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On some class of non-linear functional equations

by M. Kwaprisz and J. Turo (Gdansk)

Abstract, In the paper the functional equation

z(x) = F(m, z(al (w, z2(n (fb‘))))’ cees z(“p(-"” #(7p (-"’)))))

is considered. An unknown function z is supposed to be defined in a bounded metric
space with the values in another complete metric space. Solutions of the equation
considered are sought in the class of functions having the modulus of continuity
appropriately defined. Under suitable assumptions on known functions F, e;, ¥;,
the existence, uniqueness and convergence of successive approximations is established.

In the present paper we considered a non-linear equation of the
form

W 2@ = F(o, 2{afo, 2(n @), -, 20, 2 ()) £ (@) @),

where the functions F: M, x M°’->M,, a;: M, x My,—~M,, y;: M,—M,,
1 =1,...,p, are given and (M,, o,) is a bounded metric space (i.e., for
an arbitrarily fixed @,¢ M, there exists a number a > 0 such that g, (@, @,)
< a for any xe M,), and (M,, p,) is a complete metric space.

The particular cases of equation (1), where the functions a;, ¢ =1, ...
...y P, does not depend on the last variable, were considered by many
authors, see e.g. [1], [2], [4]-[6].

In [4] equation (1) was discussed in the case where M, is a real linear
space and M, is a Banach space.

In this paper we shall consider the problem of the existence, uni-
queness and the convergence of successive approximations and the con-
tinuous dependence of solutions on the right-hand side of equation (1).
We shall search for the solutions of equation (1) in the class of functions
having the “modulus of continuity” defined adequately (see the class
D(M,, M,, )). We shall use the comparative method (see [5],'[7]).
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1. General assumptions and theorems. We introduce

AssUMPTION A. Suppose that

1° there exist functions o: B,—R, [0, +o0), w(0) =0, and
Q: IXR?P—>RE_, I & [0,a], which are non-decreasing (with respect to

each variable); w is continuous and £ is continuous with respect to the
last p variables, 2(¢,0,...,0) =0, and

Qz(F(a’y 1y aeey 2'1;), F(Z,2,..., zp)) < w(@l(a” E))’
QZ(F(‘”; R1y ..ey %p)y F(2, 7, ~--,§§))< Q‘Ql(wywo)y 02(%15 Z{), - -y 02(? ))
for any »,ze M,, 2;,,Z,e M,, i =1, ..., p,

2° there exist non-decreasing functions m;, r,;: BR,—R,, and s;:
IXEB,_ R, _; mi(0) =r;,(0) =0, s,,0)=0,¢=1,...,p, the functions
my;, v; are continuous and the functions s; are continuous with respect
to the second variable and

e1(ai(®, 2), a;(%, 2)) < m;(0:(2, T)),
Ql(a z,2), a;(@ )<3 (91 2, @), 92(z12))a
91(71 ‘}’z(x)< (91(9"’3’)’ it =1,...,7p,

for any @, ze M,, 2,ze M,,
3° there exist non-decreasing functions é;, s;: I—-R_, such that
€1 (a (@, 2) mo) S 61‘(91(‘”’3’0))3
91(?’17 awo)gai(&(a’awo))a 1 =1,...,p,
for any ze M,, ze M,.

ASSUMPTION B(2,). Suppose. that

1° there exists a continuous and non-decreasing function i: R, —~R,
which is a solution of the inequality

(2) .Q(a, A(ml(t) +31(a, A(rl(t)))), ey ﬁ.(mp(t) —I—sp(a, ).(rp(t))))) +
+o(t) < A1), tel, 2(0) =0,

2° for a fixed function z,: M,—M, there exists a non-decreasing
solution %: I—-R, of the inequality

Q(t, Haslt, wloa ), -y Afslt, u(crp(t))))) SR <ulty, e,
where

h(t) = sup Qz(zo(w), (320)(0)) < o0, tel,
TeK(Tg,t)

df
K(dy,t) = [8: @ My, 01(®, %) <t], tel,
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3° in the class of functions satisfying the condition 0 < u < %, the
funetion v = 0 is the only solution of the equation

w(t) = Q(t, }.(sl(t, u(al(t)))), ey l(sp(t, u(a,,(t))))), tel.
We introduce the class of functions
D(M,, M,, 2) e [Z: z: My—~M,, Qz(z(m)7 :L‘)) 2(91 &, x)) &, EeMl]v

where the function A is defined by condition 1° of Assumption B(z,).

