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Abstract. Let Q be the class of functiona #(e), #(0) = 0, [#(2)] < 1 regular in
the dise K = {z: |¢g] < 1}, A and B — arbitrary fixed numbers, 4e(—1, 1], Be[—1,
A), p(4,B) — the class of functions P(e), P(0) = 1, regular in K such that P(z)
s (4, B) if and only if P(e) = (1+ A8 (¢))(1 + B-H(2))~! for some function #(z)e 2
and every ge¢ K, and 8*(4, B) — the class of funetions f(z), f(0) =0, f(0) =1,
regular in K satisfying the condition: f(z)e S* (4, B) if and ouly if 2f* (e)(f(2))~! = P(2)
for some P(¢) e (4, B) and all zin K.

In the present paper the author determines the bounds for re(P (2) + =P’ (2)

(P(z))"l) and. re (zP’(z)(P(z))—l) on |z] =7 < 1 within (4, B), the bounds of |f(2)]
and |f'(2)| in §*(4, B) and the exact value of the radius of convexity for 8*%(A, B).

1. Introduction. Let £ DLe the family of functions +(2) regular in
the disc £ = {#: |2{ < 1} and satisfying the conditions #(0) = 0, [#(2z)| <1

for z¢ K.
Next, for arbitrary fixed numbers 4, B, —1< A<1, -1 < B < 4,

denote by @ (4, B) the family of funections
(1.1) P(z) =1+b24 ...
regular in K and such that P(2) is in @ (4, B) if and only if

_ 1+49(2)
() =TT E30)

for some function #(z)e 2 and every ze K.
Moreover, let 8*(4, B) denote the family of functions

(1.2) f() =z+a,z2+ ...

regular in K and such that f(2) is in $*(4, B) if and only if
2f'(2)

(1.3 =P

(1.3) @) (2)

for some P(2) in @¢(4, B) and all z in K.
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Finally, we consider the following classes of functions defined in K
(the first five of them consisting of functions of form (1.1) the remaining
ones — of form (1.2)): p — the class of Carathéodory functions, i. e. of
functions P(z) for which reP(2) > 0 in X; o, — the class of Carathéodory
functions of order e, 0 < a< 1, i.e. such that reP(2) > a for 2 ¢ K;
@A), M >}, 0¥ and @, 0 < <1 — the classes of functions satis-
fying the conditions

P(z)—1
P(z)+1

for ze¢ K, respectively and S8* — the class of functions starlike w. r. t.
the origin; 8% — the class of functions starlike of order o [7]; 8*(21), 8*#
and Sf — the classes of functions satisfy (1.3), where P(z) belong to
P (), ¥ and @, for z¢ K, respectively.

The classes §* (M), '™ and §; have been introduced in [1], [6]
and [4].

It is easy to prove that

1P(z) ~ M| < A [1], l <f |P(R)-1<p

1
@(A:B)QKO::_}? ‘O(A’B)QSO(I-I-B)’

(4, —1) =f01-4, #(1, B) Ef‘)( )) p(1,1) =g,

14-B
and
P4, —4) =, p(4,0) = 0.

Analogous relations hold for the corresponding classes of starlike
functions.

In this paper we give the greatest lower bound and the smallest
zP (z)] and Te 2P’ (2)
P(2) P(z)
@(A, B), the bounds. of |f(2)] and |f'(2)] in §*(4, B) and the exact
value of the radius of convexity for S*(4, B) for every admissible 4
and B. As corollaries we obtain certain results given by the present
author [1], Libera [2], Mac Gregor [3], [4], Nevanlinna [5], Padmanab-
han [6], Robertson [7], [8] and Zmorovié [9].

upper bound for re[P(z)+ on |2] =r< 1 within

2. Auxiliary lemmas, From the definitions of the classes g and
(4, B) we easily obtain the following

LeMya 1. If P(2)ep(A, B), then

(2.1) Ple) = (1+d)pe)+1—4
(1+B)p(2)+1—B

for some p(z)efp and conversely.
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Let ¢ be an arbitrary fixed point of K. We consider the functional
(2.2) F(P) = P(2), P()ep(4,B).

LEMMA 2. T'he set of values of the funciional (2.2) is the closed disc with
cenitre ¢ and radius o, where

1—ABr® (4 —B)r
1—B2r2, Q=9(r)= 1—B21‘2’

r = |{|.

(2.3) ¢=ec(r) =

Proof. Every boundary function Py(z) of (4,B) w.r.t. the fune-
tional (2.2) is of form (2.1), where

_ 1462

P(2) 1_ 2’ le] =1
[8]. Henece
1+ A4ez
2.4 = .
(2.4) Py(2) 14 Bez
Since for z = ré'®, 0 < ¢ < 2,

(2.5) Py(2) = ¢+ gnq,
where

14 Bree "
(2.6) no = s6® L%

1+ Brec® ’

the lemma has been proved.
Denote by £,(A, B) the subclass of (4, B) containing all functions
of form (2.1), where

142 1—-2

(2.7) p(2) = P P1(z)+——2—"1’z(z)’
1

(2.8) Pu(e) = 2T s k= 1,2
1—'8,‘3

and

(2.9) leel =1, —1<Ai<1.

Next let F(u,») be an analytical function in the v-plane and in the

half-plane re » > 0, such that
W2+ 1F 2 > 0
at every point (u, ).

