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A difference method for a non-linear system of
elliptic equations with mixed derivatives

by Z. KowaLSKI (Krakow)

Abstract. In this paper we consider the non-linear system of partial differential
equations (1.1). We assume that system (1.1) is of the elliptic type in the sense of
Definition 1 (cf. Section 4) and we prove the convergence of the difference method
for the boundary problem (5.3), (5.4). The error estimate is also given. The proofs
are based on the method of difference inequalities.

1. This paper contains many formulas; nevertheless, the entire
reasoning is distinguished by a clear geometric thought.

I consider a difference method for a non-linear system of partial
differential equations

(1.1) L@y u, ) =0 (1=1,...,p)

in the n-dimensional cube @,z = (z,,...,2,) €Q, cf. (2.2), where the
I-th equation contains all the functions u,, u,, ..., %, and the derivatives
of the I-th function u;(z) only. I was forced to choose such a system since
I wanted to apply the geometrical methods worked out previously in
papers [1] and [3], which are concerned with a single non-linear differ-
ential equation of the elliptic type (the methods of papers [1] and [3]
fail for system (1.1) if there are the derivatives of all functions %,, ..., 4,
in the I-th equation).

I assume that system (1.1) is of elliptic type in the sense of Defini-
tion 1, cf. Section 4. I was led to that definition also from geometrical
considerations in the following way : First, T wrote the difference equation,
cf. (5.7), associated with system (1.1), and I defined the error r¥ = u} —
—oM (1=1,...,p), where 4 (I =1,...,p) is the solution of system
(1.1) and o (1 =1,...,p) — the solution of the difference equation.

Then I considered the point R(k) in the p-dimensional space:

(1.2) R(B) = (ri1, ..., 157),
with coordinates
(1.3) og"l"=ma‘xﬁu t=1,..,p),
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230 Z. Kowalski
the maximum being taken over all the nodal points ™ in the set @ (in
a similar way I defined the minimum).
Obviously, the point R (%) depends on the mesh. size # imposed on @.
A single look at Fig. 1 is now sufficient to catch the idea of the paper.

Yo A e

Fig. 1. The sct S in the two dimensional case (p = 2), the point E(k) and Ry,
cf. paper [2]

R(k)

I found that the point R (&) is in the domain 8, bounded by the hyper-
planes X2 (I =1,...,p) in the p-dimensional space. Those hyperplancs
2, possess a single intersection point R, if and only if (rather unexpected)
condition (10.7) in Definition 1 of ellipticity is satisfied. In addition,
the domain 8§, shrinks toward the origin as A—0, the point R(%) being
inside 8, for all 2 > 0.

In consequence, all coordinates 7j'! of the point R(k) tend toward
zero as h—0, which means that the difference method in question is con-
vergent.

Thus I was forced to accept condition (10.7), since in the opposite
case (where R, does not exist) the point R(A) could escape into infinity
as h—0, and the difference method could be divergent.

The calculations form the remainder of the paper, but each formula
possesses a geomctrical significance and I would like the reader could
see it.

There is no possibility to hide own research program before the men
who work in the same research center. M. Malec has undertaken the prob-
lems connected with difference methods for elliptic equations and has
written the following series of papers: [4] and [6] on difference inequalities
and a single non-linear differential equation; [6] and [7] on systems of
difference inequalities and systems of non-linear differential equations;
[8] on the Neumann problem for a single non-linear differential equation.

His method of checking the convergence differs from that of mine.
Writing the difference equation out, he disrupts the difference quoticnts
and colleets corresponding elements so as to obtain terms of constant
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pign (i.e. always positive for 2 > 0 or always negative for A > 0). Then
he omits these terms in order to achieve simple difference inequalities
and estimates for errors 7. Thus, his method could be termed as the
method of disrupting the difference quotients. This is a powerful algebraic
method, since it enables one to obtain the convergence and error estimate
in a short and almost painless way.

The calculations as performmed by Malee in his method of disrupting
the difference quotients have led him to a different definition of clliptie
equation.

The non-linear system (1.1) is of the elliptic type in the sense of Malec
if, among others, the matrix (df*/éw,;) (¢,j = 1, ..., n) has the dominating
diagonal line. In consequence, the class of elliptic equations in the sense
of Malec is contained in the class of elliptic equations in my sense, cf.
Definition 1, Section 4, papers [4]-[8], and [9], p. 106 (we have not investi-
gated, for the time being, whether the opposite inclusion actually holds).

