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On solutions of a certain functional-integral equation

by WitoLp Jarczyk (Katowice)

Abstract. In this paper there are investigated solutions of equation (1), where f, g and h are
given functions. Some of obtained results are applied to investigate integrable solutions of
equation (2). ;

In the present paper we shall be concerned with solutions of the
equation

M) (%) = [gdo o+ h(x),
0

where f, g and h are given real-valued functions of a real variable. In two

final theorems we shall apply preceding results to consider integrable solu-
tions of the equation

(2 e(x) =g(x) o [f (X)]+h(x).

Let [ =[0,a] or I =[0,a), where 0 <a< . Put I,:=1\{0} and
assume that:

(i) The function f is continuous and strictly increasing in I, 0 < f(x)
< x for every xe€l,.

(if) The function g is continuous in I and g(x) # O for every xel,.
(iii) The function h is of finite variation in I.

For an x,el we put x,:=f"(xo), ne N. Moreover, we define the
sequence of functions

n—1
Go:=1, G, =]]gofY neN.
k=0

DEeriNiTION 1. Let hypotheses (i), (ii), (iii) be fulfilled. We say that a real-
valued function ¢ is a solution of equation (1) in I if and only if ¢ is of finite
variation in I and satisfies equality (1) for every xel,.
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At first we shall consider the homogeneous equation
3) @ (x) = I gdgof.

LemMma 1. Suppose that hypotheses (i) and (ii) are fulfilled. If ¢ is a
solution of equation (3) and for a certain xqo€l,, ‘pll:prol =, then ‘P|(0‘101 =c.
Proof. Put

@*(x):=Var gl , xe€l,,

and note that for every ne N, we can find a ¢,e[x,,,, X,] such that
%n

@) o*(x)—@*(xps1) = [ lgldo* of =1g(&) {@* (Xns 1) — 0* (X,4 2)]-

*n+1

Assumptions of lemma imply
@* (xy) = ¢*(xo).
Hence and by (ii) and (4) we get
@*(x,) = ¢*(xo) for neN.

Therefore @* is a constant function in Io. Since @l ., =c¢, finally we get
(P’(o.xol =

Let hypotheses (i), (i1), (iii) be fulfilled. Let us fix an xy€/,. For a given
function ¢: I - R of finite variation we define the sequence of functions
®,: [x,, Xo] = R of finite variation by the formula

(Po(X): = ¢’(X)s X e[xls xO]a
n—-1 x
(5) 0a(x):=@o(x)= Y. [ Gydhof*,  xe(x, x], neN,
k=0 xq
Pa(x1): = @o(xy), neN.
Moreover, we put
() @n (x):= Var @[ x;, x], x€(xq, Xo], n€ Ny,
On(x1)i= @r (x; +) =@, (X1 +)} = @a(xy)l, neN,.

THeoOREM 1. Suppose that hypotheses (i), (ii), (iii) are fulfilled. If ¢ is a
solution of equation (1), then for every xo€l,

do?
(7 2 LZHI %,

where functions @¥ are given by (5) and (6).
Moreover,
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(8) #=90)[u-0O]+hr0+),
where
xp
= d
©) p= p(xg)— ¥ f e,
A=0 n
x

Proof. We shall show by induction that

(10) (pn(x) = ¢O(xl)+ I G"d(pOf", xe(xls xO]a

bl |
for every neN,.

For n =0 we get (10) immediately by (5). Assume that (10) holds for a
certain ne Ny. Then by (5), (1) and (10)

Gus 1 () = 0,0 — | Gudhof™ = 90(x))+ [ G,dpof*— | G dhof”

Xl .!l Xl
= @o(x1)+ I G d(pof "—hof ") = @o(x,)+ I G, d( ngf"dq’Of"”)
“l "l
= @o(x;)+ I Gpgof "depof "1 = @ (xy) + j Gy 1dpof ™ 1.
I‘ ‘ll

Now by (10) and (5) we obtain
(ll) (Dn(xl+)_(pn(xl) = Gn(xl)[‘p(xu+l+)—(p(xn+1)]’ nENO'

Further by (6), (10) and (11) we have
(12 or(x) =lgalxi +) = @alxy)i+ lim Varg,lic, x]

= |@a(x;1 +) = @a(x)l +c1iP.1+ (G dg*of"

= |@n(xy +) = @a(x )| + | |Gl do*of"—
-IGn(xl)l |(p(xn+l +)_‘(P(x,,+ l)l

= f'Gn‘ d(p‘Of", xe(xlv xO]’ neNO'
X1
Hence and again by (6) and (11)
xq *0
d(P,. (pn (xl +) ‘pn J' (
+ lim
|Gl |G (x,)l f"=1+

