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On the existence and uniqueness of solutions of the
Darboux problem for partial differential-functional
equations in a Banach space

by M. Kwarisz and J. Turo (Sopot)

Abstract. In this paper we consider the Darboux problem for partial differential-
functional equations of the form

(1) ’u’fll(w’ y) = F(w! ?l,’w(', .)’u.‘t(" '), “y('n ');“zy(’; ‘)

Uzy(a, (@, 9), B (@, 9))s -, Uzl (2, 9), B (2, 9))),
with boundary conditions

u(z,0) =0o(x) for 0<z<a,
)
uw(0,y) =t(y) for 0K y<bh,

where F: 4 x [C(4, E)]* X E°—E, o: [0, a] - H, t: [0, b]— E, and F denotfes a Banach
space.

In this paper we prove the existence and uniqueness of solutions of the Darboux
problem (1)-(2) by the method of successive approximations, imposing on the op-
erator F certain general regularity conditions. ‘

We also give the erior estimations and a theorem on the continuous dependence
of golutions on the right-hand side of equation (1).

The main part of the paper constitutes considerations connected with the
above-mentioned problems in the case where the suitable function appearing in the
estimation of the norm of increment of operator F is linear. We formulate in this
cage sufficient conditions for the existence of solutions of equation (1), exploiting
the specific features of the dependence of the operator F on the last » +4 variables;
in particular, in these conditions there appear connections between the estimations
imposed on the operator F, the functions a; and §;, t = 1, ..., .

All our results have been obtained by using the general idea of Wazewski [9]
(see also [1], [4], [5]).

Let F be a Banach space with norm |-||, 4 = [0, a] X [0, b], and
#: 4—FE (we shall continue to denote the function u of the variables @
and y, (#, y)e 4, also by the symbol u(-, -) or (u(& n)),)-

We shall consider the partial differential-functional equation

1)  ugy(z,y) =F(m7 Yy Uy o)y Ug( sy 2 )y wy( vy *)y Ugy (o) *), '“’xy(al(w1 Y),

Bi(@y )y ees tgy(ai(@, 9), Bu(2, 9))),

EO-19 4
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with boundary conditions

(2)

u(x,0) =co(z) for 0<r<a,
KY<

u(0,y) =z(y) for 0<y<b,
where ¢: [0,a] —FE and 7: [0, b] > E are functions of the class C? satis-
fying the conditions ¢(0) = 7(0), the operator F is defined on a suitable
set (more exact assumptions will be given further on) and the known
functions a;, f;, a;: 4 ->[0,a), f;: 4—->[0,b],71=1,...,r, are continuous.

We shall be interested only in solutions # which are continuous on
4 together with their partial derivatives u,, #,, %.,. The set of all such
functions will be denoted by C*(4, E). The problem consisting in finding
a solution of equation (1) fulfilling conditions (2) will be called the Darboux
problem.

In this paper we prove the existence and uniqueness of the Darboux
problem (1)—(2) by the method of successive approximations. We also
give the error estimations and a theorem on the continuous dependence
of solutions on the right-hand side of equation (1). Our results are gener-
alizations of the result of paper [5]. All our results are obtained by using
the general idea of Wazewski [9] (see also [1], [4], [5]).

The Darboux problem (1)-(2) is equivalent to the problem of the
solution of the equation

& 7
8)  2(@,9) =F(z,9,(c(&)+ri)—00)+ [ [ 2(s,t)dsd),,
[ ]

n 3
‘O'l(f)‘l" fz(‘f,t)dt)d, (T’("?)"f' fz(sy ﬂ)ds)m (z(fy"?))m
0 0

z(al(w’ Y), Bi(z, ?/))7 ceey z(a,(w, Y), B.(z, 'y)))r
where

z v
u(@,y) = o(@)+(y)—o(0)+ [ [a(s,t)dsdt.

¢ 0
Putting in equation (3)

Fls 4y (205 )ar (DCE, M))ar (G(E) M)as (8085 M)as T2y ves 1)
= F(wa Y, (“(E)+T(ﬂ)—“(0)+z(57 77))47 (0"_('5)"‘?(5’ ’7))4’ (7’(’7) +

+ (& M)as (808 M)ar 71, -1 1),
we get an equation of the form

& n n 3
(4) 2(z,y) =f(m7?/7(f fz(syt)d'gdt)da(fZ(E,t)dt)m (fz(s, n)ds)‘,,
) 0 0

(=&, )as 2(aa(2, 9), Bal, 9) - 2(a(25 9), Brla, 9)),

with which we ghall occupy oneselves.
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In this equation the dependence of the operator f on the last »1 4
variables has been distinguished with regard to the fact that further on
sufficient conditions will be formulated for the existence of the solution
of the equation exploiting the specific features of the above-mentioned
dependence; in particular, in these conditions there appear connections
between the estimations imposed on the operator f, the functions a; and §;
(see Theorem 8). The existence and uniqueness of the Darboux problem
and its generalization to equations of a more special form than (1) was
considered by many authors; for more detailed information and references

see [3], [T], [2]. Especially paper [3] gives good information about the
problems in question.

The main difference between our case and that considered by other
authors is thus: the right-hand side of equation (1) depends on u,, and
our conditions for the existence and uniqueness of solution of problem
(1)-(2) involve, as was pointed above, some relations between the esti-
mations imposed on the operator F and on the functions a;, ;. In our
consideration also we pay more attention to the error estimations of the
approximate solutions of problem (1)—(2).

1. Assumptions and lemmas. We introduce

AssumpTIiON H,. Suppose that

1° the operator f: Ax[C(4,E)*x E—~E 1is continuous (C(4, E)
will denote the class of all E-valued fumctions continuous on A);
20 if 2¢C(4, E) and

v(z,y) ( z, Y, (f f (s, tdsdt)A,(f &,1) dt)d,(jz(s,n)ds)d,

(Z(E, "7))47 z(al(m, ¥), B, ?/))1 EY) z(“-(-’”; ¥), B, (=, ?/)))7
then ve C(4, E);

30 the functions a;: 4->[0,a), B;: A—[0,b], i =1,...,», are con-
tinuous on A4;

40 there exists a functional Q: A x [Cy(4, RL)]}* x R}, —~R. (Cy(4, RL)
denote the class of all R -valued functions upper semwontmuous on A)
which fulfils the condim’on 2(z,9,0,...,0) =0, and 2 has the following
properties: '

(a) if geC(4, R) and

§ 0 ] &
oi@, 9) = (o, 9,( [ [ gts, vdsat), ( [ 9(&, 0] ( [ 906, ms)a,

(g(E: "7))47 g(al(mv Y), Bi(z, ?/))7 cery g(a,(w, ), B,(x, f‘/))))
then ve 0(4, RL),
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(b) if ?h?f C(4, RY) and g(z,y) < g (,y) fO" (z, y)e 4, then

( yya(ffgs td'gdt)m(fg (&,1)d )A’(fg 377)‘13)47(9 5177))41’
g(a1 2, Y), Br(w, y ) 19(0 ﬂ(myy)))