Since every boundary function of g w.r.t. the functional F(p(z),
zp’(2)), lel = r, is of form (2.7) [8], every boundary function of p (4, B)
w.r.t. the functional F(P(z), 2P'(2)}, 2| = r, belongs to f,(4, B). Thus,
the extremal problem for reF(P(z), 2P'(z)), l2| =, in p(4, B) can be
replaced by an analogous problem for this functional in the class p,(4, B).
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LevvA 3. If P(2)epo(4, B), then for 2 = ré®, 0 < r <1, 0< o < 27,
we have
(2.10) P(2) = c+xny,
where
_ (L+ Dby + (1 —2A) ka7,
(L A by (L — A Ryl

# = 0|1+ hyp+(L—Dheme|,

g+(1+B)ons_
) )

(2.11) Ty =

v =29+ A+ B)[(1+ )+ (1 —A)n]e,

g=(14+B)e—1—4, 1 =g,

¢ and p are given by (2.3) and 0 < » < p.
Proof. Assume

z(p(2);p) = (1+p)pE)+1—p

for every function p(2) of p and every number x. Next let P(2)¢ p,(4, B).
Then
_ (3 +Na(pi(2); 4)+ (1 —Na(ps(2); 4)

(L4+2)2(p1(2); B)+ (L —2)z(p2(2); B)

for some functions p,(2) of form (2.8).

(2.12) P(z)

Let
.(2); A
Pp(2) =%, Qr(z) = (1+B)P(2)—1—A4,
(2.13) :(2);
Vi(z) = (L4+2Q:(2)+(1—1)Q1(2), Hyp(z)= Q;;(,;()z) , k=12.

Since
©(pp(2); B) =2(B—A4)Q;*(z) and (1+)H,(2)+(1—A)H,(z) =1,

we find after some calculation that P(z) can be represented in the form

(2.14) P(z) = (14 2).Py(2)Hy(2) + (L — 1) P, (2) H,(2).
Since
(2.15) Py(r6") = o+ on,

(comp. (2.4)-(2.6)), we have

Qu(re®) = g+ (L+B)om,, V(re") =0
and
(2.16) H, (re"?) = ..



Some exiremal problems 301

Therefore
P(re’®) = c[(1+A)hy+(L— Aol + o [(1+ D)y + (1 — 2) hya).

The first term of the last sum is equal to ¢, and thus P(#¢*) is of
form (2.10), where

(2.17) wp = o[(1+A)hyn+ (L —2) hens].
Equality (2.17) implies
2 = g2|(L 4+ A) gty 4 (L — A) Ryl
Assuming #, = 6%, k = 1,2, we find hence the relationship
w? = g2[(L+A)*hyhy + (1 — A2 hohy 4 (1 — 2%) (hy Ry a + By ey 7))
and because of
(2.18) A4+Mh, =1—(1—Dhyy, A=k, = 1L—(1+A)E,
we get
% = {1 —(1— 23 [(1—mna2)ly (1 — M%) 71-1 hol}.

Finally we obtain

2 __ B)2p2 _
(2.19) n2=92[1_4(1__/12) P BYe L P n].

[v}? 2

Since

(4 —B)*(1—1?)
1— B2yp®

(2.20) §*— (14 B)2g? = >0,

we have » < p, which ends the proof.
Lemma 4. If P(2)efp,(4, B), then on |z =r <1

—BP2(2)+ (4 +B)P(2)—A4 1 p*
(=) J(1_‘|"B) (2) __g_(;_[ea_lp(z)_c[z]n*’

(2.21) 2P’ (z)

where ¢, o are given by (2.3),
Or

2.21' * =
(2.21) =15

and |p*| = 1.

Proof. The differentiation in (2.14) yields

(2.22) 2P'(2) = U(2)+W(z),
where
U(2) = 2[(1-+ 2)P;(2) Hy(2) + (1 — 2) Py (2) Hy (2)],
and
Wiz) = 2[(1+2) H,(2)P;(2) + (1 — 1) Hy(2) P2 (2)].
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Using (2.14), we obtain after simplification

(1—4%)(1+B)
(A—B)V(»)

(2.23) U(z) = [P1(2) —Pq(2)]* N (2),

where
(2.24) N(2) = A*4+B+B(1+B)P,(2)Py(2)— B(1+A4)[P,(2) +Ps(2)],
and

(2.26) W(e) = — A+ (A + B)P(z)—BT(z)

A—B !

where
T(2) = (1+A)Pi(2)- H(#) + (1 — A) Pi(2) Hy(2).

Because of (2.18) we have

(1 +2)P;(2) Hy(2) + (1 — A) Po(2) Hy(2) ]
= (L+ 1) Pi(z) H,(2) + (1 — 2) P3(2) Hy (2) — (1 — A2) Hy (2) H, (#) [P (2) —
—Py(2)1%;
thus
(2.26) T(2) = P2(2)+ (L — %) [P (2) — P, (2) )P H, (2) H,(2).