There is still one detail which differs our papers. I replace the mixed
derivatives u,, of the second order by ‘large” difference quotients
w4, cf. (3.3), and Malec uses for that purpose the arithmetic means of
“small” difference quotients (3.5), the choice being dependent from the
sign of the derivative of'/dw,,.

The last way may be better in practical computations, cf. Samarskii
[11], p. 264.

In the papers of Maleec and in my papers there remains open the
difficult problem of the existence of solutions, for a differential and dif-
ference equations of elliptic type, respectively.

2. Let us consider the nodal points ™

(2.1) M = (CC{W’ caey m;?!)’
in the set Q:
(2.2) Q:0<7;,<0 (j=1,...,,n), 0<oc = const,

the coordinates z (j = 1,...,n) of the point ™ being defined by
(2.3) o =mih (j=1,...,m), O0<h=0/N,
where M denotes a multi-index
(2.4) M = (m,myy...,m,), 0<m
and ¥ is a natural number.
It will be convenient to introduce the nodal points
Mg~ for j =1,...,m, and a7 IO

(2.6) . . . .
g gi =) (£G4, =1,...,n0),
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which belong to the h-neighbourhood of the nodal point ™ and are char-
acterized by the following multi-indices:

(2.6) J(M) = (my,...,m;), m;=m+1l, m;=m; fori#j
—J(M) = (my,...ymy),  my=my—1, omg=m; fori#j
(6,7 =1,...,m),
and, for ¢ #j, by
G(M) = (myy .oy mp)y,  mg =m+1,  my =m;+1,
2.1 — (M) = (mi, ...,'m%,), m;’ =m;—1, 'm,: =my;+1,
—t—j (M) = (Myy .0y my), My =m;—1, my=m—1,
i—j(M) = (myy...,my), m;=m+1l, m;=m—1,

where m, = m, in formulas (2.7) for s #4,8 #j (¢ =1,...,n), cf. Fig. 2.

xiA
) 2SO £V
x—it) M A0
xi
i) (D )

Fig. 2. The nodal points¥oc™, x¢(M), 7#/(M) . . For the sake of simplicity the nodal
point ™ has been located at the origin

The nodal point ) will be denoted also by #/?0 since we assume
(M) =ji(M), —i(M)=j—i(H), —i—j(M) = —j—i(H),

(2.8) . . A
1—j(M) = —j(M) fori+#j (¢, =1,...,n).

We denote by int@ the set of nodal points (2.1) which belong to the
interior of @, cf. (2.2), and by sym 4 the set of nodal points #™ such that
z” eintQ and 2™’ €intQ simultancously, 2™° and #™ being symmetric
with respect to the nodal point 4.

3. Let us denote by u¥ (I =1, ..., p) the value of the function u;(z)
(I =1,...,p) at the nodal point 2. We shall use the forward, backward
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and symmetric difference quotients, respectively:
1 A |
(1) Wl = ), = (),
(l = 1) A p; j = 1’ ceey n)’

1 _ .
(3.2) ului =Eﬁ"(u{(!ﬂ)_ulj(m) I=1,..,p;5=1,...,n)

for the first partial derivatives, and the difference quotients

'u,Mﬁ — h'z(u,ﬂM) -9 .uff_l_ul—f(ﬂf))’

(3.3) _ e . e
ug"‘jz i-h 2.(u§’(u)_uz i’(M)_uf j(nI)_*_ul 1 J(M))’

E£H U=1,..,p;t=1,..,n0;j=1,..,2),

for the sccond derivatives. In particular, «}” will be called the large
difference quotient for the mixed derivative of the second order, sinee it
is based on the large square formed by the nodal points g%, =%
ot —IM) | =it of Rig. 2.