*1

h‘———ra

|G dg*of ")
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X0
qon(xl +)_ (Pn(xl)

= i do*of "
G0 +‘H1;111+J~ p*of

c

_ @n(x; +)—@n(x,) FO*(X,) = 0* (Xps 1) — |0 (Xps 1 +) =@ (Xps 1)l
Gn(xl)

= (P* (xn)_¢* (xn+ 1)-

Finally we have

x0

aC d % ac
) Jlg] = ), [o*(x) = 0* (xps 1)1 = ©* (x0) —9*(0+) < cC.
n=0 n n=0

x1
To prove the second part of this theorem note that according to (1) we have
(13) ®(0+) =g(0)[@(0+)—(0)]+h(0+).
In view of (10) and (11) we get

X0 X0 x

do, _ ¢u(x; +)— @i (xy) : R k)
JGk T Gx) +c1*T+JGk(x)d(JG"d‘”Qf

xl [+ X9
xQ
=@ (X4, +)—<P(xk+1)+c lim+ J- d‘Pofk = @(x)— (X 41).
—oxl ¢

Hence and by (9)

X0

= (d
0(0+) = @(x0)— ) jﬂ=#-

k=0 Gk
x1
Consequently, in view of (13) we get (8), which was to be proved.
Now we shall show that solutions of equation (1) depend on an
arbitrary function. ‘

THEOREM 2. Let hypotheses (1), (ii), (ii1) be fulfilled and let x,€1,. Suppose
that @q: [x,, xo] = R is a function of finite variation and the sequence (¢¥);- ,
given by (5) and (6) satisfies condition (7). Further we assume that n is a real
number such that

(14) #=g0)[p—nl+h(0+),
where
xp
x£- d .
(15) Bi= @o(xo)— z j ((;p
n=0 n
X1

Then equation (1) has exactly one solution ¢: I - R such that Plixy.xg) = Po
and @(0) = n.
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Proof. Let us put

S ()
do, " (g
0(x): = j S 00(x)— X j% x€(Xys 1, %], €N,
(16) n k=0 k
1
@(0):=n.

Note that @, . = @o. Given an ¢ >0, in view of (7), we can find noe N
such that for n 2= n,

*0

S| dox
5 [
k=n I kl
x1
Hence, in view of (15) and (16), we have for xe(x,,,, X,], n = ng,
S~ B(x) x0 X0
do, & fdcok = [ dot
X + — <g,
90— = } J RPN N P ey
X1 x1
thus
O
(17) p(0+) = <Po(xO)—Z J-?=

On account of (16) we obtain for ke N,

O (X1 +)— @i (x))
Gy (x4) ’

PO+ H)—0(x4y) =
(18)

@i (X0) — @i (X0 —)
Gy (xo)

Now we shall verify that ¢ is a function of finite variation. We have by (16)
and (18)

P(x)—o(x—) =

X0
: dog
Varo|[x .1, ] = o+ +)—@ (44 )|+ lim —
coxppgt |Gyl
S ko)
. xo }
doy  {ou(x; +)— 0 (X))
=@+ +)—0(x +I -
O (X4 @ (X + 1)l Gl ] G, (x,)

0 *1

_ jdi
Gl

X1
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Hence and according to (7) we get
*0
v S| dot
ar |[0, xo] = lp(0+)—@(0) + X G < ®

k=0
X1

Now we shall prove that ¢ fulfils equation (1). Let us fix an ne N and
an x€(x,,,, X,]- Evidently we have

(19)  [gdoof =g(O)[@O+)-0(O]+ lim fedpof+ ¥ | gdeof.
0 nt+ c

k=n+1 (xk+ l,xt]

We get by (16)

q f@ @) STkt 1y
(20) Jgdchf = J- gof ~'de = I gof ~'(x)d ( J. %)
4 f(p) S(p) xy i
S q

S _ Aoy of "
= | 99

—(k+1) — -k
Gy of ~¢FD Gof
J(p) P

for every p, ge(x,+1, %), p <4, ke N,, whence

. dPpi \ S 7" Ppir (X1 +)—=@pr (X))
21 l d = —_— n
21) c-'x:Tl-*J\g vof J' G,of G, (x1)
¢ Tn+1
i ]
d¢n+1_¢n+1(x1+)_¢n+1(x1)
Gn Gn(xl) .
xy

The following equality we get just like (20):

_ doys,of ™ _ Ao+ s
(22) J gdoof = J. Gof —-—Gk , keN,.