From (2.22)-(2.26) we conclude that (2.21) may be represented in
the forim
—BP2(z)4+(A+B)P(z)— 4 +(1—).2)(A—B)

V. i B~ Pi(a)®

zP'(2) =

for every P(z)e f,(4, B) and z¢ K.
Tet 2 =re%,0<r<1,0<p<2r. Then from (2.18) it follows

that

[P1(re) — Py(re®) P = — derpsin® L2,
where
(2.27) N =N

Hence in view of (2.19) and because of

A—B 1 0
g —(1+B)2g2 2 o

we obtain

1-)(4d—B . : 1 p*
¢ W)(ﬁe,:w)__ L [Py = Palre) = = 2 (g2,
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7 (,.et'v)

2.28 * = —
( ) n '[.'(,re‘m)

UE]

which ends the proof.
COROLIARY. If P(2)e fo(1, —1), then on |z) =r< 1

2P'(2) = §[P*(2) —1]—1[o**— |P(2) —¢*]|*]9,
where
_ 1472

c¥ =
1—z2’

of. [9].
3. An extremum problem over p(A4, B).

I. Let P(2)ep,y(A, B). Thus, because of (2.1), (2.7)-(2.9), where
£ = €% (k = 1,2), and in view of Lemma 4, the expression

o(r) = min{re [P (2) +_z:%;%]: 2] =<1, Pegy(4d, B)}

may be represented for z = e, 0 <r < 1, 0 < ¢ << 2x, as follows:

m (7') = min L(P("ei‘p)))

201,89
where
(4 -2B)w*+(A+Byw—-4 p* o
(3.1) L(w) = A—Byw T [0%— Jw—e¢|2Tw 1y,

—1<A<L,0LK 9, <2n for k = 1,2 and ¢, g, 0% 5* are given by (2.3),
(2.21) and (2.28), respectively.

Let

(3.2) P(re®) = se", §>0, imt = 0.
Since

{3.3) rep*e " < 1,

we obtain because of (3.1)

(3.4) o(r) = r(r),

where

(3.5) 7(r) = min®(s, 1)

8,0
and
(3.6) @(s,t) = D(s,1; 1) = (Eys+Ey+ Eys~ ") cost + B8+ By + Egs™!
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with
A4—2B * 1— ABy?
E]_ = —, Eg=—09—=—2 ! ,
A—B e (4 —B)(1—r2)
A Q* 1— Bip2
. = — B =— =
(31 By A—B’' 7' 2  (A—-B)1-—rY)’
B *(n2 __ 2 1— A2p2
By =‘———A+ ) Ee=.g Sl 20 = : .
A—B 20 (A—B)(1—r?)
In view of Lemmas 2 and 3 the function (s, 1) is defined in the
region
(3.8) D={st):c—og<s<ectpo —p(s)<t<yp(s)
and on its boundary 2D, where
s2+cz_92

(3.9) y(s) = arccos 0 p(s) < p(so)

2¢8

with §, = Ve2— o? (3).
If, at some point (s;, t,) of the region D, @ (s, ) attains its minimum,
then s, and t; are the solutions of the system of equations

00(s,t) _ o 0P(st) _

0
ds ’ ot
with the unknowns s and ¢, i. e. of the system
(3.10) (B, —Tys™Ncost+ B, —Eys™* =0, sint =10

or
(3.11) (By—Eyscost+E,— B> =0, B s+E,+Es =0,
where |cosi] #= 1.

The numbers s, and ¢, do not satisfy (3.11) (2); thus, in view of (3.8)-
(3.10), the minimum problem for ®(s,?) if (s, t)e D is equivalent to an
analogous problem for

(3.12) B(s) = B(s;7) = D(s, 0,7),
where ®(s) = D (s;7) is defined in the interval I = {s:c—p<s<e+o}.

() In the sequel |Va|, for @ > 0 will be denoted by Va.
(*) In fact, putting

RD(s,t) 2D(s,t) ( 9% (s, t))"-
6(8! t) = g - »
Os® o2 dsat
we obtain &(s;,t;) = — (B, — E,s7%)sin24,. Supposing d&(s;,t,) = 0 for sin?; # 0,

we would have, because of (3.11), F, B, = E,H,, whence in view of (3.7) and (2.3)
we would obtain 2 — 4 (4 — B)#? = 0, which is impossible {(c¢f. (1.2)).
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LeMMA 5. The function D(s) = D(s;r) atlains its minimum at the
point

(I—A)(1+4ry)
BT+ 1—(4-2B LBy

/
(3.13) w=n0) =

of I only for r* < r < 1, where r* = r*(4, B) is the unique root of the poly-
nomial
(3.14) g(r; 4,B) = A(A—B)r—=24(1—B)r¥ —
— (42— 4B+4+244-2B—-2)r*+2(14+ 4)r—-2
in the interval (0, 1].
Proof. Differentiating (3.12) w.r.t. s we obtain

é’(s) = Ey+ By — (By+ Bg)s 77,
where
A—2B+1—(4—2B+ B
E\+E, =
(3.15) 1 A=B)(1—m
(1—A)(1 + A4r2)
(A—B)1—22)

b

Ea"‘Ee =

Since E,+F;>0 and E,+E;> 0 for every admissible 4, B,r,
the function @ (s) attains its minimum in s, if s,¢ J.
For A # 1 put

(316) k() = [e—o(P, UUr) = i), n(r) ~ [e(r)+e(r)]"

It is easy to verify that the funetion k(r) decreases and I(r) increases
for 0 <r < 1. Sinee k(0) > I(0) and &(1) < I(1), we have 8, > ¢— g for
r* < r < 1, where 7%, 0 < r* < 1, is the root of the equation k(r) —I(r) = 0,
1. e. the root of the polynomial g(r; A, B).