& 7 n
<o,y [ fE(s,ndsdt)A,(fZ<s,t)dt)d,(f?(s,n)ds)m(?(s,n))d,

Bla(@, ), (@, 9), oy a2, 1), @, 9))
Jor (v, y)e 4,

¢) if g, 0(4, Ri)} Ini1<gnsn =0,1,..., and limg,(z, ¥) = g(x, ¥),
then no>eo

& n /] &
lim @ (2, y, ([ [ gals, 0dsat),, ([ ga(&, 0a1),, ([ gu(s, mds) s (908, Dy
o0 00 0 0
Ialas@, 9), B2(@, 9), -, Galas (@), (e, W)
§n 7 &
— 2(a,y, (ffg(s,t)dsdt)d,(fg(s,t)dt)d,(fg(s,mds)d, (9(&, m) 4y

gla(z ﬂl(w,y o gz, y), B (2 ,y)))
Jor (z,y)e 4;
5° moreover, for any (x, vy, &, p’, ¢*, 8% 7', ..., ) e AX [0(4, B)] X F,
1 = 1,2, we have the inequality
(8)  [[flm:y, (s ) ar (P&, 0) s (@(Ey D)y (82 (Er ) ay 7y ooy 1) =
_f(wy Y, (za(g’ "7))4’ (P2(57 ")))A, (q2(§1 "7))4’ (32(57 "7))4, My eens 7'3)

< Qe g, (IR (&, n)—22(& D) 45 (102 (&5 ) — 22 (&5 W) 4
(lg* (&, m)— (&, D)) )
(Is*(&y 1) —82(&, M) ay I =705 -y Wb —221) -
AssuMpTION H,. Suppose that

10 there exists a mon-negative and continuous function g: A—~R_ being
a solution of the inequality

& n §
(6) ‘Q(mv Y, (ffg(sr t)det)Ay(f g(&, t)dt)dy(f g(s, n)ds)d,(g(f, 77))47
00 0 0

glas@, v), Bi(@, 9); .- 9(a (@, ), B, ) + @, ) < 9@, 9),
where

h(wiy) = 8up 8sup ”f(V76107"-70)”5

0<y<z 0Oy
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20 in the class of functions satisfying the condition 0 < ¢(z, y) < ¢ (=, ¥),
(xyy)e A, the funclion g, g(x,y) =0, (x,y)e 4, is the only upper semi-
continuous solution of the equation

&1 7. ¢
(M g(@,) = 2a,v,(f [ gle, ndsdi),, ([ 9(&, D), ([ gis, mas),,
00 0 0

(9065 1)0r 9@ (@, 9), Bula, 9), -+, 9(a (2, 9), Brla, 9)).
Remark 1. It is easy to prove that conditions 1°, 20, of H, are ful-
filled if inequality (6) has the form

z Yy

Kl(ofaf g(s, t)dsdt) + K, (fg(w,t)dt) +Ka(fg(s,y)d3) LK, (9@, 9)+

+ > Mygleai(@, v), Bi(@, y) + h(z, 9) < g(2, ),

=1

where K;, j =1,2,3,4 and M;,i =1,..., are hon-nega,tive constants
and

Kiab+ K,b+Kea+K,+ ) M, <1.

i=1
AsSSUMPTION H;. Suppose that 2 is defined in assumption H, and

1° the functional L2 has the following Volterra property: if the functions g
and h, upper semicontinuous and belonging to the domain of the functional £,
Julfil the condition:

g(8, %) = h(syt) for 0 <s< @ 0<<I<Y and oz, y) <z, (2, ¥) <Y,
1 =1,...,» then

& n n &
'Q(“"’y’ (ffg(s’t)d'gdt)d,(f g(fyt)dt)p(fg(s,ﬂ)ds)A’(g(E"7))A1

9(01(‘”’ Y), Bz, y))’ ceey g(a-(wy ¥), B.(w, y)))
&

7 n §
= 2(a,y, (ff hs, t)dsdt)d,(of h(e,t)dt)d,(! his, m)ds),, (b (£, ).,

h(al(m, Y), B1(, ?/))7 ceey h(a,(:v, ¥), B, (2, ?/)))

For the sake of emphasizing this property of functional Q we shall
continue to denote the lefi-hand side of the above equation by the symbol

£ n n ¢
Q(wv_yy (ffg(svt)dsdt)dwa(f g(fat)dt)dwy(f g(saﬂ)ds)dwy(g(flﬂ))dw7

9(ax(@, 9), Ba(@, W) -, 9(w @, 9), Bl 9))s

in a similar way we define the Volterra properties of the operator f;
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20 there emists a fumction Q*%: Ax R} —>R., continuous and non-
decreasing with respect to z,p, q, s, 1y, ..., 7,, which fulfils the condition
Q*(2,94,0,...,0) =0, and the inequality

& n &
Q(w7y7(6fJg(s’ t)det)A_w’ (6[ g(‘51t)dt)dw7(!g(sy ﬂ)ds)dwy(g(f, 77))41,”!
g(al(wv Y), Br(®, y))r seey g(a,(a:, Y), B.(z, y)))

Ty v x
<@ (@v, ] [ats, nasat, [ g@it) @, [ g(s,9)ds, 9@, ),

9(ka@, Ly), .., 9,3, L,Y))

holds for aj(w,y) < k@, Bi(x, ) <Ly, 0<k; <1, 0<[;<1,i=1,...,
and non-decreasing ¢, ge C(4, R.);

30 there ewists a function w: A4 — R, continuous and non-decreasing,
which ts a solution of the inequality

Ty v T
Mz, y, [ [ g(s,0dsdt, [ g(z,0)dt, [ g(s,9)ds, g(2,9), g(ks2,119), ...
090 0 0

ces 9,0, 1Y) +h(@, ¥) < g (2, 9),

where h(xz,y) is defined in (6) and k;,l; are given constanis, 0 < k; <1,
Oéliél,i=1,...,v; ’

40 in the class of functions satisfying the condition 0 < g(x, y) < w(z, ¥),

(z, y)e 4, the function g, g(z,y) =0, (z,y)e A, is the only upper semi-
continuous solution of the equation

z Yy v €T
g, y) = Qo y, [ [ g(s,dsdt, [ g(w,0)at, [ g(s,9)ds, g(z, y),
090 [1] 0

g(ky@, 1,y), -, g(k,a, L,y)).
Let us define the sequence {g,} by the relations

golz,y) =g(x,y),
(8)

¢ £
funa(@,9) = (2,9, (ffngn(s, t)dsdt)A,(fﬂgn(s, i), ( [ gals, nds)
00 0 0

(gn(E7 ’7))47 gn(al(wv Y), (@, ?I)), caey gn(av(wy v), B.(x, '.'/)))1
(x,y)ed,n =0,1, ...,

where the function g is from assumption H,.
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LEMMA 1. If conditions 4° of H, and H, are satisfied, then

(9) 0< gpi (2, ) < gulz, ) < G2, 9), (wyy)ed, n = 0,1, ...,

u

g, > 0,

where the sign —> denotes uniform convergence.
Proof. From relations (6) and (8) we get

& n 7 &
g1(@,9) = 2(o,9, ([ [ gols, tydsat) . ( [ go(&, 0),, ([ gots, ),
00 0 0
(9008, M)y 9oea(, 9), Bu@, ), -5 9ol (25 9); By, 9))
§ 7 7 3
<Q(z,y,(f [ 56, nasai),, ([ 5, 0a),,(f 365, mds),,

(g(fr 77))47 g(al(m1 Y), B1(, ’7))7 ceey g(a,(a;, Y), B,(x, ?/))) +h(x,¥)
<g@,y) =902, ), (z,9)ed.
Further, if we suppose that

gn(“";fy)<gn—1(a"yy)<§(w’y)’ (z,y)e 4,
then

£ n n
guir(@,9) = @(0,9,( [ [ guls, st],, ( [ guis, 0a),,

3
(f gn (85 ﬂ)ds)dy(gn(fa "7)): gn(al(a"a y), Bz, f’/))’
ceey g,,('a,(w, Y), B,(x, ?/)))

§ n
< 'Q(wv?h(ffgn—l(sit)ds‘zt)dr(f gn—l(Ert)dt)da
0o 0

( f In-1(8, ﬂ)ds)d; (gn—I(E’ ’7))4’ gn—l(al(a"1 ¥)y Bz, ?/))1
0

ceey gn—l(av(w’ v), B,(x, ?/))) = g,;(w, Y) < g(.’ﬂ, Y), (,y)e 4.