From definitions (3.1), (3.2) and (3.3) we have

gy 1 ‘
(3.4) W = -l ), M = (i — )

for 1l =1,...,p; j =1,...,n. We shall use also the small difference
quotients for mixed derivatives of the second order, ef. Fig. 2:

- - — (M
“ﬁ‘-{ —h ’-(u{w’—u, “‘m—u{"-{-u, )y,

(3.5) .
'uf;“l = 2. (uf" _ 'u,,’“m - u‘—j(ﬂl) + u,'""M’),

MU p=2. (gD _ M =100 | gy-3(0))

fore #j;¢=1,...,n;j=1,...,n; 1l =1,...,p.
From (3.5) and the definition of 4", cf. (3.3), we have

(3.6) w'™ =} (s + w2+t + i)

for ¢ £j4;i=1,..,n;)=1,..,n5l=1,...,p.
We introduce also the vectors u}“ with coordinates

(3.7) W = (', i, .., u"®) (1 =1,..,p),
and the n X #» matrices 4M° (I=1,...,p):
(3.8) %O =) (i=1,.,m;5=1,..,n) (1 =1,..,p).

4. The following three conditions W,, W, and W, provide a means
for the definition of system (1.1) to be of the elliptic type:

3 — Annales Polonicl Mathematic! XXXVIII3
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ConDITION W,. The functions f'(z, %, ¢, w) are of class C" in the
set Q,:

(4.1) @, = @ XR? XR" xR™;
the quadratic formns

(4'2) .Zﬂvﬁ‘li'aj (l=1,"'7p) (leoij=fioﬁ)’

i,j=1

are positive defined at every point of the set @,, and the characteristic
roots s; (I =1,...,p) (j =1,...,m) of the form (4.2) are bounded:

(4.3) 0 <8, <8y <9y,

the constants d;, d, being independent from the point (», %, ¢, w) in the
set Q,.

ConDITION W,. The elements of the p xp matrix (f,) (I =1,...,p;
kE=1,..., p) satisfy the relations
(4.4) L,<ﬂ<0 (I =1,...,p;n = const),

(48) 0<f, <é (d=const;l #k;l=1,...,p;k=1,...,7)
and

1
4.6 - 0 =2
(4.6) P__1<7< (p )y

the constant ¢ being defined by
(4.7) y=n"18 (y<0).
ConDITION W,. The derivatives ff‘,',j and ff,j are bounded in the set
%
DEFINITION 1. The non-linear system (1.1) is called to be of th~
elliptic type if and only if conditions W,, W, and W, are satisfied.
9. Before proceeding to a specific discussion of the difference method,
it will be uscful to introduce the following

AssUMPTIONS H. (i) System (1.1) is of the elliptic type in the sense
of Definition 1.

(ii) The functions %, = w(x) (I =1, ...,p) satisfy the following
conditions in the set @:

1° u;(x) is of class C* for z € Q,
2° the derivatives u; ., fulfil the Lipschitz condition
(5.1) lul.z,-zj(w)—ul,mizj(a”)i <$-Lewg—z) (i, =1,...,n),

the points # and &’ being on the z,-axis (s = 1,...,n), ¢ = (T, ..., 2,)
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€Q, v’ = (T;: ceny T;) €Q, =, ?éa}.:n T, =x (K #85k=1,..,n),0<L
= const.
3? The inequalities
(5.2) l“l,z‘-a:jl <34 (4,j=1,..,n)
hold for z € @, the constant A being independent from z.

4° The funection %, (z) (I =1,...,p) (x €@) is the solution of gys-
tem (1.1), i.e. we have the identity

(5.3) fHey w,u, w,,) =0 for ze@ (I =1,...,p),

where u = (t1, ..., %), Uiz = (Upgyy o vy Wig,) s Uizr = (Ug,,5;), AN takes on
prescribed values ¢;(«) at the boundary 0@ of the set ¢:

(5.4) w(z) = gle) forvedQ I =1,...,p),

the function ¢,(x) being continuous on 0Q.

(ili) We assume that the discrete function v (I=1, ..., p) satisfies
the following conditions:
1° oM is defined at the nodal points 2™ (2 € Q).
° The difference quotients »M” of the sccond order satisfy the in-
cqualities:

WM —oPH) < }-hL, MY —oPY| < }-hL,

I+
(5.5) |[oM9 —ofY | < 3-RL, (oM —of | <} RL,
loM4 —of¥ | < 3-hL fork > 0,0 < L = const (s£j;1=1,...,p),

at the nodal points #™ and «F,P =s(M) (s = +1, +2,..., +n), the
distance between ™ and z* being & in the direction of the z,-axis.

3° The inequalities
(5.6) 91 <34 (5, =1,...,n; 1 =1,..,p),

hold for z¥ e int@.