At the same time n(r)—1(r}) > 0 for 0 < r < 1. In fact, if A+ B> 0,
then 1(1) < n(0); hence I(r)y < n(r)for 0 <r< 1. If A+ B < 0and 4 > 0,
then B < 0. Thus

l(')')—-n(.;~)<(l_—*___"1£|:(1_A) 14 A2 l—BT:I

1 — B2y2 (L+Ar)®  1+Br
(1 + Ar)? 1—Br

— 0.
1— B2y? 1+ Br <

Finally, for A - B < 0 and 4 < 0, Decause of n(r) > ¢(r)+ p(r), we have

(B—A4)x(r)

H) = 1) < B [A—2BF1—(4A—2B+B)r]’
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where
2(r) = —A(Q1-B)r*—(2—A—B)r*4(1+4)r+2> 0.
Hence we always have s; < ¢+p for »* <1< 1, which ends the
proof of the lemma.

COROLLARY. If 0 < r < 1%, then ®(s, t) attains ils minimum at a point
of 8D.

Remark, If 4 =1 and only in this case we have r* = 1.

Therefore, if A = 1, $(s) does not attain its minimum in 7.

Assuming

(3.17) 8, = 83(r) = ¢e(r)— o ()
and &(s,) = D(s,, 0), we have
(3.18) &5(31) < P(s,) for r*<r<l.
Let (s,t)e 0D. Then, because of &(s,t) = B(s, —t), we have

@ (s, y(s)) = D(s, —p(s) = B(s),

where y(s) is given by (3.9) and seJ, where J = {s: e—p < s < ¢+ p}.

Thus
(3.19) D(s) = (B,5+Bys~ V) cosp(s) + B,
with
B8+ Eqs7t
(3:20) cosy(s) = —— 7, <.

LevmMA 6. Let

A4,B): —1<A<0, —1B< A4},

i

I

Z,
Z,
Zy

-

{(
{(A,B): 0< 41, —1<B<%},
f

A
4,B): 0< A<, T)-<B<A},

/By B
2 ' ol ) — 3 4 - ,rJ
(3.21) 8 s'(r) = *’1_——'4 for (A, B)eZ,

and I = {s: ¢— o < s < ¢+ g}.
Then

min @(s,t) = mincﬁ(s) =
(s.l)1s0D sel

D(c—p), if (A, B)eZyuZzor(d,B)eZ,,s'¢1,
@(s'),  if(d,B)eZ,, s'el.
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Proof. Differentiating (3.19) w.r.t. s, we find by (3.20) that
3.22) &'(s)

-1 .
= —E—,—[(El — B33 (Bys+ Bos™ )+ (Eys+ Bys ') (B, — Egs7?)],
2

2(E,E,s1— EyE,)
E,s? )

For any admissible 4, B and » we find from (3.7) that E, < 0, E, > 0
and E;> 0. If (4, B)e Z,, then E, > 0, E; > 0; for (4, B)eZ, we have
B, >0, E,< 0 and the condition (4, B)eZ, implies E, <0 and F, < 0.
Thus, in view of @(¢c— g) < &(c+ o), the lemma has been proved.

Leyva 7. If &' € I, where 8’ is given by (3.21), then

(3.23) d(s') < B(s').

&' (s) = —

Proof. Since é(s) = @(s, 0), then, in view of (3.6) and Dbecause
of (3.19), we obtain

(3.24) (s)— D(s) = U(s){L—cosy(s))+ V(s),
where
(3.25) U(s) = BEys+Eys™', V(s) = Es+E,+ Egs\.
Since
(3.26) 1 —cospls) = 2L,
B,
equality (3.24) now becomes
. . 1%
(3.27) B(s) — B(s) =L [U(3) 4 B].

Since E, < 0, we find from (3.20) that V(s) < 0. Because of (3.22)
and (3.25) we obtain for s = ¢’

,8*—F
(3-28) U(S’)"[‘Ez = Ez[—E;G:.__E% COS#J(S’)-’-I:I.
From (3.7) we get Ey < F,, and thus
(3.29) Byt — Ty > Hy(s'2—1).

On the other hand, basing ourselves on Lemma 6, we conclude that £; > 0
in (3.28); thus we obtain A4* < B% Hence E, > E,. Therefore

(3.30) E4S'2—EG < E‘(ﬁlz—l).

From (3.29) and (3.30) because of E, < 0 we have U(s')+ Iy < 0.
Thus, in view of (3.27), inequality (3.23) is true.
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Let @, be the minimal value of @(s, t) in DUdD. In view of Lemmas
-7 and inequality (3.18) @, = BD(8,, 0) for 0 < r < r* and @, = P(s,, 0)
for ™ <r<1.