Since the sequence of continuous functions g, is non-increasing and
bounded from below, it is convergent to a certain upper semi-continuous
function ¢ such that 0 < ¢(x, y) < g(w,vy) for (2,y)e 4. By Lebesgue’s
theorem and the continuity of the functional 2 it follows that the function ¢
satisfies equation (7).

Now from assumption H, we have ¢(z,y) =0, (z,y)e 4.

The uniform convergence of the sequence {g,} in A follows from
Dini’s theorem. Thus the proof of Lemma 1 is complete.
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Let us define the sequence {g,} by the relations
(10)  go(z,y) = w(=, y),

z ¥ v z
Guir (@, 9) = 2@, y, [ [ guls, OVdsdt, [ gu(z,0)dt, [ Gu(s,y)ds,
00 0 : 0

én("”a Y), gn(klma LY)y ey gn(kvm’ lvy))$ (myy)ed, n =0,1,...

We then have

LEMMA 2. If assumption Hy is satisfied, and

10 0<agmy)<ka, 0Bz y)<ly, O<k<l O0<L<I,
i=1...,% (%94,

20 the function Q% is non-decreasing with respect to all variables, then

(1)  the functions g,, n = 0,1, ..., are non-decreasing with respect
to © and y,

(ii) 0<§n+1(.’b‘, Y) < Gulx, y) < w(x, y), (®,y)edy, n=01,...,
§n£>0, in 4,

(iii) the function w satisfies inequality (6) and if g(x, y) < w(z, ¥),

then 0 < g,(x, y) < ﬁn(w, ¥), (@, y)ed, n=0,1,...

Remark 2. The introduction of the comparative function 2% and
sequence (10) connected with it obviously does not give us better esti-
mations of the approximate solutions; still, it allows us to simplify the
considerations referring to the equation of Volterra’s type in an essential

way and, in particular, it permits us to give effective conditions under
which conditions 3° and 4° of assumptions H, are fulfilled.

2. The existence of a solution of equation (4). In order to prove the
existence of a solution of equation (4) we shall show that the sequence
{#,} defined by the relations

%@, y) =0,
(11)

: § 7 /] &
2y (@, ) =f(w’ y’(ffzn('g, t)d'gdt)ny(f 2, (&, t)dt)dy(fzn(s7 ﬂ)ds)m
0 0 0 0

(zn(‘E’ "7))47 zn(al(w’ Y), Bu(@, ?/)); RS z,,(a,(a;, Y),s B,(=, ?/)))7
(z,y)ed, n =0,1, ...,

is uniformly convergent to a solution of equation (4).
We have

THEOREM 1. If assumptions H, and H, are satisfied, then there exists
in the set A a continuous solution z of equation (4). The sequence {z,} defined
by (11) converges uniformly on A to z, as n — oo; moreover, the estimations

(12) “E(évyy)_zn(w’?/)|‘<gn(w,y)’ (z,y)edy, n =0,1,...,
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and
(13) le(z, I < g(@,y), (®,9)e4d
hold true.
The solution z of (4) is unique in the class of functions satisfying relation
(13).

Proof. We shall prove that sequence {z,(x, ¥)}, (2, ¥)e 4, fulfils the
condition

(14) (@, W< g(x, 9), (x,9)ed, n=0,1,...
Evidently
leo(2, Yl =0< g(z, y), (@, y)e4d.

Let us suppose that inequality (14) is true for » > 0. By the defi-
nition of z,(x, ¥), (z, ¥)e 4, and condition 5° of H,, we have

. & n n 3
nsr (@, 9| = “f(w,y,( [ [ watsynndsdt) ([ 2u(&,0082) ,,( [ 2u(s, 1)ds)s,

(z’n’(fi ﬂ))A’ zn(a1(w, y), ﬁl(w, y)), e
~-azn(a,(w,y),ﬁ.(m,y)))-f(x,y,0, ...,o)+f<m,g,o,...,o)||

& n n
< 2(e,u,( [ [ leats, tlldsat),,( [ len(s, ON10t),,

§
([ eatsmlids) s (lea (&5 Dar len(as(@, 9), Bul@ )l -

Y “zn(av(xf ¥), B, (=, ?/))ll)"l‘h(a” Y)

£ 9 1 ¢
gQ(m,y,(ffE(s,t)dsdt)d,(f§(E,t)dt)4,(f§(3r’7)d3)4a

@(5’ "7))47 g(al(-”’ Y), pi(x, ?/))1 ceey g(av("”’ ¥), B.(x, y))) +

+h(z,y)<g(®,y)e .
Now we obtain (14) by induction.
Further, we prove that

(13)  |Rpyr(@y y) =2 (@, PN < g2, y), (w,9)edy, n=0,1,...,
r=0,1,...
By (14) we have .
I (25 4) —20(2, ¥)I| = llg (2, I < g (%, Y) = go(z, ),
(¢, y)ed, r=20,1,...
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Further, if we suppose that (15) is true for =, r > 0, then

& 9
W2 iri1 (@ ¥) — 21 (2, Y| = ”f(a?, Y, (f f Zpir(8, t)dsdt)d,
¢ 0

n 3
([ 2nerEs D), ( [ 2narls, Mas) s (Engr (€, M)
0 0
zn+r(a1(m’ Y), (2, ?/)), ceey zn+,.(a,(m, y), B,(x, y))) —

§ 7 n
"f(wsya(ffzn(syt)d'gdt)w(fzn(‘f’t)dt)d’
§
([ 2ats, mds) (2, m)ays 2aloa(@r 90, Bay 9), ..

0

ooy Zlay (2, 9), B, (2, y)))”

&9 7
< 2(2,5,( [ [ lensrls, 1 —2als, Dl dst),, [ lonsrl &, 1) —2a(E, O],
0 0 0

§
([ Wensr(ss M —2a(8) Mld8)as (s (€5 1) = 20(&5 Dllhas

”zn-f-r(al(w’ Y), B1(z, y)) _zn(al(a;) Y), Bi(z, ?I))H,
ceey Hzn+r(aw(w’ Y), B,(z, y))—zn(a,(w, Y), B,(w, ?/))“)

. §n n &
< Q(wf.’/’(f f gn(sat)det)A’(fgn(g,t)dt)dy(fgn('g’ n)ds)dy
(gn(57 77))47 gn(al(wy ¥), Bi(z, y))y “eey gn(an(a'/'y ¥), B, (@, 2/)))

=gn+l(w1y)7 (,y)e 4.
Now we obtain (15) by induction.

