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Abstract. The polynomials appearing in the definition of Bernstein polynomials are the
degenerate B-splines. Clearly, they form a basis in the corresponding space of polynomials. The
eigenvectors and the eigenvalues of the corresponding Gram matrix are found explicitely. It
turns out that the eigenvectors are simply the discrete Chebyshev orthogonal polynomials and in
the same time these vectors are obtained as vector coefficients of the representation of the
orthogonal Legendre polynomials in the basis in question.

1. Introduction. Consider on the real line two knots —1 and + 1, each of
multiplicity k. Then the B-splines corresponding to such knot-sequence (cf.
[5]) are simply the following polynomials

k=1-i 71 _¢\i
(L.1) N,.,,‘(z)=("‘_‘)(1§_‘) (%) i=0,1,. k—1.

It is well known that (N;,; i =0,...,k—1) is a basis in &, the space of
algebraic polynomials of order k (of degree not exceeding k-—1).
Representations of classical orthogonal polynomials in this bases are known
(see [3]). It was pointed out in [1], formula (3.2), that for the I? condition
number for (1.1) we have formula

lalls _1filla (zk—l)”z
1.2 su sup-—— = ,
(1.2 i e\ ok

where the norms are the I? (—1, 1) and the /? norms, respectively, and
k—1

j;'= Z a,-N,-.k, g=(ao,...,ak_l).

i=0

The extremal polynomial up to multiplicative constant for the first
factor in (1.2) is the k-th Legendre polynomial. Since the polynomials (1.1)
form a non-negative partition of unity it follows that the second factor in

(1.2) is equal to ./2/k.
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The inverse of the quantity in (1.2) appears to be equal to the square
root of the minimal eigenvalue of the Gram matrix G, of the basis (1.1). This
has its natural extension in Theorem 3.18.

Since the Legendre polynomials are the extreme ones in Theorem 3.18 it
was interesting to look at the coefficient vectors u(?,...,u* "V ¢f. (2.7)), and
it is rather surprising that they appear to be orthogonal (see Proposition 3.9).
Consequently, they are proportional to the discrete Chebyshev orthogonal
polynomials (cf. Corollary 3.11). Moreover, they are eigenvectors for G, (cf.
Theorem 3.14).

Section 4 contains some explicite formulas related to the discussion
presented in previous sections.

We would like to mention that the interesting properties, e.g. the

orthogonality of u?,...,u* !, were discovered on a personal computer.

2. Preliminaries. We start with the Legendre orthogonal polynomials P,
P,,... normalized by P,(1)=1. Then (P,, P,)=(v+3 ', where (f,g)

+1
= | f-g. Define P,= /v+1iP, For k>1 we have (cf. [3])
-1

k-1 ke e\ /1 j
(21) Pk—l(t) = jgo (_1)k—l+} (kj 1)(’( ':"‘J)(_;)’

22 Pial)= 3 (—IV‘(";‘)N,-..(».

Let (N}; j=0,...,k—1) be the basis in #, which is dual to (N;,;
i=0,...,k=1),ie. (N;y, Nf) = 6;;. Then (cf. [5], pp. 125-126 and 128), for
i,j=0,...,k—1) we have

+1

2.3) j (%)’ N¥, (s)ds = ("‘:") / <":1) — 19 (i),

-1

+1

1 J 2 j .
24 J (%) Noa(s)ds = ;(ifl) / (":j) ~ g0,

-1

where £ and g{’ are polynomials of degree j determined by the following
conditions

(2.5) O =0 forl=k—j,...,.k—1, 0 =1,

. 2
2.6 D=0 forl=k,... k+j—1, g@0)=—.
(2.6) gy () J g’ (0) k)
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For v=0,...,k—1 we introduce

(2.7) Z U Nig, =@, 42 1),

(2.8) Z ANE, o =0k .., 02 1)
Note that

(2.9) up) = P,(1) = /v+i.

ProposiTioN 2.10. (ul”, v¥; v, u=0,...,k—1) is a biorthogonal system
in R*,
Proof.

k-1
@, oy = ) uinold

i=0
k-1 R . R R

= Z (Pv’ N?.!h)(P‘n Ni.h) = (on Pn) = 5#.\"
i=0

It follows by (2.2) that

2.11) u}f{“=./k—%(—l)‘(k__l), i=0,.. k1.
]

The identity 2(t+5) = (1+¢t)(1 +5)—(1 —¢)(1 —5) implies

k-1 k-1 (_qy
212 (’—;—s) = 3 T NL NG

i
whence

+1

k-1 1)
2.13) j('—;—s) Ng,,(s)ds-—(k) N (), i=0,... k—1.