We shall now prove the following

THEOREM 1. For all P(z) in p(4d,B) and 2| =r,0<r<1

zP‘(z)] \{ X,(r; 4, By  for 0 <7< 1Y

(3.31) re [P (2)+

Pi) |7 X005 A, B)  for < r<1,
where
A2 — (34— B)r+1
. v o _A_ —
(3 32) Xl(’ H H B) (1_‘47.)(1 _B,.) ?
VUAB —(1—ABr?) A+ B
« . e R =9
(3.33) X,(r; 4, B) I B i B
(3.34) U =A(r; 4,B) = 4 —2B+1—(Ad—2B+ B,
(3.35) B =B(r; 4, B) = (1—A4)(1+Ar?)

and r* = r*(A, B) is the unique root the polynomial
(3.36) g(r; 4, B) = A(A—B)r*—24(1—B)r?—
~(A*—AB+2A+2B—-2)r2+2(14+A4A)r—2

in the interval (0, 1].
These bounds are sharp, being attained at the point z = re®, 0 < ¢ < 2m,

by

,.. 1— ez
(3.37) Pi(z; 4, B) = 7 Jor 0<r<”
and by

1—(1—A)de 2z — Ae%*
T Jor < r<1

: **(z; A, B) =
(3.38) P75 4, B) (1 —B)de~ "%z — Be 22
respectively, where

1 (1—Br¥)s,—(1—A4Ar?)

(3.39) d=d(r;d,B)=— PRy Yt 8, = VBUA-L
1

Proof. For s, and s, given by (3.17) and (3.13), respectively, we
obtain ®(s,, 0) = X,(r) and @(s,, 0) = X,(r); thus, in view of (2.9),
(3.4), (3.h) and Lemmas 5-7, inequality (3.31) is true. We shall prove
that this estimation is sharp.

To this end wc observe first that if a function P*(2) of the family
£2(4, B) satisfies condition (3.2) at some point 76, 0 < r < 1%, 0 < ¢ < 2,
with § = s, and ¢{ = 0, then

(3.40) P*(re™®) = s,.
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To make notation simpler, we denote the values of the parameters
appearing in Lemma 3 by the same letters as the parameters themselves.

Since s, = ¢— p, from (2.10) we obtain x = g and p = —1. Therefore
from (2.19) it follows that A2 =1 or y, = y,. If A* = 1, then because
of (2.7), (2.8) and (2.1) we get

. 14 Aez
(3.41) P (=) = 11 Ber
for some |g] = 1.

If ¥, = y,, then in view of 7, = ¢”* (k = 1, 2) and because of (2.11)
we obtain g, = g. Thus, from (2.7) and (2.8) and Dbecause of (2.1) we
infer that P*(2) is also of form (3.41).

We find &. For z = r¢* we have

1+ Aere'®

* l.w == Py .
(3.42) P*(re'®) ——1+Bere”

Equating (3.40) and (3.42) we obtain

1 85_1
¢ A—B

i

and because of (3.17) we obtain ¢ = —e~*. Thus P*(z) is of form (3.37).
Evidently P*(z)e (4, B). It is casy to verify that for z = re®

«P*
P*(z)+—f;(£§l = X,(r; 4, B).

Next, if a function P**(2) of p,(4, B) satisties condition (3.2) at some
point 7e®, 1 < r < 1,0 ¢ < 2x, with s = s, and ¢t = 0, then

(3.43) P** (r6'%) = 3,.

‘We accept the foregoing agreement concerning the notation of values
of the parameters corresponding to the function P**(z).

Since ¢t = 0 (comp. (3.2) and (3.12)), by (3.3)-(3.6) we have n* = 1.
Therefore, in view of (2.27)

1% (,. ei'.v)

W’hﬁz =1,

<
il
'—J

7’717?2 =
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(cf. (2.16)). Hence

29+ (L+B)[(1+ D)+ (L —A)mle

(3.44) 29+ (L+ B) [(L+Ane+ (L= Dpida |

1M =1

(¢f. (2.11)).
We conclude from (3.44) that

(3.45) gimne—1)+A(1+B)o(m—mn,) = 0.

Moreover, since P*(r¢*®) is real, by (2.10) and (2.11) we have y = p,
1. e. '
(3.46) X+ Dy +(1— D) hen, = (1+ A)E m+(1— }*)}_"2;72~

By (3.46), in view of (2.11), an easy calculation yields

(3.47) Ag(n— 72} +(1+B)e(mn.—1) = 0.

We shall solve the system of equations (3.45) and (3.47) with the unknows
Ay my and ,.

Supposing that for »;, = 7, we would have £, = &; then because
of (2.13), (2.7), (2.8) and (2.16) we would obtain h, = h, = }; hence,
in view of (2.17), we would get xp = ¢°7, where = 5, = #,. Therefore,
because of (2.12) we would obtain P**(re®*) = ¢+ on and because of

the equalities P**(re®) = P**(r¢™) and (3.43) we would find that s, = c—p
or 8, = ¢+ p, which is impossible. Thus, #, # %,. From (3.47) we find

_ (4 B)e(mn.—1)
g(m —n) '

Substituting A from (3.48) into (3.45), we obtain
(mm—1)[9*— (1 + B)*-¢*] = 0.
Since g2— (14 B)%-p% = 0 (cf. (2.20)), we have

(3.48) 1=

(3.49) mne = 1.
It follows from (3.49) and (3.47) that
(3.50) A=0.

