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A difference method for certain hyperbolic systems
of non-linear partial differential equations
of the first order

by Z. XKowALSKI (Krakéw)

§ 1. Let us suppose that the partial differential system of the first
order is of the form

Ouy Ouq ou .
(1.1) —ff(‘fs U ' 5w, -’%'5)7 t=1,..,n,
where £ € R, 2 = (@4, ..., ®p) € B”, 4 = (U, ..., %n) € E".

(1.1) will be called the diagonal system and will be solved with the

aid of the difference equation
1(31) M_ ”gmn)
- 3]

(1'2) m(M) = 'Dz +k,fi (El‘ m M"'i:’_}’_i__’ v % A

where v{ (i=1,2,...,n) denotes the approximate value of the solution
at the nodal point M with coordinates (&, 2™), cf. fig. 1, and § 4, equa-
tion (4.2).
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Fig. 1. The nodal points M, o (M), 1(M), ..., p(M)
in the case p =2



314 Z. Kowalski

The difference scheme (1.2) can be applied to digital computers
since v2™ can be obtained with the aid of the preceding values vi’, v},
ooy 50 omly,

The purpose of this paper is to prove, under suitable assumptions,
the convergence of the difference method (1.2), and to derive some error

estimates, cf. Theorem 1.
In the proofs we use, as in [1], the method of difference inequalities,

§ 2. Let us denote by E the set of points of the real (p +1)-dimen-
sional space RP*':

(2.1) B:0<é<a,0<y<a, a>0(=1,.,p).

We shall consider all nodal points in the set H, with coordinates
defined by
El‘=.“'k; w;="’h (u=0,1,.. "’=0r1’-"3j=11"-9p)5

2.2
(2.2) 0 < h = congt, 0 < k= const, for (£, 21", ..., 2p%) ¢ E,

my (j =1, ..., p) being suitable natural numbers.
There is a one-to-one correspondence between the nodal points (2.2)
in the set ¥, and their indices:

(2.3) (thy Myy Mgy ooy mp)  for (¢4, mimy oy mgl?) cE.

This leads to the following notations:

(2.4) M = (p, My, My, ooy Myp) ,
for the sequence of indices resulting from (2.3), or
(2.6) M= (u,m),

where

(2.6) M= (Myy May «ocy Mp) ,

the coordinates of the nodal points (2.2) being denoted by

(2.7) (&, 2™) ,
for
(2.8) g™ = (21", ..., @p?) .

In this paper we shall deal with nodal points (2.2) or (2.7) in the
set H, characterized by corresponding sequences M, cf, (2.5), of indices.

We ghall consider also the nodal points in the set X, characterized by
the following sequences of indices:

(2.9) (M) = (p+L,m), j(M)= (4, (m),
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where
(2.10)  j(m) = (Myy .y Mgy My—1, Mypy,y ey my)  (j=1,2,..,p).
It can be seen from (2.9) and (2.10) that
(2.11) jluym) = (u,j(m)) for j=1,2,..,p.

Let us suppose that, to each nodal point (2.2) in the set F characterized
by the sequence M, there corresponds a sequence of » numbers:

(2.12) o (1=1,2,..,n).

The numbers (2.12) being given, we can compute the differences

-~ 1 w .
(2.13) of " =3 M=) (i=1,2,..,m),
and
I | . . i
(2.14) o} = E('vi”-—'v‘}(m) (t=1,..,n7i=1,..,9),

and introduce the p-dimensional vectors
(2.15) v = (o 0}, L, 0P (i=1,2,..,n).

Those differences will be used instead of the derivatives in the
system (1.1) in a following order: (2.13) will replace the derivatives with
respect to the time wvariable & on the left-hand member of (1.1), and
(2.14)—the derivatives with respect to space variables @; (=1, 2, ..., p).