(xg + 1.%k) (% 4+ 1,%k) (x1,%0)

Further, we have by (18)

(23) g(x)le(xs1+)—@ (x4 —)]

_ 0 (X1 +) = @p(xy) +‘Pk+l(x0)—¢t+l(x0—)

, keN.
G- (xy) Gy (xo)
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Now on account of (22), (23) and (5) we obtain

24) | gdpof= | gdoof+g(x) [0k s +) =@ (X —)]

(Tx + 1-%4] (xg + 1%}
%0
— J'd(Pl+l_(Pk+l(x0)—¢k+l(x0—)_
G, Gy (xo)

xy

P (X))
Gy (xy)

Pi+1 (xo)—¢n+1(xo—)+¢a(x1 +)— @i (xy)
G (xo) Gi—1(xy)

+

+

xo0

= J‘ %— [h(x) —h(xes+ )]+
k

1

57

|:‘pk(xl+)—(Ph(x1)_‘pk+1(x1+)—¢k+1(xl):l keN.

Gi-1(x1) G (xy)

x0

. . dog
Since lim
k—x Ile

1

=0, we have

lim Ge+1 (X1 +) =P (xy) _

0.
k—w Gy(x,)

Thus by (24) we get

k=n+1
(xx + 1»%k]

x0
<) ® d
(25) Z f gdoof = Z f—g“—h(x,,+,)+h(0+)+
k=n+1 k
e |

Pns 1 (X1 +) = @piy (x4)

G,(x,)

Finally according to (14), (17), (19), (21), (25) and (5) we conclude that

ST

. Gn Gn (xl)

X1

fgd¢of+h(x) =@0+)—h(0+)+ J AQps1  Pns1(X1+) = Pas 1 (x4)
0

0

+ i %‘ei_h(xn+1)+h(0+)+¢"l(xl+)_(p"+l(x1)

k=n+1 k Gn(xl)
*1

+ h(x)
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S ) *0
st d
(=h(ei]+ 3 | Z ke ()
k=n+1 k
x] x4

do, d
((;p+qaox0 ZJW

=¢(0+)+

ST (x)

*1

So ¢ given by (16) fulfils equation (1) in (0, xo]}. The function ¢ may be
uniquely extend on I, to a solution of equation (1). Uniqueness of this
solution we can deduce from Lemma 1.

Remark 1. It follows from Theorems 1, 2 and Lemma 1 that any
solution ¢ of equation (1) may be obtained as a unique extension of the
function ¢,:= ‘pl[n-xol’ where x, is an arbitrary point of I,.

Remark 2. Let us consider solutions of finite variation of the equation
(26) 9(x) = 50 [f (0] +h(x),

where s is a real number. Some results concerning uniqueness and depen-
dence on an arbitrary function of these solutions may be deduced
from Theorems 1 and 2, where g=s in I. These results have been
proved otherwise in Matkowski, Zdun [3] (cf. [3], Theorems 1, 2 and
Corollaries 1, 2).

Now we assume that:

(iv) The function f is absolutely continuous and strictly increasing in I,
0 <f(x) < x for every xel,.

(v) The function g is integrable in / and g # 0 ae.
(vi) The function h is absolutely continuous in I.

LEMMA 2. Suppose that hypotheses (iv) and (v) are fulfilled. If ¢ is an
absolutely continuous solution of equation (3) and, for a certain xo€ly, @ly,,
=c, then ¢ = 0.

Proof. Put

xp]

@*(x):= Var ¢l for xel,.
We have by (3)

*n

(27) @* (X))~ 90*(xpst) = | lglll@af)| for neN,.

Xn+ 1

Since ¢*(x) = ¢*(xo) and g # 0 a.e, we obtain by (27) that ¢|,_, Lxg) = Cn
ne N, where c,:= ¢. According to continuity of ¢ and (3) we conclude that
o =0.
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The following two results have proofs analogous to those presented for
previous theorems.

THEOREM 3. Suppose that hypotheses (iv), (v), (vi) are fulfilled. If ¢ is an
absolutely continuous solution of equation (1), then for every xq,€l,

- ©n
(28) ngo J o<
X1
and
X0
o(xo)— Y. f(—";ﬂ=h(0),
n=0 n
X

where functions ¢,, ne Ny, are given by (5).