LeEmMA 1. If conditions 1°, 2° of Assumplion A and condition 1° of
Assumption B(z,) are satisfied, then the operator § defined by the right-hand
side of equation (1) maps D(M,, M,, A) into itself

Proof. If zeD(M,, M,, 1) and v(®) = (Fz)(«¢), then we have

e:(0(@), v(Z))
< w(@l(mf E)) +Q(91($’ Lo), Qz(z(al(w’ z(?l(m)))), z(al(is z(?l(f)))))’ v

v elanlos strp (@), 5(asfa, 2, ) )
< o (o (@, T)) —H?(@l(m, o), 1(% (o1(, @) +
+81{ex(@, @)y eaf2 (2 (@) 2(r:(@))); --
1 Ay es(@, )+ 5y, 00, st 2l @)
< oo (2, %)) +Q(a, l(ml(gl(a}, E))—f—sl(a, Alr:(ou(, a)))),

A fes(@, 3) + 5,0, Afry(ex(o, 5)))))) < 2(on(a, 3)),

since 4 is a solution of inequality (2). Hence it follows that ve D(M,, M,, 1)
The lemma is proved.

Remark 1. If the functions a;, ¢ =1, ..., p, are -independent of
the second variable or the functions &, s;,, ¢ =1, ..., p, are independent
of the first variable, then the assumption that M, is a bounded space
is superfluous (see [5]).

Let us now define the sequence {u,} by the relations
uo(t) = u(t),

Uy (8 (t H(32(t, a2 (0) - 2(35 (8 (o tﬂ)))

n=0,1,..., tel.

(3)
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By induction we can easily prove the following

LeMMA 2. If Assumpiion A and B(z,) are satisfied, then
o< U W SU,<uU, n=0,1,...,

u,30 for n—oo, tel,

where the sign =X denotes uniform convergence in I.
Now let us construct the sequence {z,} by the relations

(4) Zpi1 = B%) n=201...,

where the operator § is defined by the right-hand side of equation (1)
and z, is an arbitrarily fixed function from D(M,, M,, 1) (see Assumption
B (2))- '

LEMMA 3. If Assumpiions A and B (z,) are satisfied, zge D(M,, M,, 1)
and the sequence {z,} is defined by (4), then the estimations

(5) sup  q(2, (@), 2(@) < %), n=0,1,..., tel,
zeK(zg,t)
and
(6) sSup 92(zn+k(a’)7 zn(m)) SUp(t)y nk=01,..., tel
zaK(zg,¢)
hold true.

Proof. It is obvious that (5) holds for n» = 0. If we suppose that (5)
holds for some » > 0, then by the assumptions we have for a<K (a,, t)

02 (zn+1(-’”)’ zo(m))

< 02((F2n) (@), (§20) (@) + 02 (20(), (F2o) (0))
< .Q(g,(w, @), gz(zn(al(m, 2 (r1(2))), 20(ax(2, zo(yl(w))))),
cor @, 2 01), 2ol 2l @) )+ 00
< Q(Ql-(m, o), l(sl(g(m, 20), 02 (71(9)), zo(yl(a}))))),
oo 35y (@@, 90, eaenlrp(@), zo(y,,(w>)))))+h(t)
< .Q(t, Mty sup  esfenl@), (@), -

zeK(zq,9)(¢))

sy l(sp(t: =¢Ks(:f’p(‘)) Qz(zn(w) ’ zo(m))))) +h(t)

< .Q(t, A(sl(t, 'E{a,(t)))), e l(sp(t, Ta(op(t)))))-l-h(t) < a(t).
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Hence
SUP  05(2, 41 (%), 20(®)) < %(2).
T K(zg,t)

Now (5) follows by induction.