§ 3. The main theorem of the paper will be proved under the following

AssumprioNs H. (1) Let us suppose that the scalar functions

Jl€y@yu, @) (=1, ...,0), @ = (B1y vvy Lp)y % = (Uyy vces Un)y § = (Qay +eey Ga),
are of the class (' in the domain D defined by

(31) D:0<é<sa, 0<ayy<a, —co< U< +oo, —o0< g; <~+o0
G=1,.,p;i=1,..,1n) (a>0).
(2) The derivatives of the functions f; satisfy the relations:

o ot
ou; aq;

the intervals A and k, cf. (2.2), being chosen so as to give

(3.2) l <L, <0 (g=1,.,p;i=1,...,n; 2A=1,..,n),

af,
~ 841
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(3.3) +k for (é,2,u,Q)eD.
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(3) The scalar functions u«(é,®) (¢ =1, ..., n) of the class C' are the
solutions of the diagonal system of partial differential equations:

ou ou .
(3.4) a—E‘=]‘4 (£,w,u,-a—a;) t=1,2,..,n),
in the domain B, cf. (2.1), the vector dus/ox being defined as
Que _ [Ouy oug
(3.6) 3 = \ow, ""a_'a;,,)'

We assume in addition that u¢(&, #) satisfy the following boundary
conditions:
i(0, 7) = pu(2),
(3.6) wi(€y @) = py(é,0) for (&,m)eH,a;=0,
=1,.,p;t=1,..,n).
§ 4. The following considerations deal with the approximate so-
lution v¥ (i =1, ...,n), cf. § 2, of the system (3.4), which will be defined
only at the nodal points (2.2). |
The boundary conditions for the numbers v{* (i =1, ..., n) are:
v = py(a™) for M= (0,m),
(4.1) oM = (&, a7, ..., 2, ..., wp?), for wu=0,1,..;
f=1,.,p;t=1,..,n; and M = (g, My, .., 0, ..., My} .

The values vj" (i = 1, ...,n) at the remaining nodal points we define
successively, starting from (4.1), with the aid of the difference equation

(4.2) v = ful#, o oM w) (i=1,..,10),
where .
(4.3) v = ("de’ '”513‘17 vy Un) .

The approximate solution oM being defined, we shall consider also
the numbers u{’ ({=1, ..., n), which will represent the values of the
solution u«(¢, ) (¢ =1, ..., n) of the system (3.4) at the nodal points (2.2).

Accordingly, we define the corresponding differences for %’ in the

same way as for vy, ef. (2.13), (2.14), the boundary values for ¥ being
the consequence of the boundary values for the solution w(¢, z):

ui’ = ppla™) for M= (0,m),
(4.4) ut' = puy(¢, ol . 0, ., af%)  for  p=0,1,..;

j=1,.,p;0=1,..,n; and M = (u, My, ..., 0, ..., Mmyp) .
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It can be seen that the numbers ;" satisty the equation

(4.5) ui’™ = fu( &, 2™, u™, ui) i (1= 1,..,n),

and the condition

(4.6) maxf¥| >0 a5 b0 (i=1,..,m),

at the nodal points M = (u, m) in the domain B for m; > 1 (j = 1, ..., p).
In fact, (4.5) follows from (3.4), since the solution us(&, ) of system
(3.4) is of the class C.
We shall make use of the definitions

(4.7) e h) = mgxmi'ﬂ tor MeH (i=1,..,1),
(4.8) s(h)= D k),
{=1

and of the relations
(4.9) e(h)>0 as h—0 (i=1,..,m);
(4.10) g(h)—~>0 as h—‘>0 )

which are satisfied because of (4.6), (4.7) and (4.8)..

Remark 1. (a) The solution of problem (3.4)-(3.6) is also the solution
of a problem of Cauchy for equation (3.4) with initial condition w0, #)
= pp@) 1=1,..,n). ' ’ .

(b) We can assume of;/0q; < A (4 = const) in (3.2), since df¢/oq; < 0
can be obtained from 8f:/0q; < A with the aid of a transformation.

§ 5. Now we shall give without proof a lemma on linear difference
inequalities.
LeMMA 1. Let us suppose that the numbers s# (u=0,1,...) satisfy
the mon-homogeneous linear difference inequality
(6.1) s~ K Ksé4e  (u=0,1,..),
and the initial condition s* = 0, the difference s*~ being defined by
L
H
where 0 < H = const, 0 < K = const, 0 < ¢ = const.
Under these assumptions

(6.2) §a~ = (S‘;+1— s (p=20,1,..),

(5.3) o< '1% (eEHu—1) (u=0,1,..).