THEOREM 4. Let hypotheses (iv), (v), (vi) be fulfilled and let xn€l,.
Suppose that @q: [x,, Xo} = R is an absolutely continuous function and the
sequence (¢,)~ o given by (5) satisfies condition (28). Further, we assume that

*0

(29) o (Xo)— ¥ f g— — h(0).
n=0 n

x1
Then equation (1) has exactly one absolutely continuous solution ¢: I - R
such that @lix, 0 = Po-

Remark analogous to Remark 1 is also true:

Remark 3. Every absolutely continuous solution ¢ of equation (1) may
be obtained as unique extension of the function @¢:= @|i¢, x,» Where X, is an
arbitrary point of I,.

Remark 4. Let us consider absolutely continuous solutions of equation
(26). Again note that some results concerning uniqueness and dependence on
an arbitrary function of these solutions may be deduced from Theorems 3
and 4, where g =5 in I. These results have been proved otherwise in
Matkowski [2] (cf. [2], Theorem 2.11).

From Theorems 3 and 4 we shall deduce two following corollaries.

CoRroLLARY 1. Let hypotheses (iv), (v), (vi) be fulfilled and let ¢ be an
absolutely continuous solution of equation (1). If for a certain xy€el,

o n—1
(30) : )3 l_[ U (xo) =
n=0k=
where
(31) u, (xo):= infess |g|”?, keN,,

[xg + 10%%])
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then there exists a subsequence (k,),n Of the sequence of natural numbers such
‘that

kp=1
(32 lim | Gi(hof*) = o(x)=e(x,)
AT =0 X
uniformly in [x,, xo) and
kp—1
(33) lim Y G,(hofYy =¢ ae. in [x, xo).
nTX k=0

Proof. According to Theorem 3 the sequence (¢,);~, defined by (5)
satisfies condition (28). Note that

x0
K ’ o« n—1
Pn
): J' G. = Z Var ¢,|[x,, xo] n U (xo).
n=0 n n=0 k=0
x1

Hence, in vie.w of (28) and (29) we get

JLI’I; inf Var ¢,|[x,, x¢] = 0.
Let (m,),.~ be a sequence of natural numbers such that
(34) P_.rg Var ¢, |[x;, xo] = 0.

Since ¢,(x,) = @q(x;) for ne N, we have lim @, = @o(x,) uniformly in

[x,, xo]- The equality

n—1 x

(P,,(x) = (pO(x)_kZo f Gk(hofk),, xe[xl’ xO]’ neNO
.= *1

implies
m,—1

im ) [ Gy(hof*y = po—o(x,)

T k=0 x;

uniformly in [x,, x¢].
According to Fatou’s lemma and (34) we conclude that

x0 1)
0< { lim infle), | < lim inf | |@,, | = lim Var ¢, |[x,, xo] = 0.
5 n—x » o x1 " n-wx n

Then for a certain subsequence (k,),.y Of the sequence (m,),.x We have

limg, =0 ae. in [x;, xo]

n—-@®
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or
k=1
im Y G,(hof*y =¢' ae. in [x;, xo).
ATX k=0
Remark 5. Let us replace condition (30) by a stronger one. Suppose
that .
x Mp—1
(35) Z n Uy (xo) = 0,
n=0 k=0

for every subsequence (m,),.x Of the sequence of natural numbers, where
u,(xo), ke Ny, are given by (31). Then the same proof shows that under
hypotheses of Corollary 1 we have

T

Y | Gu(hof™ = p—o(x)

k=0x

uniformly in [x,, x,] and

Z Gi(hof*y = @' in [x,, xo]
k=0

in the norm of the space of all Lebesgue integrable functions (in particular, in
Lebesgue measure).

Note that conditions (30) and (35) are fulfilled if |g| <1 ae. in a
neighbourhood of zero.

Remark 6. Some conditions for the convergence or divergence of series

x n—1

Y TT u(xo)

n=0k=0
have been given by Kuczma [1].
CoRroLLARY 2. Suppose that hypotheses (iv), (v), (vi) are fulfilled. If for a

1
certain xq€ly the function W' Y, — is locally integrable and

k=00
x n—-1 '
(36) Z n v (xo) < ot
n=0k=0
where
(37) v, (xo):= supess [g”", keN,,
¥k + 1%}

then equation (1) has an absolutely continuous solution depending on an
arbitrary function. More precisely, for every absolutely continuous function
©®o: [x1, Xo] = R fulfilling condition (29) there exists exactly one absolutely
continuous solution of equation (1) such that ¢l x5 = Po-
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Proof. Let ¢q: [x;, Xo] = R be an absolutely continuous function fulfil-
ling (29). According to Theorem 4 it is sufficient to show that the sequence
(p)% o given by (5) satisfies condition (28). Let us note that