Now we prove (6). From (5) it follows that (6) holds for » = 0,
k =0,1,... Further, if we suppose that (6) is true for =, k > 0, then
for x<K(x,,t) we have

Q2 (zn+k+1(w) 9 zn+l(w))

< a(t, 2fsi(t, P euleasn(a), @) -

o A(s" ( :eKS(lloPﬂp(l)) 20 {#n (@), z“($)))))

< Q(t, A(sl(t, un(al(t)))), ) A(s,,(t, un(ap(t))))) = Uy, (1),

Now we obtain (6) by induction. Thus the proof of Lemma 3 is completed.

THEOREM 1. If Assumption A and B (z,) are satisfied, zoe D(M,, M,, A),
then there ewists a solution ZeD(M,, M,, 2) of equation (1) which is the
limit of the sequence {2,} defined by (4) and ‘the estimations

(7) sSup gz(i(w),zn(w))gu,,(t), n=0,1,..., tel,
zeK(z,1)

hold true. The solution %z belongs to the class D*(M,, M,, A, @), where
D*(My, My, A, %) = [z: zeD(M,, M,, 1), sup 92(3(4’)7 zo(-’”))
zeK(zg,t)
< u(t), ted],

and it is the umique solution of equation (1) in this class.

Proof. The convergence of the sequence {z,} and estimations (7)
follow from Lemmas 1,2 and 3. By the estimation

0< sup g,((F2) (@), (@) < 2u,(8), n =0,1,..., tel,
zeK(zy,t)

it follows that the function Z satisfies equation (1). Obviously zZeD*(M,,
M,, 2, @).

Now we prove that the solution z is a unique solution of (1) in the
above-mentioned class. Let us suppose that there exists another solution
ZeD*(M,, M,, A, w). By induction we get

SUP 0:(2(®), 2, (@) S un(t), m =10,1,..., tel;
zeK(zg,f) .

hence it follows that 2 = Z. Theorem 1 is proved.
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2. Continuous dependence of solutions on the right-hand side of
equation (1). Let us consider the second equation:

(8) o(a) = F(m, o(d (@, v(F1(@))), .-, o(dn(e, v(fp(w))))) = (Fo) (@),

where F, a7, are of the same kind as F, a;, y;, ¢ = 1,..., p.
Let veD(M,, M,,A) be a solution of equation (8). Assume that

@(t) = sup )ez((i’f@)(w), 3(®)) < +oo, tel,

TeK(zq,t

where § is defined by the right-hand side of equation (i), and let there
exist y: I-R_ such that

sup (2(a), 5(a)) < (1), tel.
zeK(xy,t)

h(t) = max {p(1), p(t), h(£)}.

THEOREM 2. If Assumptions A and B(z,) are satisfied with h (in B (z,))
replaced by h, then there emists a mon-negative solution w of the equation

©  u(®) = 2t At ulr®))), ..y Afslt, wlo0)))) + o0, tel,
such that

Put

sup g,(z(®), 3(®)) < @(t), tel, meM,.
zeK(xg,t)

Proof. Let #, be the solution of the inequality

.Q(t, l(sl(t, u(oy(1))), --- A(sp(t, u(ap(t))))) +R(t) < u().
Put

'ii,,_,_l(t)=..9(t,A(sl(t,filn(al(t)))), oy l(sp(t,filn(ap(t)))))+<p(t), n=0,1,..

By induction we get 0 < %, , <#,, » =0,1,... Hence it follows that
the sequence {u,} is convergent to %, which satisfies equation (9).
Further, we easily find by induction that

sup o:(2(@), 5(2)) < @, (), mn =0,1,..., tel.
zeK(z),t)

Now if n—>oo, we infer the assertion of the theorem.