Because of Lemma 1 g, % 0in 4, we have from (15) 2, — % in 4. The
continuity of Z follows from the uniform convergence of the sequence
{#,} and the continuity of all functions z,.

If r > oo, then (15) gives estimation (12). Estimation (13) is implied
by (14).

It is obvious that zZ is a solution of (4).

To prove that the solution Z is a unique solution of (4) in the class
pointed out above let us suppose that there exists another solution 2
defined in 4 and such that zZ(x, y) # 2(x, y) for (z,y)e 4, and ||z(z, ¥)|
< §(@,9) for (v, y)e 4.

We get

”é(way)_zn(x7 I < ga (2, ¥), (@, y)e dy, n=0,1,...,
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by induction, and hence it follows that Z(z, y) = %(«, y), (2, y)e 4. This
contradiction proves the uniqueness of z in the class of functions satis-
fying relation (13). Thus the proof of Theorem 1 is completed.

Now we can formulate an analogous theorem for an equation of
Volterra’s type, namely for equation (4), in which operator f has the
Volterra property (see condition 1° of Hj).

THEOREM 2. If assumption H,, H; and conditions 1°-2° of Lemma 2
are fulfilled, then the assertion of Theorem 1 is true, and the estimations

Z(z, ¥) — 2, (@, )| < 51. (z, ¥), (zyy)ed, » =0,1, ...,
and
Z(z, )| < w(z, ¥), (z,y)e 4,
hold true.

Proof. We prove that assumption H, is fulfilled. By Lemma 2 we
see that the function w satisfies inequality (6). Now we put § = w. Let
g be an upper semicontinuous solution of (7) in the class 0 < g(z, y)
< w2, Y), (v,9)e 4. We get

Ogg(w7y)<§n(m’y)i (w7y)€A7 n=0,1,...,

by induetion, and because ¢, (z, y) % 0 for (x,y)e 4, we have g(z,y) =0,
{z, y)e A. Hence assumption H, is fulfilled.

Since all assumption of Theorem 1 are fulfilled, and g, (2, ¥) < g.(z, ¥),
(x,y)e A, Theorem 2 is proved.

Remark 3. Equation (1) may have various particular forms depending
on the form of the operator F, eg.:

(a) If
F(‘”a Yyu(y ), ug(-, .')’ Uy ( vy ")y Ugy(*2 )5 uxy(al(ma Y), Bi(, ?/))’
cery uzy(av(w’ Y), B.(z, ?/)))
= F(wy Y, u(?l(?’ Y), Oy(2, y))y ux(yz(a’y Y), 0(w, ?/))1
Uy (72(®, ¥), 85(x, 9)), ulalz, v), B(z, v))),

then we obtain an equation of the form
Ugy (2, Y) = F(a)y Y, u(?’l(w7 ¥), 6, (x, y))y uz(yﬂ(wf Y), d2(x, y)):
Uy (v5(2, Y), 8a(2, ¥)), Uy (a(@, ¥), Blz, 9))).

This equation has been considered in [5] for E = R.

(b) If F = Flx,y, u(x,y), %, (=, ¥), u,(2,9)), then we obtain the
partial differential equation

uzy(a'" Y) = F(-’”: Y, u(x,y), u(z,y), '“'y(wa y))’
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and from Theorem 1 we get some results contained in [3], [7], where the
functional £ has the form

[ v x
Q=ols,y, [ [g(s,0)dsds, [ g(@,0)at, [ g(s,y)ds).
00 0 0

(¢) It ¥ = F(z,y, u(x, y), 4y (, ¥)), then we obtain the equation

uzy(w’ ?/) = F(:L‘, Yy, u(m7 ?/)7 “a:u(mr y)):

and for £ = R! from Theorem 1 we get some results contained in [8],
namely

Q= coffg(s,t)dsdt—l-clg(w, Y), where ¢,>0, 0 <¢, <1.
> 0

d) If

F =Fo,y,%(2,9), %@,9), 4, 9),
0ffg(a;,y,s,t,u(s,t),u,,(.sr,t),u,(s,t))dsdt),

then we obtain an equation of the form

Uy (@, ) = P2, 9, u(@, 9), u,(x, 9), v, (@, ),

fofug(m, Y, 8, Ty u(S, t), ug(s, 1), u(s, t))dsdt),

which has been considered in [6].

3. Uniqueness theorem. Now we give conditions under which equa-
tion (4) has at most one solution; these conditions do not guarantee
existence. We have

THEOREM 3. If assumption H, is satisfied and the function m, m(z,y) =0,
(z, y)e A, is the only mon-negative, upper semicontinuous solution of the
inequality

16)  m(@,9) < 2o, y, | f fmis, nasa,, ( f m(, 1)) ,
£
([m(s, nds),s (m(&, )ss m(as(@, 9), Bu(@, 9), .-

ceny m(av(wd y),ﬂ,(x,y))), (@, y)e 4,

then equation (4) has at mosi one solution in the set A.
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Proof. Let us suppose that there exist two solutions, £ and 5, of

equation (4), defined in A and such that z(z, y) % 2(a, ¥), (2, y)e 4. Now
from condition 5° of H, we have

1% (@, 9) % (@, )| = ”f(w,y,(ofej %(s,t)dsdt)‘,,(of"%w,t)dt)d,
(fé(s, nds) 5 (2 (&, m)ar Zla(2, 9), Bl 9), ...
oos Fla @, ), Arla, ) -
—f(w,y,(af:fz’.(s,t)dsdt)d,(ofqé(e,tm)d,
(ofeéw,n)ds)‘,,(§<s,n))d,é'(m(w,y),ﬂl(w,y)),...,5(a.<w,y),ﬁ,(w,y)))H
< Q(wy(fef 12 (s, 1) =3 (s, 1) dsd) ,,

n . § -
([ 17, 0—2, o1a),,( [ 1726,m—2s, nids),,
0 0

(”5(5’ 7))_;(59 "7)||)A7 ”2(01(‘1’7 Y), B1(z, 'y))—Z(al(a’), Y), Bz, ?/))“’

o [l @, 9), 8@, ) —Ela(@, 9), B.(2, 9))-
Putting
m(w,y) = (&(z, y) —2(x, Y, (=,y)e4,
we have from (16) that m(x,y) =0 for (x,y)e 4, i.e. #(x,y) =2 (=, y),
(z, y)e 4. This contradiction proves Theorem 3.

Remark 4. If assumption H, is satisfied, then the function m,
m(z, y) = 0 for (z, ¥)e 4, is the only upper semicontinuous solution of (16)
in the class 0 < m(z, ¥) < g(x, v), (z, ¥)e A.

Indeed, we can prove by induction that

o< m@,y)<gnl(z,9), (z,4)ed, n=0,1,...,
and if n— oo, then, in view of Lemma 1, we have m(z, y) = 0 for (x, y)e 4.