-1

Now (2.13) implies

+1 +1
—1) k-1
Ek—l))(P*‘“ Niy = J (é) Py_y(t)dt- j N (s)ds.
. -1 -1
i

Since (N;,; i =0,...,k—1) is a partition of unity it follows that

+1

I =1
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(cf. also (2.3)) and by the definition of the Legendre polynomials, using (2.1),

we obtain
+1

o k—1 2
J(%) P,_,(0)dt = u_l).

K k(

k
Thus,
2. /k—-3* k=1
(2.14) Py =L=2 (-1 )N.-*,.,
2k—1 i=0 1]
(%)
k

ie. by (2.11) and (2.8)

(2.15) ok~ =;usk—1)'

k(Zk—l)
k
The Gram matrix for (N;,; i=0,...,k—1) is denoted by G,, ie. G,
=(Gijx =(Nip, Nju); i,j=0,...,k—1). It follows immediately that
(2.16) B =Gouw forv=0,.. k-1,

where o denotes the composition of matrices, and 1", u® are treated as
column matrices. Comparing this and (2.15) we can conclude that u{* " is
the eigenvector for G, corresponding to the eigenvalue

MY = 2-[k(2"k“)J_l.

In the next section it will be proved, that also the other elements of
@2, ...,u V) are the eigenvectors for G,.

3. Main result. For the later convenience, for given fe £, write

k-1
(3.1) [ = z ui,k(f)Ni.ka ui.k(f) =(/, N?.‘t),
i=0
k-1
(3.2) f= Z vin(NHNK, v =, Nio-
i=0
Clearly, u{} = u;,(P,), v} = v, (P,). The duality implies
k—1
(3.3 ;9= Z ux(fN)vin(g) for f, ge .
i=0

We now define two mappings from £, onto R*:
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(34) Ui(N=u(N)= (“o.k f)sesty- L.k (f)),
(3.5) ) =ul)= (Uo.h(ﬁ, cees Uk— 1k (f))
Let us distinguish the following subspaces of R* for j=1,...,k
(3.6) EQ = {x =(Xq,..., X~ 1)€ R*; x; =1 (i) for some fe 2;}.
ProposiTioN 3.7. For EQ, j=1,...,k defined in (3.6) we have:
(i) Uh(gj) = Vk(gj) = E};”,
(1) E{~D ¢ EY with E{® being the trivial subspace,
(iii) dimEY’ =
Proof. Only property (i) needs to be proved. Let T;(f) = ((1+1¢)/2).
Equalities (2.3) and (2.4) give

(3.8) Uu(T) = £2 = (A2(0),.... 0 (k- 1)),
(3.87) W(T) =gl =(g(0),..., g0 (k- 1)),

where £, gi’e 2., are defined by (2.5), (2.6). Since
P;=span{Ty,..., T,_,} =span {f{?,... .~} =span{gl?,...,g¢ 1}
the proof follows by (3.8") and (3.8").

ProprosiTioN 3.9. The vectors ul®,...,ul*" ! are orthogonal in R*
Proof. Since U,(P) =u® it follows by Proposition 3.7

(3.10) uleEY  for i=0,...,k—1.
Now, (3.3) and the definition of the Legendre polynomials imply
0 = (P;, g) = <Ux(P), Wi(9)) = &, Vi(9))

for ge #; and therefore, by Proposition 3.7, u{’ 1 E{", what together with
(3.10) completes the proof.

COROLLARY 3.11. The vectors u?,...,ul*" ") are proportional to the
discrete Chebyshev orthogonal polynomials and therefore they are given by a
Jormula analogous to the Rodrigues formula (see [3]), i.e.

) ))

where A is the forward difference in i with step 1 (the coefficient can be
determined by (29)). Thus, we can write also

e ()
(— j=0 v v

(312 ul)=v+}
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THEOREM 3.14. u®, ... ut~ D

eigenvalue is given by formula

are the eigenvectors for G, and the v-th

+1

1 k=1 2 (k- v
(3.15) A, = J (%) Pv(s)ds=;(kvl)/(k:) for v=0,....k—1.