3. The case of the comparative functions being linear. We are now
going to consider the case where the functions w, 2, m;, 7;,8;, 1 =1,...,p
are linear; it permits us to give effective conditions under which Assump-
tion B(z,) is fulfilled. First of all we introduce some notations which
will be useful further on.
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Let a non-decreasing functions I,;: I-R_, 8;: I-I, ¢ =1, ...,p, be
given.
We define

P
iﬁé’z, JuBi(t), tel.

Put I E LLI*Y n =0,1,...; L®* =J denotes the identity oper-
ator. From the definition of the operator L it follows that

(Lru)(t) = D' .. 2 wostn()u (BR i (1)),
n=1

11=]

-where
Bty = Bi(t),  Bipi-nri(t) = firm(B, (1),
() = L), l:'s;-;-"'w(t) £ ,,,H(t)l'l “in (g, (B),
,...,p, n =0,1,...
Put

Mu 2 ZL"u,
n=0

-with the point-wise convergence of the series in I.
We quote the following

LeMmA 4 [3]. For any function h: I—->R_ the condition
{10) (Mh)(t) < 400, tel,
18 mecessary and sufficient for the equation
{11) u = Lu+h

d0 have a non-negative solution u.
If condition (10) is fulfilled, then the function u,

(12) u = Mh,
48 a solution of equation (11), and
L*u—0 if n—>oo.
There is no other solution of equation (11) in the class of functions
GI,R,, %) L [u: u: I-R,, [u] < + oo],
<where |

[u] = mf[c lu| < cu].
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LeMMA 5 [3]. If w is of form (12) and the function uweG(I, R, , %)
satisfies the imequality w < Lu, then u = 0.

Now we assume that the functions occurring in Assumptions A
and B (2,) are of the form

o) =at, Qt,z,..,2) = Zli my(t) = gt

(13) ) tml ) .
s;(t,2) =5§(t)z, nr(t)=7t, <i=1,...,p,

where [, 3;: I--E_ are non-decreasing functions, and @, #m;, 7; are non-
negative constants.
Let

P p
— Tk % —
2 Mgy A =Zli3i?'n

wherel] = I;(a), 3 = §;(a).
In this case the class of functions D(M,, M,, 4) is replaced by the
class

D(My, My, 2) = [2: 20 My—>M,, o.(2(0), 2(%))

<1
where the constant 2 satisfies the condition A, <2< 1,, and 4,, 4, are
non-negative roots of the equation

A2+ (A, —1)A+® =0

o, ), @, 5G-M;'llr

if A, # 0, but 1 satisfies the condition 1> 4, = n ad v

if 4, = 0.

m
Lemma 1 implies

LeMMA 6. If conditions 1°, 2° of Assumption A and (13) are satisfied
and if A, <1, (A4,—1)2—4A4,@ > 0, then the operator § defined by the
right-hand side of equation (1) maps D(M,, M,, 2) into itself.

Proof. To prove this lemma it is sufficient to prove that condition
1° of Assumption B(z,) is fulfilled. In this case inequality (2) is satisfied
by any function ¢, where the constant Z is a solution of the inequality

{‘Zp‘ t,(a)5;(a) ﬁ-}lz + {21:1 L(a)ﬁi}l +w< A,
=l i=1

i.e., where Ae[4,, 4,). Thus Lemma 6 is proved.
Put

li(t) = ii(t) [1+I§z‘(t)]7
(14) Bi(t) = max[d;(t), o;(f)], +=1,...,p,
h(t) = sup 92(30(5"): (3%)(“’))’

zeK(zy,!)
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where 2, is an arbitrarily fixed element of D(M,, M,, A).
From Lemmas 4, 5 and 6 we infer

THEOREM 3. If Assumption A and (13) are salisfied, and condition (10)
holds with 1;, B;, and h defined by (14) and if A, <1, (A, —1)2—44,@ > 0,
then there emists a solution Ze D(M,, M,,) of equation (1) which is the
limit of the sequence {2,} defined by (4) with zge D(M,, M,, ), and the
estimations

(15) sup 0:(2(#), 2,(2) < T (8), n =0,1,..., tel,
zeK(z),t)

hold true, where
Ty =W, Upy =LA, n=01,...,
and % is defined in Lemma 4.
The solution z belongs to the class of functions
-~ _. ar = -
Z(M,, M,, 2, u) = [z: zeD(M,, M,, 1), d(z,2,) < +°°]7
where

d(2,2) =infle; sup gq(2(®), 2o(®)) < cu(t), tell,
zeK(zq,t)
and it is the unique solution of equation (1) in this class.