This lemma can be proved by induction.
22%
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§6. Lemma 2. Let us assume that the values of the solution u’ and
approvimation v at the nodal points of the domain E, of. (2.1), satisfy
relations (4.4), (4.5) and (4.1), (4.2), respectively.

Suppose also that the assumptions H are fulfilled, and let us write

(6.1) rif = ul—of,
(6.2) &%= maxs¥™, #i=minrf" (i=1,..,n; 4=0,1,..),
' m m 2

™
at the nodal points of the domain K.
Under these assumptions, the numbers 8 and 2§ satisfy the conditions

(6.3) =0, #<0,

the initial conditions s = 0, 25 =0, and the non-homogeneous linear dif-
ference inequalities

n
<L D) s +edh)
F=1
n
AL D d—a(h) (G=1,..,m u=0,1,.),

=1

(6.4)

ei(h) being defined by (4.7).
Proof. Since the boundary values for « and »¥ are equal, it follows,
in virtue of (6.1), that

(6.5) #{f =0, at the boundary nodal points M = (0, m) and
M= (, Myy ey 0,y ooy My),

cf. (4.1) and (4.4)., Therefore, the greatest value s} of the numbers v
must be non-negative, 8¢ > 0, the initial value st being zero. In a similar
way we obtain 2§ <0 and 2} = 0, which completes the proof of (6.3).

We shall now prove (6.4). The maximal values 47 and s are realized
at certain nodal points (u-1,a(d)) and (s, b(i)), respectively:

(6.6) i — mag ™ — patLa ,
m
6.7 B P pib() .
(') 8 = maxsr; = 7r; ('b_l,___’tn)’
m

a(i) and b(7) being defined as a(i) = (ay, ..., ap), b(4)
Accordingly, the difference

[

—
=2
LN
o
s .
N

~ 1
(6.8) 3(: — E (SIJ;+1_ S’t‘) ,

1
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can be written as

(7J1+1 »a{t) ’.#.a(t))_l_ (,rls.a(i)_ rfthb(i))_

E'?‘Il—l

(6.9) 8§ =

It will be sufficient now to consider the right-hand member of (6.9).
If, for some j: 1<j<<p, we have aj = 0, then inequalities (6.4) are
ewdent therefore let us assume a}>1 (j=1, ..., p).

We shall show that (6.9) can now be w-rltten in an equivalent form:

(6.10) &~ “'“"’+23‘ oyt

j=1

3]‘;

aq )[,.p.a(z) ,Jt.i(a(i))] + (,rn.a(t‘) 1.#‘)(1))’

1
+ﬁ
7=1

the derivatives 8f;/dg; being taken at a suitable point (~).
In fact, from definition (6.1) it follows that

1 wsia__ mati 1, 4100 - ‘
(6.11) E (7’1‘ (i) 7“; a 1.)) — E (uli a(7) u,: a(l) k (:v”’+ a ) /J,a( )) ;
therefore

1 : .
(6.12) 3 (plLiat_ ati))

= oy ™D i £, @0, D, P f(gh, gD, gD, atiddy

because of (4.2) and (4.5). Now we can apply the mean value theorem
to the right-hand member of (6.12), and we get by (6.1), (2.15) and (2.9):

(6.13) i ("J:+1 a(z) ,a(i))

0
M,a({) + § ! af't .a(1) + _aaqﬁ ( N) [,,J;.a(i)_ ﬁ.f(a(i))] ,
]
=1

=1
the derivatives being taken at a suitable point (~). Combining (6.13)
with (6.9) we obtain the desired formula (6.10).

All that remains to be verified now is the majorization of the right-
hand member in (6.10) 5o as to obtain (6.4). This will be made by the
following argument.