Because of (3.49) we find from the equality

w1+ Be,re™™

11 Borew P =h2)

N = gé

(ef. (2.11)) that
(3.51) £ 6, = €77,
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Thus, becaunse of (3.50), (2.12) and (2.8),

P*(z) = 1— 3@ —A)(e1t2)z — ey 8,2
1—%(1_B)(81+52)2’—B315222 -

Let
(3.52) 2d = £,67 4 £, 67,
From (3.51) and (3.32) we obtain &, +-£, = 2e~-d; thus
1—(1—A)de ®z—~ Ade™ ¥
1—(1—B)de "%z — Be %%’
It follows from (3.43) and (3.53) that
. — 1—(1—A)dr— Ar?
1 1—(1—B)dr—Br?’
Therefore P**(z) is of form (3.38) with d given by (3.39). Evidently

P*(2)e (4, B). |
Finally we prove that, for z = re'?,

(3.53) P™(2) =

zP* (2)

P**(z)ﬁL—Ijﬁ@)— = X,(r; 4, B).

Differentiating the function P**(z), we obtain

d—2e®a4 e~ 20 d2?

P*™(2) = (A—B)e™™ -
B) = A =B e Bydr vz~ Be AT

Therefore, for z = re'™,

2P (2) - A-B dr (1 4+ 7r?) — 272
°1

P+ ) $; [1—(1—B)dr— Br*)?’

and by (3.39) we get

ok 2P
P (z) +-PT(S)

A(r; 4, B)si—[2—A—B+(B—24B+A4)r]s, +B(r; 4, B)
b

= 2 =767,
(4 —B)(1—1?)s,
Since s, = VBA!, we have, for z = re®,
2P (2 B(r)—(1—ABr2)s, A+B ,
P*™(2) +— ) =9 (1 —{ ~ )81 + = X,(r; 4, B),
P (2) (A—B)(1—r¥)s, ' A—B

which ends the proof of Theorem 1.
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. Let

®.(r*) = max Tre [P(z)+
lgl=r<1
P(2)epo(d,B)

2P’ (2)
P(z) ]

Proceeding as in part I of this section and preserving the same nota-
tion, we obtain first o,(r) < 7,(r), where
7.(r) = max D,(s, 1)
(8,t)eDBD
and .
@1(8, t) = ¢1(8, t; 1') = (.E]_S —Eg‘l-.Ess—l) GOSt—E4S+E5—E°S—l.
Next we prove that if @,(s, t) attains its maximum at a point (,, f,)
¢ D, then %, = 0. Let
D,(s) = By(s5 1) = Dy (s, 0, 7).
Since
Di(s) = By— B+ (Eo— By)s™"

and B,— ¥, > 0, the point $, exists only if E, < E,.
Hence

s s Ey— B,
=640 =37 5
4 1

if 10 B, < B, and 2° [(B,— E)(E,— E,)"']"*e L.

B, < EByonlyifl1°4—-2B~1< 0,0 <7 <lor20A-2B—-1> 0,
7o < r <1, where 7, = V(4 —2B—1)/(4A —2B— B?).

Putting I(r) = §¥(r) in these cases, we find that I(r) decreases for
0<r<1 and for ry<r <1, respectively. The function k() defined
by (3.16) decreases for 0 <r <1 and %(0) = 1. Next, we obtain [(r)
> k(r) for 0 <7 <1 and for 7, <+ < 1, respectively (3) and I(r) < n(f)
(cf. (3.16)) for »** < r < 1, where #** is the unique root of the polynomial
g(r; —A, —B), in the intervals (0,1) and (7,, 1), respectively.

Summing, we obtain

LEMMA 5. The function ®,(s) = @,(s;r) allains its mavimum at the

point .
5 = dy(r) = ]/ 1+ A)1—Ar
(A—2B—B)r'— (A —2B—1)

(*) In fact, if 4 + B < 0, then 7(1)> k(0); hence 2(1') > k(r) in this case. If
A+B>0, then 4>0 and I(r)—T(r)> (4 —B);((r)/(l—Br)[(A—2B—B3)r‘-’-—
~(4-2B-1)], where #(r)=A4AQ1+B)rP—(A+B+2)r*+(1—-4)r+2>0 for
0<r<l,
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of I only for v* <r <1, where r** = r**(A, B) is the unique root of the
polynomial
A(A—B)yr'+24(1+B)r*—(A*—AB—24 —2B—2)r2 4+ 2(1 - A)r—2
in the interval (0, 1].
COROLLARY. If 0 < r < 7¥*%, then @,(s,t) aftains ifs marimum at
a poimt of 0D.

Remark. If B = —1 and only in this case we have 7** = 1. There-
fore, if B = —1, then &,(s) does not attain its maximum in 7.

We see that for m** < r <1
B, (5,) > By (c+ o).
As in part I we obtain

Levva 6°. Let
D, (s, w(s)) = Dy(s),

where yp(s) is given by (3.7), sed,J = {8: c—p < s < e+ p} and let

s /B E
s = §'(r) =]/ E"E“ for (4, B)e Z,
1544

(cf. Lemma 6). Then

@i(c+o) if (4, B)eZ,UZ, or
max @,(s,t) = max Qsl(s) = (4, B)eZy,s'¢I;
(s,t)edD seJ ¢1(8p)’ 'tf (;1, B)EZ“ s'el.

Remark. If (4, B)e Z,, then A—2B—-1 < 0.

‘We prove the following

LeMyma 7', If 8'e I, then

D, (s') > D, (s").