4° The function ¥ (I =1,...,p) is the solution of the difference
equation

(6.7)  fi (oM, oM™, oM, 0¥ =0 (1 =1,...,p) for ¥ eintQ,

where oM = (v, ..., v}), cf. (3.7), (3.8), and takes on prescribed values
at the boundary 9Q of the set Q:

(5.8) v =g zM) forzMedQ (1 =1,...,p).
(iv) We suppose that the functions
(5.9) W =u—o (1=1,..,p) (=" €Q),
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satisfy the relations

7P| < k-9 for o™ edQ, FMeintQ (j =1,...,n),
M <h-9 for 2 eéQ, v M eintQ (j =1,...,n),
for I =1,...,p, where 0 < ¢ = const.

(6.10)

6. In the preceding section we have summarized the properties of
the solutions u;(z) and v} of the system of differential equations (5.3),
and the system of difference equations (5.7), respectively. Unfortunately,
at the time being we are foreed to assume the existence of the solutions
w(z) and v,

Conditions (5.10) are imposed along the boundary 0@ of the set Q,
only, and can be viewed as a compatibility conditions for the difference
quotients of the first order v} and %}”. It is not quite excluded that they
may help to gain the uniqueness of the solution v} of system (5.7), cf.
Pli§ [10], when for any two solutions M and V¥ of (5.7) the conditions

o} — V| < k-9 for 2™ e 0Q, '™ eintQ,
oM VM I <h-®  for 2M e dQ, v~ M eint@,

are assumed along the boundary 0@ of the set Q.

(6.1)

7. The main idea of the remainder of this paper is the following.
First, we shall prove that the errors » satisty two systems of linear dif-
ference inequalities I and II, cf. (5.9) and Theorem 1, Section 14.

We have investigated those systems I and IT in detail in our previous
paper [2]. The chief point of that paper was to indicate that, under the
suitable assumptions, the solutions r}¥ of the systems I and IT converge
to zero, as the mesh size 4 tends to zero. This result is of particular impor-
tance for our systems (6.3) and (5.7), since it guarantees the convergence
of the difference method in question, the error estimate being taken from
[2] as an additional result.

8. The following Remark 1 and Remark 2 will be used in order to
verify that the errors rM, cf. (5.9), satisfy the assumptions imposed upon
them in paper [2] on systems of linear difference inequalities:

Remark 1. From assumptions (5.5) and (5.1) it follows that the
errors r}M, cf. (5.9), satisfy the inequalities

7 — | < h-L, - <h-L,
(8.1) Y - < hL, - <hL,

<
lr¥ —oTH I <h-L (5 #§) (1=1,...,D),

for h> 0,0 < L = const, at the nodal points ¥ and «,P = g(M)
(s = 1, £2,..., £n), the distance between #™ and z* being & in the
direction of the x,-axis.
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From (5.6) and (5.2) we obtain also
(8.2) |rMY<A for M eintQ (¢,5 =1,...,m; 1 =1,...,p).

9. Remark 2. The solution %(z) (! =1,...,p) of the system of
differential equations (5.3) satisfies at the point ™ the equation

(9.1) fla™, uM, uM2, uMO) = ¥ for 2¥ cint@ (I =1,...,p),
M depending on z™.
Let us denote
(9.2) ¢(h) = max|e],
the maximum being taken for I =1, ..., p and ™ € intQ.

It can be seen that
(9.3) e(h) -0, as h -0,

because f' is of class C! and u,(x) is of class C?, cf. Assumptions H, Section 5e

10. We will return to the problem of convergence of the difference
method (5.7) in Section 14, where suitable assumptions and theorems from
paper {2] permit us to prove Theorem 1, cf. Section 14.

Let us now consider two systems of difference linear inequalities
for the function 2% (I =1,..., p) defined at the nodal points ™

(10.1) System I:
Z“m 7+ ZbM 27 + chk -2y = —e(h),

f,j=1 i=l k=1

(10.2) Bystem II:
2 aygy 2" + ZbM 27+ chk < +¢(h),
$,]=1

where 0 < e(h) = const (I =1,..., p).
Let us also consider the following conditions W;, W, and W;:
ConpIiTION W,. The guadratic forms

(10.3) 2 af il (I=1,..,p) (# €intQ),
{,j=1

are positive defined and the characteristic roots s (I =1,...,p;5 =1,
..y M), are bounded:

(10.4) 0< 61<8£l< 62 (l=1,...,P;j=1’.--,n)’

the constants 4, and J, being independent of the mesh size k.
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CONDITION W;. The clements of the matrix (¢X) (I,k =1,...,p)
e intQ) satisfy the inequalities:

(wﬂf

(10.5) M<n<0 @@=1,...,p; n = const),
(10.6) o< <6 (T#%k (I,k=1,...,p; 6 = const),

where the constants # and 4 do not depend on the mesh size 7, and

1
. - 0 =2
(10.7) T <7<0 ®>2),

the coefficient y being defined by

(10.8) y=+9""8 (y<0).
ConNDITION W,. The coefficients afy, b7 are bounded:

(10.9) gl <&, BB

for 1 =1,...,p;%,j=1,...,n (¢ eint@), the constants ¢ and B
being independent of the mesh size h.

We shall use the following

DEFINITION 2. The linear systems I and II of difference inequalitics
are of the elliptic type if and only if conditions W;, W, and W; are fulfilled.

11. We shall use the following assumptions H(LS) on linear systems
of inequalities:

AssuMPTIONS H(LS). 1° We suppose that the functions zf (I =1, ...
..., p) are defined at the nodal points of the set @ (z" €@), ¢f. (2.2).

2° There exists a positive constant ¢ > 0 (independent of the niwesh

gizé h) such that the first order difference quotients satisfy the conditions
e < h-®  for M e, M eintQ (j =1,...,n),

11.1 .
(1) e < h-® for aMeQ, z77 P ecintQ (j =1,...,7n)

for! =1,..., p at the nodal points 2™ on the boundary &Q of the set Q.

3° There exists a positive constant L > 0 (independent of the mesh
gsize A) such that the second order difference quotients satisfy the relations:

@~ <h-L, 1G]~ <k L,
(11.2) M9 — 9 | < WL, [ 2% |<h-L,
|z{fi—2ﬁ{.|<h'L (¢ #7) (0 =1,...,p),

at the nodal points 2™ and 2%, P = s(M) (s = +1, +2,..., +n), the
distance between #™ and ¥ being A in the direction of the z,-axis.
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4° Suppose that
(11.3) [Mil<A4 (@G,j=1,...,m;1=1,...,p) (&7 €intQ),

where the constant A is independent of the mesh size h.
5° We also suppose that 27! takes on prescribed values

(11.4) 2 =0 for2MedQ (1=1,...,p),

at the nodal points 2™ on the boundary 2Q of the set Q.

6° Finally, we suppose that the linear systems (10.1) (10.2) of differ-
ence inequalities are of the elliptic type in the sense of Definition 2, cf.
Seetion 10.

Let us denote
(11.5) % =3 (A48, l<e<l,
where 9 occurs in (11.1), 4 in (11.3), and a is an arbitrary fixed number
satistying (11.5).

Let us also define

(11.6) 2z = maxz), % eintQ; 25 =minz}, 2% eintQ,
the maximum and minimum being taken for z™ € Q.

12. Assumptions H(LS) of Section 11 permit us to recall the basic
Theorem A, cf. Theorem 6 in [2]:

THEOREM A. Let us suppose that the linear systems 1 and IL of differ-
ence inequalities, cf. (10.1) and (10.2), are of the elliptic type in the sense
of Definition 2, cf. Section 10.

Let us also suppose that the functions 2z (I1=1,...,p) (& €Q),
satisfy assumptions H (LS), ¢f. Section 11, and the relation

(12.1) 0 <e(h)=>0 as h—0,

where €(h) stands on the right-hand member of (10.1), (10.2).
Under these assumptions:

1° We have the convergence
(12.2) >0, as h—0 (I =1,...,p) (z™ Q).

