) onto a differen-
tial equation which “tracks” all the solutions to the differential inclusion.

We shall tackle this issue by “projecting” the differential inclusion given in
the state space X onto a differential inclusion in the observation space Y in
such a way that solutions to the projected differential inclusion are observa-
tions of solutions of the original differential inclusion.

We project the differential inclusion (7.1) to a differential inclusion (or
a differential equation) on the observation space Y described by a set-valued
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map G (or a single-valued map g)

(7.2) Yt eG(t, y(1)) (or ¥ (t)y=g(t, y®)), y(0) =y,

which allows to track partially or completely solutions x(-) to the differential
inclusion (7.2) in the following sense:

(@) V(x4 yo)eGraph(H), there exist solutions x(-) and y(-) to (7.1)
and (7.2) such that Vte[0, T], y(t)e H(x(t)),
(7.3)
(b)  V(xq, ¥o)€ Graph(H), all solutions x(-) and y(-) to (7.1) and (7.2)
satisfy Vee[0, T], y(1)e H(x(t)).
The second property means that the differential inclusion (7.2) is so to speak
“blind” to the solutions to the differential inclusion (7.1). When it is satisfied, we

see that for all x,e H™ '(y,), all the solutions to the differential inclusion (7.1)
do satisfy

Vie[0, T], y(t)e H(x(1)).

In the next Proposition we denote by DH(x, y) the contingent derivative of
H at (x, y)

PrOPOSITION 7.1. Let us consider a closed set-valued map H from X to Y.

(1) Let us assume that F and G are nontrivial upper semicontinuous set-valued
maps with nonempty compact convex images and with linear growth. We posit the
assumption

(7.4) V(x, y)eGraph(H), G(t, y)n(DH(x, y)OF)(t, x) # @.
Then property (7.3) (a) holds true.

(2) Let us assume that F x G is lipschitzian on a neighborhood of the graph of
H and has a linear growth. We posit the assumption

(7.5) V(x, y)eGraph(H), G(t, y) = (DH(x, y)OF)(t, x).
Then property (7.3) (b) is satisfied.

(See [19] for the proof.)

In particular, we have obtained a sufficient condition for the hazy
Input-Output set-valued map I/, to be nontrivial.

First, it will be convenient to introduce the following definition.

DEFINITION 7.2. Let us consider F: [0, T]x X3 X and H: [0, T]x X 3Y.
We shall say that a set-valued map G: [0, T] x Y3 Yis a lipschitzian square
projection of a set-valued map F: [0, T]x X 3 X by H if and only if

(1) Fx G 1s lipschitzian around {0, T] x Graph(H)

(i) V(x, y)eGraph(H), G(t, y) < (DH(x, y)0F)(t, x).
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Therefore, for being able to use nontrivial hazy Input-Output maps, we
shall use the following consequence of Proposition 7.1.

PROPOSITION 7.3. Let us assume that F: [0, TIx X3 X and H: X3 Y are
given. If there exists a lipschitzian square projection of F by H, then the hazy
Input-Output map I, := HQOS has nonempty values for any initial value
Yo € H(x,)-

We observe that when the set-valued maps F and G are time-independent,
Proposition 7.1 can be reformulated in terms of commutativity of schemes for
square products.

Let us denote by @ the solution map associating to any y, a solution to the
differential inclusion (equation) (7.2) starting at y, (when G is single-valued
such solution is unique).

Then we can deduce that property (7.3) b) is equivalent to
Vyoelm(H), @(yo) = (HAS)oH™')(y,)-
Condition (7.5) becomes: for all yeIm(H),

Gye () () DH(x, yNv):= (DH(x, y)oF)oH ™ '(y).

xeH ~ 1(y) veF(x)

In other words, the second part of Proposition 7.1 implies that if the scheme

F
X 3 X
H! T L bHy
G
Y 3 Y

is “commutative for the square products”, then the derived scheme

s
X 3 CO, T, X)
H{fa~1 i
®
Y 3 CO, T;Y)

is also commutative for the square products.
With these definitions at hand, we are able to adapt some of the
observability concepts to the set-valued case.

DEFINITION 7.4. Assume that the sharp and hazy Input-Output maps are
defined on nonempty open subsets. Let y*eH(S(x,)) be an observation
associated with an initial state x,,.

We shall say that the system is sharply observable at (respectively locally
sharply observable at) x, if and only if the sharp Input-Output map I _ enjoys
the global inverse univocity (respectively local).
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Hazily observable and locally hazily observable systems are defined in the
same way, when the sharp Input-Output map is replaced by the hazy
Input-Output map 1,.

The system is said to be hazily (locally) observable around if the hazy
Input-Output map I, is (locally) injective.