‘Remark 5. If assumption H,, conditions 1°-2° of H, and condi-
tions 1°-2° of Lemma 2 are satisfied, and the function ¢, g(z,y) =0,
(w, y)e 4, is the only non-negative, non-decreasing, upper semicontin-
uous solution of the inequality

T

T Y Y
17 9@,y < e,y, [ [ g6, 0dsde, [ g, 0dt, [ g(s,y)ds,
0 0 0

0

9(z,y), gk, Ly), ..., g(k,a:,l,y)), (z,y)e 4,
then equation (4) has at most one solution.
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4. Continuous dependence of solutions on the right-hand side of
equation (4). Let us consider the second equation

& 9 7
(18) p(@,y) =Plo,y,([ [ p(s,vdsat),, ([ (&, 0d),, fep(s,n)dsd,
[ ) 0 0

(p(‘f’ "7))47 p(61(x1 ), B1(=, ?/))’ -'-’P(ﬁr(my ¥), B, (=, f’l)))’

i

where the functions P, a;, 5;, ¢ = 1,...,», have the same properties as
fy a;y-B;y 1 =1,...,», given in assumption H,.
Now we have

THEOREM 4. If assumption H, is satisfied, and
1° Z and P are solutions of equations (4) and (18) respectively,

2° the sequemce {u,(x,y)} defined by the relations
& n
Uny1(Ty Y) = Q(wa Y, (f fun(35 t)d‘?dt)dy (f Un (& t)dt)dv
00 0
£
(f ’Mu(S, W)ds)d, (%,,.(E, 77))4, un(al(mv y)’ ﬂl(w7 y))’ v
0
-~-;un(“v(“’:?f);ﬂv(m7y)))+z(wry); n=0,1,...,

Junction u, being continuous and such that

uo(@, ¥) = Z(z, )| +112(z, ¥)i, (z,y)ed,
and

§ n H
h(z,y) = Hf(m7?/r(6f6f2—9(srt)d3dt)41 (fﬁ(gvt)at)d’(! ﬁ(s’ﬂ)ds)dr

(1—7(57 77))4’ ﬁ(al(wy Y) Bi(z, y)); ceey f’(a'(x, ¥), B, (x, y)))_ﬁ(xy Y)

’

(iL', y)f A&
has the limit w(xz, y) for (z,y)e A4,
then
(19) Ili(v’vyy)—?(x,y)ll<ﬁ(m,y), (-’L‘,y)ed.

Proof. Let

u(z,y) = |z(z, y) =P, Pl, (x,9)e 4.
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Thus for (z,y)e 4 we have

£ n n 3
u(@,y) < |fla,u, ([ [ 20s,0a8),, ([ 26, 0a),, ([ 25, mas),,

(E(E, ’7))47 2(al(‘v’ ¥), b(z, y))a ) E(a,(w, v), B,(x, y))) -

& 7 7 &
~{@y: ([ [ (s, vasat),, ([ 5 0a),, ([ B, mas),,
0 0 0 0

(B, M)as Blar(@, ), e, )5 -y Blar(a, 1), Bula, )|+
& 7 &
+ ”f(m’ Y, (f f p(s, t)det)A~ (f p(¢&, t)dt)dv (f p(s, ﬂ)ds)d7
( 1"7)):17?(01(“9’?/) B ( 7?/ 719(‘1 ,y),ﬁ;(m,y)))—ﬁ(:v, y)ﬁ

<Q(o ,y,(f flzs 1) —Bls, Dlldsdt), (f'||z(e,t>—fo(5,t>||dt)4,

(fnz (s, m)—B(s, n)ids),, (IE(&, ) —B(&, D)a)

[Z(ar (2, 9), Br(2, 9)) —Blas(@, 9), Ba(2, 9, .-
s [Elant@, ), Al )~ Bla (@, ), B.(@, 9]+, 0).
Since ’
(@, y) < 2(z, 9|+ 122, PI< uolw,9), (2,9)e 4,
from the above consideration we get
u(z, y) < u,(z,y), (z,y)ed,n=0,1,...,

by induction.
Inequality (19) is implied by the above inequality as n — oo.
Remark 6. From the proof of Theorem 4 it follows that this theorem

is true if there exists a non-negative and continuous function %, defined.
in the set A and satisfying the inequality

¢ 9 7 £
.Q(m,y,(f fko(s,t)dsdt)d,(f ko€, 0a1) , ([ Fols, m)ds) 5
0 0

(ko(Ey"? )Aa ko(al )y Ba(z, )) ceey ko(a,,(a;,y),ﬂ,(w, y)))+

+ma'x[z(a7a Y)y wo(@, PNI< ko(2,9), (2,9)e .
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Indeed, now in the class of upper semicontinuous functions satis-

fying the condition 0 < g(x, ¥) < ko(2, ¥), (%, ¥) € 4, there exists a function k
which is a solution of the equation

§ n 7 3
2(o,9, ([ [ 9(s,0dsdt),, ([ g, 0a),, ([ g(s,mds),, (g(&, M),
0 0 0 0

g(al(m’ ¥), Bz, y))v ceey g(a,,(w, Y), B, (=, y))) +

+E(x7 Y) = g(x,y), (z,y)e 4.
Put

Fan(@,9) = (2,9, (ff"ms,t)dsdt)d, (fkn(s, t)di)

.
([ Eals, m)ds) ,, (kn(&s )as Bulaz(, ), Ba(@, W), -

ooy kn(av(way)’ﬁv(wv?/)))‘*‘z(wr?/)v (Z,9)ed, n =0,1, ...
We see that

U (@, Y) < kp (2, ¥), ka2, y) < ko, y), (yy)ed, n =0,1, ...,

and hence u(x,y)<k,(z,¥), (,y)ed, n =0,1,...(u(x,y) 18 defined
in the proof of Theorem 4). From the last inequality we get

Up (2, ¥) > u(z, ¥), (w,y)e 4,
and u(z,y) <Az, y)<k,y), (=, y)ed.

Theorem 4 implies for an equation of Volterra’s type

THEOREM 5. If the assumptions of Theorem 4 (except 2°) and conditions
1°-2° of Lemma 2 are satisfied, and the sequence {i,}, defined by the re-
lations

@o(x, y) = sup sup {|Z(y, A +IB(y, Oil}, (2,y)ed,
0<y<z 0<I<y

y

T Yy x
B2, 9) = Q* (2,9, [ [ (s, t)dsdt, [ @,(2,0)a, [ i,(s,y)ds,
0 0 0

0

W (2, 9), T2, 1Y), ...y (b2, LY)) + sup  sup Ky, 9),

0I<y<se 0Oy

for (x,y)e A, n = 0,1, ..., has the Iimit' @(z,y), (%, y)e A, then

(20) [Ié(m,y)—ﬁ(w,y)llgﬁ(w, Y), (w,y)eA.
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Proof. It is obvious that the functions %, are non-decreasing for
(z,y)e 4, n = 0,1, ... Further, we get
Un (T, Y) < Uyl y)y, (2,9)ed, n=0,1,...,
by induction, where the sequence {«,} is defined in condition 2° of Theorem
4. Hence u(x, ¥) < 4, (2, 9), (2, 9)e 4y n = 0,1, ... (u(2yy) is defined in
the proof of Theorem 4), and if n - oo, then we have (20).

5. The case of the functional 2 being linear in r;, ¢ = 1,...,v. We
are now going to consider patrticular forms of the functional 2 permitting
us to give effective conditions for fulfilling assumptions H, or H,.