Proof. Preserving the notation adopted in Lemma 7, we casy obtain

the equality
Dy(8) — Dy(s') = V(s")[T(s')cosy(s') —1],

where

Since (4, B)eZ,;, we have E; < E, < 0 and F,> I, > 0.
Putting h(r) = B, E,— E,E;, we get

By (7)

M) = A TBRra =R

5 — Annales Polonicl Mathematicl XX VIIT.3
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where

hy(r) = A(AdB*—2B+ 4)ri+ (Ad—B)(B—34)r2+ A*—24AB+1.

If 2, (r) > 0 for 0 < r < 1, then i(r) > 0 and because of B, B, — E,; E,
> 0 we obtain after some calculation the inequality
Ly—E,

.E4 - ‘El )

Hence T'(s') < 1; thus, because of cosy(s’)> 0 and V(s')< 0, in
case of A, (r) > 0, the lemma is proved.

The relation (A4, B)eZy implies 0 < A < 2B. Thus %;(0) > 0; more-
over, h;(1) > 0. Therefore h,(r)> 0 for 0 <r<1 if AB*—2B+4+4 <0.
Similarly for AB*—2B+ A4 > 0 this inequality is true, which ends the
proof.

Basing ourselves on Lemmas 5'-7', we obtain

THEOREM 2. For all P(z) in (4, B) and |z} =r, 0 <r <1
zP’(z)] < X,(r; —4, —B) for 0 <r<r¥¥g
P() | | X,(r; —4, —B) for ™ <r<1,
equality holding in z = re'® for P*(z; — A, —B) if 0 <r<<r** and for
P*™(z; — A, —B) if r* < r<1l, respectively, where r** = r**(A, B) is
the unique root of the polynomial g(r; — A, — B) in the interval (0, 1] (cf.
Theorem 1).

IOI. Similarly we prove the following

THEOREM 3. For all P(z) in (4, B) and 2| =7, 0<r<1
2P’ (2) Yi(r; 4, B)  for 0 <1< 7¥,

=

P(z) Ys(r; 4, B) for i*<r<1,

82 >

(3-54) re [P(z) +

1° re

where
(A —B)r
(1—A4r)(1—Br)’

Y,(r; 4, B) = —

ViB—(1—4Br?) A+B
(A—B)(1—+2) ' 4—B’
A =%(r;4,B) = (1—B)1+Br?), B =92
(cf. Theorem 1) and i* = 7*(4, B) is the unique root of the polynomial
g(r, A, B) = ABr*—2A4ABr*+ (24 +2B— AB—1)r*—2r 41 in the interval

(0, 1]. Functions (3.37) and (3.38), where d s given by (3.39) and s, = V BA-!
shows this result lo be sharp.

Y,(r; 4, B) =2

2P’ (z) < Y (ry —A, —B) for 0 < r <Y,
P(z) Y,(r; —4, —B) for r*<r<1,

0

re
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equality holding for functions P*(z; —A, —B) and P**(z; —4, —B),
respectively ; 7** is the unique root of the polynomial g(r; — A, —B) in the
interval (0, 1].

Remark. If 4 =1 and only in this case we have #* =1, #** =1
only for B = —1.

Applying Theorem 3 to the special cases where 4 = 1—2q and

B=-1, 4 =1 and B=i—l,A=ﬁ and B= —§,4 =4 and

M
2P’ (2) .
the fa-
() in the fa

milies @,, @2 (M), ) and (@, respectively. If 4 =1 and B = —1, then
we obtain a result of Libera [2].

4. The estimations of |f(z)] and {f’(2)] in §*(4, B).
THEOREM 4. If f(2)e 8*(A, B), then for 2| = r,0<r< 1

(4.1) Cr; —4, —B)< |f(2) < C(r; 4, B),

B =0, we obtain the corresponding theorems on re

where

r(14Br){-BiE o B =20
Clr; 4,B) ={ " ’
re for B = 0.

These bounds are sharp, being atlained at the point z = re®, 0 < o < 2x,
by

(4.2) Ju (2) =2-folz; — 4, —B)
and
(4.3) f*(2) = 2-fo(2; 4, B),

respectively, where
(1+ Be®2)4-BB  for B £ 0,

Jolz3 4 B) =1 sein, for B = 0.
Proof. Since f(z)e S*(4, B), we have
FP()—1
f(2) = z-exp (] —E‘%——dC)! P(z)ep(4, B).

0
Therefore

e
£(2) = lelexp (re [ % dc).

Substituting { = 2t, we obtain

1
Pihy—1
&) = lzlexp (re [ —(—T)——dt).
[}
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Hence
1

~ < |~ oy ." - x(qé_)_:_
If(#)] < |zlexp (J max (1(_ / )dt)

v |28] =1t

TFrom Lemma 2 it follows that

P(z)—1 (4 —B)r
maxre = ;
1ottt t 1+ Bt

then, after integration, we obtain the upper bounds in (4.1). Similarly,
we obtain the bounds an the left-hand side of (4.1), which ends the proof.
From Theorem 4 follows immediately the corresponding theorems
on |f(2)| in the families 83 [7], 8*(3) [1], 8" [6] and S [4].
THEOREM 5. If f(z)e 8% (4, B), then for |2| =7, 0<r <1,