2° If h is a sufficiently small positige number, i.e., h satisfies the con-
dition

(12.3) [2-(%h°+B) P+ (n—1)-(2k)2 < 8,, Li<a<l,0<h<l,

¢f. notations (11.5), where 8, stands for a lower bound of the characteristic
values, ¢f. (10.4), then we have the following estimate:

(12.4) —QBh) <M< +240) for s e@ (1 =1,...,p).
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In formula (12.4) we have A4, = 4,(k), B, = B;(h) (I =1,...,p)

and

by if 2t < b,
(12.5) Q4 (k) = Q(h) )

’ if 5> h,

1+(p—-1)y g

h, if 271> —h,
(12.6) QB(h) = Q(k) ,

14+(p—1)-y’ i &< —

cf. notations (11.6).
The function (k) in (12.5), (12.6) is defined by

(12.7) Q) = —n"[w(h)+ D(h) +e(h)],
(12.8) o(h) = n-8,+[2- Luh®+n-24 -5 =% fn? A5~ 2 p20-9],
(12.9) D(h) = nfh4,

cf. (10.9), where 4, stands for an upper bound of the characteristic values
cf. (10.4).

13. With Theorem A at hand we can return to the problem of con-
vergence of the difference method (5.7).

The idea of what should now be done is the following: We shall first
define the functions

(13.1) gt =" (1=1,...,p) (" eQ),
the errors M = uM — v} being defined by (5.9).

Then we shall prove that the functions 2} defined by (13.1) fulfil
two linear system of difference inequalities I and IT, ef. (10.1), (10.2),
as well as the remaining Assumptions H(LS), ¢f. Section 11, which form
a basis for Theorem A.

As a result we shall obtain from Theorem A the desired convergence
of the difference method (5.7) and the corresponding estimate for »X.

14. THEOREM 1. Let us suppose that Assumptwns H are fulfilled cf.
Section 5. Suppose, in addition, that the errors rM (I=1, ..., p) are defined
by formula (5.9) and the quantity (k) by (9.2) and (9.1).

Under these assumptions the functions ;" satisfy the following linear
systems of difference inequalities of elliptic type:

(14.1) 2 oy 1 ZbM i+ 2, ci 1i = —e(h),
t,f=1 J=1

(14.2) ;‘ all-r)ti 4 Z’b, oM 4 Za,k M < telh)
‘. 1 j-l kel

forl =1,...,p and =™ ¢ intQ.
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In formula (14.1) and (14.2), e(h) satisfies relation (9.3), and the coef-
ficients aff, bM, cff are defined by
(14.3) oy = fuy(~), b =fgu(~) ek =fu(~)
for 1l =1,..,p5¢=1,...,n;j =1,...,m, the derivatives being taken ai
a suitable point ( ~).

Proof. From (9.1) and (5.7) we obtain

(14.4) f (EM ’MM ‘MMA, MD) f (CDM, ’DM, ’l.’lMA, ’DMD) — EM

forl =1,...,p (#™ €intQ). Now we can apply the mean value theorem
to the left-hand member of (14.4) and we get by (3.7) and (3.8):

(14.8) D fi (~)rif+ qu(fv) i+ wai, ~)r = g,

k=1 j=1 i,j=1

the derivatives being taken at the suitable point (~).
(14.5) can be written in the form

(14.6) Z ajy; 1] U‘i‘Zbu 4 chk el = e,

1,j=1 j=1

because of (14.3); hence from equality (14.6) and the definition of s(h),
cf. (9.2), we obtain two systems of inequalities:

n n D
(14.7) D alferd T YoM M N el ori > —e(h),
=1 j=1 k=1
and
n
(14.8) D) alferi 4 ZbM ri g 20,,, M < +e(h)
$,f=1 k=1

for I =1,...,p (@™ cintQ).
This ends the proof of Theorem 1.

15. THEOREM 2. Let us suppose that Assumptions H are satisfied,
¢f. Section 5, and rM = uM —oM (1=1, ..., p), ¢f. (5.9), where u,(z) (1 =1
.oy P) 18 the solution of the non-linear system of differential equations (5.3)
of the elliptic type in the sense of Definition 1, cf. Section 4, and v"
(I =1,..., p) is the solution of the difference equation (5.7).
Under these assumptions:
1° the difference method is convergent, i.e.

(15.1) M50, as h—>0 (1 =1,...,p) M eQ),
2° If h is a sufficiently small positive number, i.e. h satisfies the condition

(15.2) [2-(xh®+h)]2+-(n—1)-(2h)2 < 8,, R<a<l, 0<h<l,
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Thus the functions 2 = rM (I = 1, ..., p) satisfy all the assumptions
of Theorem A, cf. Section 12; hence we get from Thecorem A the con-
vergence of the difference method, cf. (15.1), as well as the desired crror
estimate (15.3).

This ends the proof of Theorem 2.
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