At first we assume Q(x, ¥, 2, Dy @y $, 71y -y 1)) = Z'li(m, Y)r;y Ai (2, )
>0,1=1,...,7 (©,y)e 4. =1
Now equation (1) is a purely functional one; the discusion of this

case is necessary for further considerations.
Let

af’_o(w’ y) ==, a:_?-'l-.i"fnﬂ(ma y) = il,“”fnﬂ(aio(w’ Y), ﬂio (%, y));
(21) ﬁ;o(m, y) =y, ::n;--lumﬂ(w’ ?/) — ”""'MH(Q,-O(J), y)’ ﬂio(wy :l/)),

i 1
;'oo(w’ y) = —, }*:f+1 1n+1(-"v7 Y)

= ki@, AT g, (2, ), B (@, ),
where o;(z, ¥), Bi(x, y) and A;(z, y), (x,y)ed, i =1,...,», are as in as-
sumption H,. o
It is obvious that a® "™(@,y)e[0,a]l, B "(x,y)e[0,b] for
{(,y)ed, n =0,1,..
Now we formulate lemmas by which assumption H, is fulfilled in
this special case.

LEMumA 3. For any function h: AR the condition

(22) 2 2 21"‘ """ ™ (@, 9 (e (2, 9), B (@, ) < oo,

ip=1

(,y)e 4,
18 necessary and sufficient for the equation )

(23) g(z,9) = D k(@ 9)gla(z, ), Bi(z, ) +h(z,9),  (@,9)e 4,

to have a mon-negative solution § defined in A.
If condition (22) is fulfilled, then the function g,

(24) Gz, 9) = 2 2 Zﬂ"’ """ (@, ) (@@, y), B e, 9),

n=0ig=1 =1

(,y)e AJ

2 — Annales Polonici Mathematici t. 29. 2.
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18 a solution of equation (23), and

(25) lim ... MA@, y)glad " (@, ), £ e, y) = 0,

n—’mio=l 'in=1
(z,y)ed.

There is no other solution of equation (23) in the class of functions g
satisfying the condition 0 < g(x, y) < g(x,y) (x, y)e A.

Proof. Necessity. If ¢ is any non-negative solution of (23), then we
get by induction the equations

m
26) gz, 9) = D A" @, ) k(e @, y), B @, v) +
n=0
+ Z 2 ]'m+1tm+l xyy)g(am+1 m+l(w,y) m’_;-l-"m+l(a:’y))’
=1  ip41-1
m=20,1,...,
whence
2 Z D@, k(e @, y), BT @, 9)) < gl v),
n=0 ig=1 n=1

(z,y)e 4,
‘because g is non-negative.

By letting m—oco we get (22).

Sufficiency. If (22) holds, then it is obvious that § defined by (24)
satisfies equation (23); hence and according to (26) relation (25) is ful-

filled. The uniqueness mentioned in the assertion of the Lemma follows
from (25).

Remark 7. If v =1, a(®,9) = (2, 9), Bz, ¥) = Bi(2,9), Alw,y)

£ M(z,Y), (2,y)e 4, then the sequences {a,(z,¥)}, {f.(®, ¥)}, {A (2, y)}
defined by (21) are of the form

- oz, y) =@, an+1(‘v;y) = a(an("‘v’?/)yﬂn(wyy))a_
Bol@y,y) =¥, Banr(@,y) = ﬁ(an (@, Y), Bnl2, )

Alz,y) =1, Iz ”/‘l(a Z,Y), B 73/))5

(x,y)ed,mn =1,2,...
Now (24) and (25) are of the form (see [5])

2,9) = D h(®@, §)h{an(z, 9), Ba(m, ), (2,9)e 4,
and "
lim4,(z, ?/)g(an("va ¥)y Bal2, ?/)) =0, (#,y)ed.

A—o0
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LEMMA 4. If
1° 0< ¢y (, ¥) < @a(@, 9), (2 ,y)eA
20 ngo 12_,’1 Z B ™M@, ealad @, y), B @, ), (2, 9)¢ 4,

then the functions vi, :

2 2 2110 Z, ?!)‘Pi(a:.f '''' in(w’ v), ﬂiq:---"'n(w’ y))7

n= 010—1
(®yy)ed,i =1,2,

are non-negative solutions of the equations

(27) wo(z,y) = 2 T,y v(a, z,Y), Bi(@, y))'i"Pj(wvy),

(r,y)ed, j=1,2,
respectively, and

(28) lim 3. YA @, y)u(al e, v), B @, y) =

(wyy)ed, i =1,2.

Moreover, the functions v;, i = 1,2, are the unique solutions of (27)
for i =1, 2, respectively, in the class of functions satisfying the condition
0<v(z,y) < va(wy ), (2,9)e A

The proof of the above lemma is similar to the proofs of Lemma 4
of [6] and of Lemma 5 of [1].
These considerations and Theorem 1 imply

THEOREM 6. If assumption H, is satisfied and

10 (@) Yy 2y Dy Qy 8571y eey 1) = 2 (@, Y1, A (1, 9) 2 0,0 =1, ...,9,

2 G@, )= 3 ... 3 A (@, )b (a (@ y), BT, ) <

n= 01;0— ’L =1

< o0, (@, y)e A, where h(x,y) = sup sup ||f(y,8,0,...,0), (z,y)ed, and
0<y<z 0<O<y
the function g is continuous, then there exists a solution z of equation (4)

in A with the following properties:
2z, Yl < F@,9), (z,y)e4,

Z(@, ¥) — 2, (%, YI < gu(Z, %), (,9)ed, n=0,1,...,
where

golz,y) = g(x, ¥y),

Inir(@,9) = 22 Zﬂ"" (@, )kl @, Y), BT, ),

=n ip=1 =1
(¢, y)e d, n =0,1,...
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The solution z is unique in the class of functions satisfying the inequality
[l (2, y)” < §(z, y)a (z, ¥) e A.

Remark 8. If the function § is not continuous, then we can prove
only that there exists a solution of equation (4) which in general is not
continuous.

Theorem 4 implies the following
THEOREM 7. If assumption H, is satisfied, and

10 Q(2, 4,2y Dy @y 8y T1y -y 1)) = _ZIAi(w, Y1, (2, 9)e 4,
1=

20 the functions z and P are solutions of equations (4) and (18), respectively,

o« v 1 4

30 3 M 3R @,y) (el @, y), BT @, y)) < oo, (2,9)e 4,

n=043=1 i,=1
where
¢(z, y) = max{|z(z, y)l|+ lip(z, ¥, h(z, ¥)}, (z,y)ed,
and h{x, y) is defined by condition 2° of Theorem 4, then

nm=0 fg=1 in=l
(z,y)e 4.

6. Discussion of equation (4) of Volterra’s type with a linear func-
tion 2*. Now we are going to consider the case where

(29) Q" (@, Y,2,Pyqy8yT1yeeyT,) = Kz+MP+NQ+ZZi'ru(m1y)E 4,
i=1

where K, M, N and 4, ¢ = 1,...,», are non-negative constants.

Remark 9. The case where 2* depends also linearly on s may be
reduced to the case considered here; indeed it is sufficient to put r, = s,
a, (%, ¥) = 2, Bo(x, ¥y) = ¥ and to change adequately the range of the index <.