n—1
o Pl x Fi0em X Gulhar
o EE-E
1
®© x'? ’ ac "On IG
<X %+Zj2*wm
n=0 ¢ n n=0 k=0
x1 31
In view of (36)
x0
o] ® n—1
(39) Z j < Var ggl[x,, xo] Zo n U (Xo) < 00.
n= n k=0
x]
Further, we have
o n—1 < n—1 (hofk € n (hofn—k)l
(hof ™y Y 7
nzo kZO S n= Okz G,-of G,-of* nZOk;l Gyof "
_ fo . & (hOf" k) ax hOf") oC xT (hofn)/
kgl ngk Gof"” Gof"* kzl nzo Gyof" - ngo kgl Gof |’
whence
X0
a n-1 G (hofn)
40 : (hof®y
“0 5, | 5 G| - ,,ZMZI G
x]
o hl
; f jk IGk =
Xn+ 1

Finally, from (38), (39) and (40) we get that condition (28) holds.

Now we shall apply previous results to present two theorems concerning
Lebesgue integrable solutions of equation (2).

Let us assume that:

(vii) The function f is absolutely continuous and strictly increasing in I,
0 < f(x) < x for every xely; f#0 a.e.

(viiiy The function g is measurable and g # 0 a.e. in I.

(ix) The function h is locally integrable in I.

THEOREM 5. Let hypotheses (vii), (viii), (ix) be fulfilled and let ¢: I, > R
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be a locally integrable solution of equation (2). If g/f’ is a locally integrable
Junction and condition (30) holds for a certain xo€l,y, where

4

41) U, (x0): = Infess f—, ke N,,
Exk+ 123 [

then there exists a subsequence (k,),.~ Of the sequence of natural numbers such

that
kp—1

lim Y Ghof*=¢ ae. in [x, x,].

T k=0

Moreover, if condition (35) is fulfilled for every subsequence (m,),.x of the
sequence of natural numbers, where u,(x,), ke N,, are given by (41), then

Y Ghof* = in [xy, xo]

k=0
in the norm of the space of all Lebesgue integrable functions (in particular in
Lebesgue measure).

Proof. Put

cb(x):zj'(p, xel
0
and .
42 H(x):={h, xel.
. 0

Then the function ¢ is an absolutely continuous solution of the equation
(43) B(x) = f fg—,(¢of)'+H(x).
0

Therefore, by Corollary 1 we get the first part of theorem. To prove the
second part it is enough to apply Remark 5.

Problem of the uniqueness of integrable solutions of equation (2) have
been investigated in Matkowski [2] (cf. [2], Theorem 2.7). Results, which
have been proved there, are different from Theorem 5.

THEOREM 6. Suppose that hypotheses (vii), (viii), (ix) are fulfilled and g/f’
is a locally integrable function. If for a certain xy€l, the function

h ¥ UG

is integrable in (0, x,) and condition (36) holds, where

?

U (xo):= supess —, keN,,
(x + 1.2 |g]
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then equation (2) has in (0, x,) the integrable solution depending on an
arbitrary function. More precisely, for every integrable function @q: (X, Xo)
— R there exists essentialy one integrable solution ¢: (0, xo) = R of equation
(2) such that @l x5 = @0 ae.

Proof. Let ¢q: (x;, Xo) = R be an integrable function. Note that

Ghof
|¢0 Z k . J~ J< G hof* )
(44) J 5 |(f) <y 0o m P g,
xy
In view of (36)
(fn) ® n—1°
(45) Z fl#’ol l@ol Z l—[ U (x0) < 0.
IGul n=1k=
Further, we have
w n-1 Gh k :o n—1 h k
46 Y Zf G oy = H‘)—fof.(f")
n=1k=0 n= 1k— k
x
® n- " ho k—n
-EL |l
n+1
@® n f:l hof—h
BERAE
n:"l k o
3 ® " hO - _ @ i .
_kglngh J |Gof 7* .glafak(f)<oo
X+ 1

So we get by (44), (45) and (46)

- | E G,‘hof"|
Z j | L G (f")' <

and we may put

n—1
® 00— Z Gyhof™
=X f U,
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Now let us set

Pp(x):= [ @o+c, xel[xy, xo}

*1

and define function H by (42). It is easy to show that

@,

(DO(XO)—.EO J\ [G—"J = H(0),

LY
where functions @,, ne N, are given by

X0
L _n—l i .
¢n (X) - d)0 (X) kzo (fk), (HOf ) .

1
Now it is sufficient to apply Corollary 2 to equation (43) and function &,.

If we confine ourselves to the integrable solutions of equation (2), then
Theorem 6 generalizes Theorem 2.10 which has been proved in Matkowski

[2].
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