Proof. Propositions 2.10, 3.9 and (2.16) imply that for some 4,, > O the
equality
Giou = A, 1)

holds for v=20,...,k—1. To prove (3.15), introduce the kernel
k—1

Gi(t, s) = 'Zo Nix () N; i (s).

Now, the i-th coordinate of v{” equals to

(Grou) = Z (Nigs N (Py, N = (Nig, P)).
j=0

On the other hand it is equal to A, ul) = A, (N¥, P). Thus (N;,, P,)
= Ay (N, P,) for i =0,...,k—1, whence

+1

[ Glt, ) P(s)ds = 4, P, (0).
-1

Letting t = 1, since P,(1) =1 and G,(1, s) =((1+s)/2)*" ', we obtain the
first equality in (3.15). The second equality in (3.15) can be proved directly
integrating by parts.

CoroLLARY 3.16. For v=20,...,k—1 the following equalities hold

W=Axu and A, =]l

Moreover, AO,& > Al,k > 0> Al— 1.k =~ 0.
CoroLLARY 3.17. The following equality holds for te R

l k-1 k-1
(—;—‘) =% L. 0+HP0.
v=0

The next theorem in case j = k—1 was announced in [1].
THeEOREM 3.18. The following equality

Sl }
3.19 . '+ =
(.19) '"f;uy.muz’ JePiarp =t

holds for 0 < j <k, and the inf is attained for f proportional to P; only.
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Proof. Using the orthonormal Legendre polynomials P, Proposition
3.9 and Corollary 3.16, we can write for fe 2;,,

j A J R
O = || 2 wPIP NE = B 4 (P S

5 (P f = 2 I

Moreover, the 1nequaht1es of Corollary 3.16 imply that for fe #,,, the

equality takes place iff (P,, f) = 0 for 0 < v <}j, i.. iff f is proportional to P,
k-1
CoroLLARY 3.20. Let 0<j<k. If f = z a;N; € Pj.,, then

Vadialalz < Ifl2 < /2/k a2,

where the constants \/A;, and ./2/k are the best possible.
k-1

CoroLiArY 3.21. Let 0<j<k. If f=3 b;Nis2€ 2P, , where N,;.,

i=0
= \/k/z Ni.k’ then

(k—1);
(k +j);

where (n); = n-...:(n—j+1). Notice, for fixed j,

(k1)
(k+));

4. More formulas for the eigenvectors and the matrices. The following
recurrence relation was proved in [1]

@.1) Nieor = N4 NE 1.+\/ﬁ§(—1)'()

Since u{} = (N¥, P,) for v=0,...,k—1, (4.1) implies

bllz < 11112 < Iz,

-1 as k- oo.

ke ;
4.2) uly —Tu‘”’+kuf"”, v=0,...,k—1,

where 4, , = 0. Now, (4.2) and (2.11) allow to compute u{” for all k and
v=0,...,k—1.

ProrositioN 4.3. For the entries of the inverse to the Gram matrix G, we
have the formula

T k-1

(Gi )iy = (N, Nt = Z uRu, Lj=0,... k-1
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Proof. This is simply the Parseval identity for the Legendre
orthonormal set (P,,..., P, _,).

ProPOSITION 4.4. For the entries of the Gram matrix G, we have the
Sformula

2 k—1\[/k=-1 2% -2 .
Gl.j.k=(Nl.ks Nj.h)=2k__ﬁ( i )(} )/( i+ ), i,j=0,...,k—-1.

Proof. It follows by the equalities

N, () N},h(t) = (k:I)(k; 1>N|+J 2k~ l(t)/(zf+j2)

+1

| Noalt)de = 2/k.
-1

and

ProprosiTioN 4.5 For v,i=0,...,k—1 we have
4.6) ud = /v+4 Z (= “"”( )(H) (H:- l)
JJ\ J i
(5 )
and

: 2 v j
s )E e ()0 ()

Proof. Since we have (2.1), formulas (4.6) and (4.7) follow from(2.3) and
(2.4), respectively.

Remark 4.8. Simple transformation of (4.6) leads to the following
familiar formula for the discrete Chebyshev polynomials (cf. e.g. [2], [4]),

1 M Y v+j (J)
= £ )(k-n)‘

J

ProrosiTION 4.9. For k> 1 we have
() (D)
2 k=1 : 2k 1

2k—1,zo <2k 2 EO k+v

7))

Proof. Use the following two equivalent expressions for the trace of G,,

k-1

TrG, = Z (N Ny = 2 Av:
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