In this section we assume that the functions a;, 8;,, ¢ =1,...,7,
satisfy the conditions
(30) O0<ag@,y)<kz, OBz y<Ly, O<Kk<LI,

0<li<l, (#,9)ed.

(z, ¥)e 4, defined by (21), satisfy the relations

n-1 n—1
8l) 0<ar"™@,y)<a[[k, 0<E "=y <y[]l,
r=0 r=0

n—1

igre.rd 1
l;o "(x,y) = 'v—”)‘i,.'l (z,y)e 4,

r=0
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where .
- 1 for n =0,
nc,; g [t
r=0 ” ¢, for m>1.
r=0
We have
LEMMA 5 [1]. If te [0, +o0) and ae[0,1], then
(32) eV <a(l—eY)+et (= expi).
We put
S =D Mikgy S = D ALy Sy = D) Mkl
=1 i=1 =1
LeMmaA 6. If
1 (3 » r n-—1
o a -—
1° the function H, H(x, y) = vZ;Z:: 2(”1 ) (m”kl,ynl,')

1 7=0
< 00, 18 continuous for (z, y)e 4,
200< 8, <1, 08«1,
T30 0Kk <, 0L, i=1,...,9,
4° the function h is continuous, mon-negative and mon-decreasing in
the set A,
then

(a) in the class of upper semicontinuous functions in A there exists
a unique solution g* of the equation

, o3k v Tk
33 9(,9) =—22 Z(Hzi,) | ] e omas
o V:Eol'f n—1
S22 S ([T J ool [ [ g
n=0 §g=0  i,=1 7r=0 r=0
: TES
+ — ,,2;,021 z(ﬂl) f (s,yglir)ds+
_22 2(]—12 ) (m]jkir,yijli,), (z,y)e 4;

this solution is continuous, non-negative and non-decreasing in the set 4,
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(b) in the class of upper semicontinuous functions in A satisfying the
condition 0 < g(z,y) < g*(z, ¥), (%, y)e A, the funclion g* is the wunique,
continuous, non-negative and non-decreasing solution of the equation

[ x Y v
(34) g(z,9) = D hg(kr, 1,y)+ K [ [ g(s, t)sdt+M [ g(z, t)dt+
1=1 0o o0 0

+Nfg(37y)ds+h(w1y)7 (2, y)e 4,
0

(c) in the class of upper semicontinuous functions in A satisfying the
condition 0 < g(x,y) < g*(2,¥), (@,y)e A, the function g, g(x,y) =0,
(z, y)e A, i the unique solution of the inequality

v z Yy v
(35) g(@,9) < > Mgk, Ly)+ K [ [ g(s,O)dsdt+M [ g(w, t)dt+
i=1 0 0 0

+N [ g(s,y)ds, (@, 9)e 4.
0

Proof. Let A be the operator defined by the right-hand side of
equation (33), and

lgll, i’(me;ge-“w lg(z, y)| for geC(4, RY),
Z,Y)e
where

L>1 { M " N n [ M n N )2 " 4K ]*}
1-8;, 1-—8, 1-8  1-8, 1—8,11)
We obtain by induection

1" ([Tl =m0 33 ([ wi) -

‘ln—l r=0 "0_ zn—l r=

23 ([ Tamn -

tg=1 th=1 r=0

Now from Lemma 5 we have for g, 2¢ C(4, R_)

n—1

>3 ([

n=0 fg=1 ip=1 7r=0

K
l4g — Az||, < — maxe L=+¥)
: YV (z,y)ed

x| [g(s,t)—2(s, t)]G'L(’”’eL“*”dsdt‘ +
J j

(1}
»

S5 D[ x)

n=0 ip=1 ip=1 r=

+ ilI... max G—L(x+y)
Y (z,y)e4a




y
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n—1
n l
r=0

f [ ( ]71‘:l , ) (‘”ﬁki,,t)] —L(zrfok +l)eL(:b "n 28 +t)dtl+
> z(m)

=0 i5=1 ip=1 r=0

+ l max e~ 47+
V (z,y)ed

n—1
x IT k,‘
r=0 T

X J ol [Tl [T 500

r=(
L2 lg —2ll, ZZ 2(1_[,1{)
n=0 ig=1 ip=1 r=
LI(nI_Ilkir—l) w"n'y )
xmax[e " 7 —e )le T —eM]4
(x, y)ea

2p-n 33 ([T a)>

n=0 10-— gn—l r=0

n—1 n—1
La( 1 k;—1)  Ly( T 1; —1)

X maxe =° [e ™° e v 4
(x, ¥)ed
N g
+oplo=a D) 3 > nz ) x
n=0 7p=1 %n—-l r=

n—1 n—1
Ly( T 1y —1) La( I ¥; —1)
X maxe "0 [e ™° — eI
(z,y)ed

Lz g —2ll, 22 Z(”l)

n=0 %=1 in=1 1=

n—1 n—1
X max k )( li) 1—e LoI[1 — e~ I¥
(@, v)ed (,I;,[ i g ll 1T 1+
d v n—1

+—||9—zll 22 E(I;I%r)x

n=0 i3=1 ip=1

n-1

xmx( li)[l_e—fdl +
(x,y)ed ” 4 ]

r=0

11
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+ 2t 5 3 V([ ]4)

n=0 ig=1 In=l r=0

X max k; ) 1—e¢1°
(z, ¥)ed (g Ly [
K o
= <z lg—2li, 2 Shll—e 21— ™1+
_M oo
+llg =2, ) SprL—e )+

n=0
x N -
+f||g—z||*gsz[1—e ze
LSRNV
= LZ _1_81‘1 L l_Sl 1_Sk g l*.

[1 K+1(M+N]<1

I 1-8, 1-8§ 1-8,

for L satisfying the condition given before, then by the well-known Banach
fixed-point theorem we infer that equation (33) has the unique solution g*

defined in 4. This solution is the limit of the uniformly convergent sequence

{z,} of the non-negative and continuous funections 2, defined by the re-
lation

Sinece

Zo(z,y) = 0, (z,y)e 4
a1, y) = Az, (2, 9), (z,9)ed, n =0,1,...,

and therefore it is continuous, non-negative and non-decreasing because 2,
are 50. Further, it is easy to prove that any upper semicontinuous solution
of equation (33) is the limit of the sequence {z,}; therefore it is identical
with the function g*.

We shall prove that the function g* satisfies equation (34). Indeed,
since g* fulfils equation (33), we have

v z v
at
(@, 9)% ¢"(@,9)— > kg ko, by)—K [ [ g*(s, tydsat—
0 0

t=1

Y &
~M [ ¢*@, - N [ (s, 9)ds—h(@,y)
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~rwn- 3£ S S S ([T5)x

G

ﬂ=l t9=1

n=0 toﬂl 3n-1 =0

n~1
:'Cki H ki ﬂl,,: H l

f f g (s t)dsdt -

yln‘l

.-Z(nz) [ oo T

Z_I(Hz,) (wk”ki,yl ﬂ’f)]

2(17 )

ip=1 r=0

T v
(s, yasdt+ [ [ g*(s, t)dsdt)—
]

v -1

YL

th=1 r=0

n—1
ynl

f 9"( !:!ki, )dt+fg z, t)dt)—

4 n—-1

£35S ()
(,@/Hl)derfg (s, yds)

n—1
Tz T k;
r=90 b

)
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233 S Ta)rle [T rors [ 1) +30020)

n=1 {y=1 th=1 r=

n—1
11

IS5 (n)

n=0 ig=1 1n=l r=

23S S [roo [ [1) =0

n=0 0— lﬂ—l r=0

thus ¢* is a solution of equation (34).