First, we observe that »? denotes the greatest value (6.7); therefore

(6.14) P Q@)
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and consequently
l. Wt { lb i
(6.15) rq.a(i)_ﬁ flatd) - TI;G( )__715 @

We multiply both sides of (6.13) by 0fs/dq; and obtain by summation

(6.16) 2 f ¢ y a(i) rll 1(a(ﬂ)] < 2 3f¢ ru ,a(d) u,b(i)] ’

since the derivatives 9f:/0¢; are non-positive because of assumption (3.2).
Relation (6.16) and equality (6.10) imply that

ali Z o (i by, 1 _13 h
(617) &~ < “'“+2 It (o “‘"+(ﬂ“"—ﬁ"“’)ﬁ[ L ]

(~)+3].
A aqy k
Now we can delete the lagt term on the right-hand member of (6.17),
gince it is mon-positive. In fact, 4@ denotes by definition (6.7) the
greatest value; therefore we have

(6.18) paali) _ b ’

and the intervals b and & are chosen according to (3.3).
The first and second terms on the right-hand member of (6.17) can
be majorized with the aid of definition (4.7), (6.7), and 8o we get

n

(6.19) g <L Dshdelh) (i=1,..,n),

7=l

which concludes the proof of the first part of (6.4).
The second part of (6.4) can be proved in a similar way. It is sufficient

only to use the definitions

(6.20) At = min At — e
m
(6.21) 4= mine§™ = 440 (=1, ..,n),
m

in place of (6.6) and (6.7), the sense of the subsequent inequalities being
reversed.
This completes the proof of Lemma 2.

§ 7. THEOREM 1. Let us suppose that

(i) the right-hand members f(&, », u, q) of the diagonal system (3.4)
satisfy assumptions H,

(ii) the values of the solution ul’ and approzimation v¥ are defined
at the nodal points of the set B by (4.5), (4.4) and (4.2), (4.1), respectively,

(iii) the fumction e(h) is defined by (4.8) and the error ri’ by (6.1).
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Under these assumptions
(1) the error estimate:

(1) <SR otn1) =1, m),

holds at the modal points M in the set E,
(2) the difference method (4.2) is convergeni, i.e.,

(7.2) hﬁri-”.:o (t=1,..,n).

Proof. Condition (7.2) follows from (7.1), since (h)~>0, a8 h—0,
cf. (4.10); therefore, we shall prove (7.1).
To this end, let us consider the sums

n n
(7.3) =D, 7= D4
=1 =1
Obviously, we have
(7.4) >0, Z'<0,
and
(1.5) 7¢<d, <8 (i=1,..,n),

gince &% > 0 and 27 < 0, because of (6.3).
Now we sum relations (6.4) and obtain two linear non-homogeneons
difference inequalities for S§* and Z*:

(7.6) 8 < nL8*+¢(h),
(7.7) 7' = nLZ"—¢e(h),
the initial conditions

(7.8) =0, Z2°=0

being granted in view of s} =0, 2} = 0, c¢f. Lemma 2.
We shall now prove that (7.6), (7.7) and (7.8) imply two estimates
for 8 and Z*:

(7.9) g <20 (guna ),
(7.10) . %%)(em:kﬂ—u (b=0,1,..).

In fact, 8" > 0 satisfies the assumptions of Lemma 1 becaunse of (7.6)
and of the condition 8° = 0. This means that (7.9) holds true in view
of Lemma 1.
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(7.10) can be obtained in a similar way. For that purpose, let ug
observe that (—Z") > 0 fulfils the inequality

(7.11) (—Z*)” < nL(—2") +¢(h),
cf. (7.7), and the initial condition (—2Z2°) = 0, Whence, from (7.11) and
Lemma 1, it follows that
h
(7.12) _7'< %_f) (@t—1) (u=0,1,...),

which completes the proof of (7.10).
We can now prove (7.1) by the following argument: from definition
(6.2), we obtain

(7.13) AT <" <™ (i=1, . p=10,1,..);
therefore,
(7.14) <" <® (i=1,..,n 4=0,1,..),

because of (7.13) and (7.5).
From (7.14), (7.9) and (7.10) follows the desired estimate (7.1).
This completes the proof of Theorem 1.
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