Remark 7.5. Several obvious remarks are in order. We observe that the
system is sharply locally observable at x, if and only if there exists
a neighborhood N(x,) of x, such that

if  x()eS(N(x,)) is such that y*(-)e H(x(:)), then x(0)= x,,

i.c., sharp observability means that an observation y*(-) characterizes the input
Xg

The system is hazily locally observable at x, if and only if there exists
a neighborhood N(x,) of x, such that, for all x, e N(x,),

if  Vx()eS(x,), y*()eH(x(")), then x;=x,.

It 1s also clear that sharp local (respectively global) observability implies hazy
local (respectively global) observability.
We mention that if we consider two systems #, and %, such that

VxeX, %(x)c%,(x)

then
(1) If %, is sharply locally (respectively globally) observable, so is #,.
(2) If #, is hazily locally (respectively globally) observable, so is %,.

We piece together in this section the general principle on local inverse
univocity and local injectivity (Theorem 6.1), the chain rule formulas and the
estimates of the derivatives of the solution map in terms of solution maps of the
variational equations (Theorems 5.1, 5.2 and 5.3) to prove the statements on
local hazy and sharp observability we have announced.

We assume from now on that H is differentiable and F has a linear growth.
We impose also some regularity assumptions on the set-valued map F.

In the next theorem it is assumed that F is derivable in the sense that its
contingent and adjacent derivatives do coincide.

THEOREM 7.6. Let us assume that F is derivable, satisfies assumptions (5.2),
that it has a lipschitzian square projection G by H. Let x(-)e S(x,). If the
contingent variational inclusion

(7.6) for almost all  te[0, T], w'()e DF(t, x(t), X' (t))(w(?))

is globally hazily observable through H'(x(-)) at O, then system (7.1) is locally
hazily observable through H at x,.
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In the next theorem we assume that F is sleek, so that its contingent and
circatangent derivatives do coincide.

THEOREM 7.7. Let us assume that F is sleek, has convex images, satisfies
assumptions (5.2), and that it has a lipschitzian square projection G by H. If for all
x(-)€ S(x,) the contingent variational inclusion (7.6) is globally hazily observable
through H'(%(-)) at 0, then the system (7.1) is hazily observable through H around
Xo-

We consider now the sharp Input-Output map.

THEOREM 7.8. Let us assume that the graphs of the set-valued maps
F(t,): X3 X are closed and convex. Let H be a linear operator from X to
another finite dimensional vector-space Y. Let X(-) be a solution to the differential
inclusion (7.1). If the contingent variational inclusion (1.6) is globally sharply
observable through H around 0, then the system (7.1) is globally sharply
observable through H around x,.

Whenever we know that the chain rule holds true, we can state the
following proposition, a consequence of the general principle (Theorem 6.1)
and of Theorem 5.3 on the estimate of the contingent derivative of the solution
map.

PROPOSITION 7.9. Let us assume that the solution map of the differential
inclusion (7.1) and the differentiable observation map H do satisfy the chain rule

DI_(xq, yo)(u) = (H'(X)0 S{xq, X(-)))(w).
If the contingent variational inclusion
for almost all  te[0, T], w'(t)ecoDF(t, x(t), X' (t))(w(?))

is globally sharply observable through H'(X(-)) around O, then the system (7.1) is
locally sharply observable through H around x,.

However, we can bypass the chain rule formula and attempt to obtain
directly other criteria of local sharp observability in the nonconvex case.

THEOREM 7.10. Assume that F has closed convex images, is continuous,
Lipschitz in the second variable with a constant independent of t and that the
growth of F is linear with respect to the state. Let H be a twice continuously
differentiable function from X to another finite dimensional vector-space Y.
Consider an observation y* € I_(x,) and assume that for every solution X(*) to the
differential inclusion (7.1) satisfying y*(-) = H(x(-)) and for all t€ [0, T] we have

Ker H'(x(1)) < (F(r, x(t)— F(¢, X(1)))*.
If for all X as above the contingent variational inclusion

for almost all  te[0, T], w(t)ecoDF(t, x(t), X'(£))(w(2))
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is globally sharply observable through H'(x(t)) around O, then the system (7.1) is
locally sharply observable through H at (x4, y*).

ExXAMPLE. OBSERVABILITY AROUND AN EQUILIBRIUM. Let us consider the case
of a time-independent system (F, H): this means that the set-valued map
F: X 3 X and the observation map H: X =3 Y do not depend upon the time.

We shall observe this system around an equilibrium x of F, i.e., a solution
to the equation

0e F(x).

For simplicity, we shall assume that the set-valued map F is sleek at the
equilibrium. Hence all the derivatives of F at (x, 0) do coincide with the
contingent derivative DF(x, 0), which is a closed convex process from X to
itself.

The theorems on local observability reduce the local observability around
the equilibrium x to the study of the observability properties of the variational
inclusion

(1.7) w'(f)e DF (%, 0)(w(t))

through the observation map H’(x) around the solution O of this variational
inclusion.