Now we prove that upper semicontinuous solution g of equation (34)
satisfying the condition 0 < g(z, ¥) < g*(a:, Y), (z,y)e 4, is a solution of
equation (33).

Let g, be an upper semicontinuous solution of equation (34) satis-
fying the condition 0 < gq(z, ¥) < ¢* (2, ¥), (2, y)e A. Put

x v v z
9@, y) =K [ [ gols, )ds@t+ M [ go(a, )@+ N [ go(s, y)ds+h(z, y).
0 0 0 0

Now for (z,y)e A we have

(36) s(w,y)‘“ZF Z’(f[ai)%( nk,,ynl)

-1 nl
:cnkzy
v r=0 T =2

) N

n=0 zo=l zn—l r=

ﬂl
Hl-

DS S ([ o) Tl s

ip=1 r=
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:t:nl_llkt
(] v v n—1 r=0 7 n—1
N
#5222 [w) [oanlorw [ Jru)ast
n=90 20=l ’in=1 r=0 [1] r=90

xufe [ [, ] 1) = 490, 9
r=0 r=90
Hence
s(w, y) < Kab-max |g,(x Z S+ Mb- maxiyo(w,y)IZS“
(z,y)ed neo (z, ¥)ed
+ Na-max|g,(x IZ rt H(z,y) < oo,
(@, v)ed n=0

and from Lemma 3 it follows that the equation

(37) 9@, y) = D hg(km, Ly) +o1(2,y), (w,9)ed,
{=1

has a unique solution in the class 0 < g(x, ¥) < (44g,)(z, ¥), and this
solution is the function s, s(x, y) = (Ag,)(w, ¥).
Further, we put

r vy v z
go(@,y) = K [ [ g*(s, )dsdt+ M [ g*(@,0)@+ N [ g*(s,y)ds+ (=, ).
0 .0 0 0

It is obvious that equation (37) with ¢,(z, ) instead of (pl(m, y) also has
a unique solution in the class 0 < g(x, y) < (4¢%)(z, ¥) = ¢" (x, ¥).

Now from Lemma 4 it follows that the function s, s(z,y) =
= (Ago)(x, y), is a unique solution of (37) in the class 0 < g(x, ¥) < g° (=, ¥),
(%, y)e 4.

Since g, is also a solution of (37) in the class 0 < g(z, ¥) < ¢*(=, ¥),
(z,9)e A, then s(x, y) = go(x, ¥), (x, y)e A. Hence g, is a solution of (33).

Since each upper semicontinuous solution of (34) from the eclass
0<g(z,y) <g*(,¥), (@, y)e A is a solution of (33), the function g* is
a unique solution of (33), and g* satisfies equation (34), then the function g*
is a unique solution of (34) in the class pointed out above.

This completes the proof of part (b).
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Now we prove that the function g, g(x, ¥) = 0, («, ¥)e 4, is a unique
upper semicontinuous solution of the equation

(38)  g(=, Zzzg kw,lty)+1cffg (s, tdsdt+Mfg(w )+

i=1
+Nfg(s,y)ds, (x,y)e 4,
0

satisfying the condition 0 < g(x, ¥) < ¢* (2, ), (x, y)e A.

Let g, be an upper semicontinuous solution of (38) fulfilling this
condition. Aceording to our considerations in proving (b), we see that g, is a
solution of equation (33) with » = 0, but the only solution of that equation
is the function g, g(z, ¥) = 0, (2, y)e 4; therefore g,(z, y) =0, (=, ¥)e 4.

Now (c) is implied by Remark 4.

Thus the proof of Lemma 6 is completed.

Remark 10. If the function 2% does not depend on p,q, s, then
assumption 2° of Lemma 6 may be replace by the following one: 0 << §;; < 1.

These considerations, Lemma 2 and Theorem 2 imply

THEOREM 8. If assumption H, is satisfied and

1° conditions (29) and (30) are fulfilled,

w03 53 S [ sl [ [Jo) <=

=0 1,0_1 ’Ln
(@, y)e 4,
where
h(m7 y) = sup sup |[f(y,6,0,...,0),

0<Y<T 06y
and the function H is continuous for (x,y)e 4,
o< <1, 08, <1,
L 0<E<1, 0<,<1,i=1,...,%
then there exists a unique and continuous solution z of equation (4) with
the following properties:

1Z(z, y)l
[2(x; y) —2a (@, )]

g (x,y), (x,y)ed,

<
< gn(@,y y), (@, y)ed, n =0,1, ...,

where
golz, y) = g @, y), (z,y)ed, g¢*(x,y) is defined in Lemma 6,
v T ¥V
In1(Zy Y) =22ign(kiw,liy)+}fffgn $,1) dsdt—}—Mfgn(w t)di 4+
i=1 0 0
v

+-Nfgn(37?/)dsa (x,y)edy, n =0,1,...

0
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The solution z is unique in the class of functions satisfying the inequality
flz(z, ¥}l < g* (%, )y (x,9)e 4.
Remark 11. Condition 2° of Theorem 8 is fulfilled if
Wz, y,0,..., 0l < B(zx+y), (,9)e 4, B = const > 0;
now

i y
< .
H(w,y)\B(l_Sk + 1_81)

Theorem 5 implies the following
THEOREM 9. If assumptions of Theorem 8 (except 2°) are satisfied and if

1° the functions z and P are solutions of equations (4) and (18), respec-
tively,

» n—1 n—-1
2 B £33 3 S ([Ta)vle] [ ko [) <
n=01ip=1 ip=1 r=0 r=0 r=0
(z, y)e
where

p(#, y) > max{sup sup [|z(y, HI+IB(y, M, 2z, 9)}, (z,9)e 4,

o<y<T 0Oy

30 %h(zx, y) is defined by condition 2° of Theorem 4, and the function H
18 continuous in A,
then

(a) there exists & continuous, non-negative and non-decreasing solution g
of the equation

. v z ¥ v
9(®,9) = D kg, Ly)+K [ [ g(s, ydsdt+M [ g(w, t)di+
1=1 00 0

T

+N [ g(s,)ds+y(@,y), (2,9)e4,

(b) the sequence {g,},
go(w,y) = glx,y), (x,9)e4,

v z Yy
Fna(@,9) = X 4G, (k@ Ly)+ K [ [ ga(s, tdsdt+Mfgnw 1)di +
i=1 0 o0

+Nf§n(3,?l)d8+ﬁ(m,y), (@, y)ed, n =0,1,...,
0

has a limit g*, and the function g* is conlinuous, non-negative and non-
decreasing,

g*(m,y)<§(w,y), (®,9)e 4,
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(¢) the estimation

2(z, y) —p(x, y)llgg‘(w, Y), (®,y)e 4,
holds true.

Remark 12. Our consideration can easily be extended to an appro-
priate equation with an unknown function % depending on # independent
variables. It is also obvious that the results of this paper hold if 4 = [0, a]x

% [0, b] is replaced by A® = [0, + o0) x [0, 4- 00) and if uniform conver-
gence on 4 is replaced by such convergence on compact sets included
in 4%,
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