Proof. To prove the existence of a solution of equation (1) we first
prove the following estimations:

xeK(xp,t)
(17) sup 92‘zn+k 2,(®) < L(1), m =0,1,..., tel, e M,.
zeK(xg,t)

It is obvious that (16) holds for » = 0. If we suppose that (16) holds
for some n > 0, then according to Lemma 6 we have, for @e¢ M,,

01(@, @) < ¢

Q2 (zn+1 (@), zo(m))

< 2101 li(ea (w0, @0)) g2 (zn(ai(‘”r Zn (?’i(w)))): zo(ai(a’y zo()’t(a’))))) + R (%)

i=1
p

I (t [}"9': Qz(z (?’1 )zo(% ))+"—‘(’5i(t))]+h(t)
<(Tm)( 1)+ h(t) = @(t).
Hence

sup Qa(znﬂ(m)’ zo(w)) < u(t), tel.
IEK(Io,t)
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Now (16) follows by induction.
From (16) it follows that (17) holds for » =0, k¥ = 0, 1, ... Further,

if we suppose that (17) is true for =, k > 0, then for ¢ M,, o,(x, 3,) <,
in view of Lemma 6 we get

92( ntk+1(®) s Zny1 (@ ))

D

Z i t)[Zgl( (@, 21k (v4(@))) a,-(a;,z,,(yf(w)))) -}-ﬁn(a{(w,zk(yi(m))))l

=1

-,

P

L (8)[75;(t) &y, (0 (8)) + %, (8:(2))]

-,

< (L) (1) = Upya(2).

Now we obtain (17) by induction.

From Lemmas 4 and 5 it follows that %,—0 if n—>co. Hence and
by (17) it follows that the sequence {z,} is convergent to the solution Z
of equation (1). If #—>oo, then (17) gives estimation (15). Obviously
zeZ(M,, M,, A, %).

To prove that the solution z is a unique solution of (1) in Z(M,, M,,
1, @) let us suppose that there exists another solution zZ¢Z(M,, M,,'A, &).
It is easy to prove that u*(f) = sup e,(2(®),Z(w))<G(I, R,, W) and

zeK(z0,t)
* < Lu*. Hence and from Lemma 5 it follows that z = z. Thus the
proof of the theorem is complete.

Theorem 2 implies

THEOREM 4. If Assumption A, (13) and condition (10) are satisfied
with h replaced by h and if A, <1, (4,—1)*—44,@ > 0, then

sup o.(2(®), (@) < u(t), tel,
2K (Zy,t)
where z, 5eD(M,, M,, 7) are the solution of equations (1) and (8), respec-
tively, and % is a non-negative solution of equation
u = Lu-+¢.
Remark 2. Now we give some effective conditions under which
condition (10) is fulfilled.
a) If we assume that [;(t) <I;t, 6;(t) < 8;t, o,(t) < &,t, and §,, 3, < 1,
k(1)< Ht, l;, HeR,_, then condition (10) is fulfilled.
b) If &) <8, oi(t) <oty i =1,...,p, and h(t) < Ht%, where §;,
@;, H, ¢ are non-negative constants, then condition (10) is fulfilled if

D
(18) DL+ R < 1,

i1
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where B, = max[s;,94;], + =1, ..., p.
Remark 3. From the form of the function % (see (12)) and the defi-
nition of the sequence {%,} it follows that

Remark 4. By the use of the Banach fixed point theorem in [4]
the existence and uniqueness theorem is proved under the conditions

p -
including Y I} <1, which is obviously a stronger condition than (18).
i=1

1
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