We mention below a characterization of sharp observability of the
variational inclusion in terms of *“viability domains” of the restriction of the
derivative DF(x, 0) to the kernel of H'(x).

PROPOSITION 7.11. Let us assume that F is sleek at its equilibrium X and that
H is differentiable at x. Then the variational inclusion (7.7) is sharply observable
at 0 if and only if the largest closed viability domain of the restriction to ker H'(X)
of the contingent derivative DF(x, Q) is equal to zero.

On the other hand the variational inclusion is hazily observable if and only
if the largest closed invariance domain of the restriction to ker H'(x) of the
derivative DF(x, 0) is equal to zero.

Therefore we derive from the duality results of the first section that the
sharp observability of the variational inclusion at 0 is equivalent to the
controllability of the adjoint system

—p'()e DF(x, 0)*(p(1))+ H'(X)* u(t), u(t)e Y*.

PROPOSITION 7.12. We posit the assumptions of Proposition 7.11, we assume
that DF(x, 0)(0) = 0 and we suppose that

ker H'(x)+ Dom(DF(x, 0)) = X.

Then the concepts of sharp and hazy observability of the variational inclusion
coincide and are equivalent to the controllability of the adjoint system.
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8. Applications to local controllability

Let us consider a bounded set-valued map F from a closed subset K < R" to R”
with closed graph and convex values, satisfying

VxeK, F(x)n Tig(x)#9.

By Haddad’s Theorem, we know that for all ¢€ K, the subset S;(&) of viable
solutions (a trajectory t— x(t) is viable if, for all te[0, T], x(¢t)e K) to the
differential inclusion

(8.1) x'(H)eF(x(t), x(0)=¢

is non-empty and closed in C(0, T; R") for all (e K.

Let R(T, &):= {x(T)| xeS;(&)} be the reachable set and let M — R" the
target, be a closed subset. We shall say that the system is locally controllable
around M if

OeInt(R(T, &)— M).

This means that there exists a neighborhood U of 0 in R” such that for all ue U,
there exists a solution x(-)eS;(¢) such that x(T)eM +u. We denote by
K < §;(&) the subset of solutions xeS,(¢) such that x(T)e M.

Let z(-)e A be such a solution. We linearize the differential inclusion (8.1)
around z(*) using the circatangent derivative:

(8.2) w'(t)e CF(z(1), 2 (0)(w(t)),  w(0) =0,

and we denote by RY(T, 0) its reachable set from zero at time T.
When ¢ is an equilibrium and z(') = ¢, the differential inclusion (8.2)
becomes

w(1)e CF(E, 0)(w(t), w(0) =

where CF(&, 0) is a closed convex process. Its controllability then can be
derived from Theorems 3.11 and 3.12.

THEOREM 8.1. We posit the assumptions of Theorem 5.2. If
(8.3) RY(T, 0)—Cy(2(T)) = R"

(i.e. if the linearized system is controllable around the Clarke tangent cone to
M at z(T)), then the original system is locally controllable around M and there
exists a neighborhood U of z and a constant | > O such that, for any solution
xeS;(&) in U,

d(x(*), A) < ldy(x(T)).

Proof. We apply Theorem 6.3 to the continuous linear map A [rom
C(0, T; R")x R" to R" defined by A(x, y):= x(T)—y, to the subset S;(&)x M,
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at (z, z(T))e (&) x M. We observe that A4(z, z(T)) = 0 and that condition (8.3)
can be written

ACs,5(2)— CM(Z(T)) =R".

Hence 0 belongs to the interior of A(S;(£) x M) = R(T, &) — M and there exist
constants r > 0 and [ > 0 such that u — 4~ (u) N (S;(€) x M) is pseudo-Lipschitz
around (0, z, z(T)). Let us consider now a ball U of center z and radius r. Let us
take a solution xeS;()nU to the inclusion (8.1) so that d,,(x(T))
< |Ix(T)—z(T)|| < r. Let y belong to m,,(z(T)). Then ||A(x, )l = d,,(x(T)) and
we deduce from the fact that u— A~ (u) N (S(&) x M) is pseudo-Lipschitz that
there exists X such that A(X, X(T)) =0 (i.e, an element Xe.X’) such that

dix, A) < |lx =X < H0—A(x, )| = ldy(x(T)).

Remark. When M = {£}, the considered notion of controllability around
¢ coincides with the one often used in the literature. In this case a strong result
was proved in [32] under the assumption that ¢ is an equilibrium a “larger”
linearization was considered namely

(8.4) W (t)e CF(&, O)w(t)+ Toorn(0),  w(0) = 0.

Observe that the map x - CF(£, 0)x + T.,r(0) is a convex process with
closed images. If, moreover, Dom CF (£, 0) = R" then it is also closed. Hence we
may apply results from Section 3 to study controllability of (8.4).
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