L(r) < If () < L{),

where
D(r), if 0<r< s
L(r) = exp H(r)
D(r**) — _ - H £33 .
(7 )epo(r**)’ if r*<r<l1,
(4.4)
) D), if0<r<r
L(r) =1 - xp H (r
D(r*) —eﬂr(’—), if r<r<l,
exp H (r*)

r* and r** are the roots of the polynomial g(v; A, B) and g(r; — A, — B),

respectively (cf. Theorems 2 and 1),
14 Ar)(1 4+ Br)d-2B1E if B #0

D(r) = Dir; 4, B) = ( )(1+ ) y if B #0,

(L4- Ar)e“", if B=0,

H(r) = H(r; A, B)

f 1+B—BA+A)r—V(A1+A4)(1— A?z)(ul——a,zﬂ)

T A-B r(l—1?) dr (9,
e r <1,

() After integration we obtain H(r) = 2 ;+1; logr — IA_%BBlog(l—r'-‘)—l-

-+ 2 J+- const, where
k=1
0 for 4 =0 or a, =0,

7ol 20, arctant;!  for a, < 0 aud A >0,
| =

_tl
+1

for @, > 0 or a; < 0 and 4 < 0,

1
1
b,log 1
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a, =a,(4,B) = —44+2B+1, @, =ay(d,B)= —4+2B+ B2
and
D) =D(@; —A, —B), H(r)=H(r; —A, —B).
The upper bound L(r) for 0 < r < r** and the lower bound f:(r) for

0 < r<r* are sharp, being atiained by funclions (4.3) and (4.2), respec-
tively.

Proof. If f(z)e 8*(4, B), then because of (1.3) an easy caleculation
yields

2f"(2) “P'(z
(4.5) 1+ ]{.(2) = P(2)+ P(::))
for some P(z) in (4, B). On the other hand, we have
0T E _ Drgipi), =

J'(2) or
then, using (3.54), (3.32) and (3.33), we obtain

9 (A —B)(4r+2)
(4.6) o BN S Ty a T B
for 0 <7 < r*
o 0 e 1+B—B(l+A)rt— V(1 + 4)(1— Ar?) (a, — az7?)
(4.7) ar loglf'(»)] <2 (A—B)r(1—r?)

for r*<r < 1.
Integrating both sides of inequality (4.6) from 0 to 7, we obtain

(48) ()] < D),
where D(r) is given by (4.4).

0 for a, = 0,

0 for 4 =1,
2b,arctant; 1 for a, < 0,
Jy = 2 = 1—1y
1~t¢ bslog for 4 # 1,
—b.,log( 2) for a; > 0, 1+1g
= 1412,
b g YA+ ADMI el L VAt A)el _ YA-4)(1—B?)
1 A-B R A—B ’
/ ) 1— B2
t1='|/ %-t for 4 =0, 1, =1V]a 1, t3=]/ =4 t ford #1
and
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Let r** < r < 1. Denoting by I,(r) and Z,(r) the right-hand sides
of inequalities (4.6) and (4.7), respectively, we get the inequalities

i

(4.9) MMHM<ILUW+fh
We easily obtain
P
(4.10) [ L(r)@r =logD(r+*)
0
and
(4.11) f I,(r)dr = H(r)— H(r**),

where H(r) is given by (4.4).

By (4.8)-(4.11) the first part of the theorem on the upper estimation
of |f’(2)| has been proved. Similarly, the second part of the theorem on
the lower estimation of |f'(2)| can be proved.

The lower bound of [f'(2)| in the classes ;S':, S* (1), S*“” and S
ig sharp in the following intervals of »: (0, #.]; (0, 1) [1]; (O, rl )15 (0, 'r(ﬁ)],
respectively, where 7, =*(1—2a, —1), ) =*(8, —B), r(5 = r*(8,0)
and the upper bound — in the intervals: (0, 1) [7]; (0, 1) for M > 1 [1]
and in (0, R(A)] for M < 1; (0,1) for >} and in (O, a(")] for B<};

17 . 1
(0, r5]; respectively, where R (M) = r** (1, i —1), r® = (8, —B),
ey = 1**(8, 0).

5. The radius of convexity for the family §*(4, B). Let § be the
family of functions (1.2) regnlar and univalent in K and T an arbitrary
subelass of §. If f is in T, then r.c. {f}, the radius of convexity of f, is

. c. {f} = sup ['r: re (1+ ;:,(())) >0, 2l < 1']

and r. ¢. T, the radius of convexity of 7, is

1. ¢. T = inffr. c. {f}].
feT

If T is compact, then the problem of finding r.c. T is reduced to
finding the greatest value of 7, 0 < r < 1, for which

o"(2)
refur ) 20

for every [¢| < s and every function f(z)e 7.
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Since §*(4, B) is compact, it follows immediately that r. e. 8*(4, B)
equals the smallest root #y, 0 < 7, 1, of the equation «w(r) = 0, where
2 ()
I ()

Let f(2) be an arbitrary function of 8*(4, B). Then, in view of (1.3),
(4.5) and because of Theorem 1,

w(7) =min{re(1+ ): |2} =7 <1, feS*(4, B)}.

w(r)fu(r) for 0 < r < r¥,

(5.1) o) = I
where
(6.2) wulr) =A*»*—B4A—-B)r+1, w4, (r) =(1—Ar)(1—-Br)> 0,

(6.3) w(r) = c,rt—20,7*4¢5,

o(r)fvy(r) for r*<r <1,

v,(r) = (A—B)(1—r2) [2VUAB+2(1 — ABrt) — (4 -+ B)(1—r%)] > 0,
¢, = 4A*—BA+B, ¢ =24°—34+2—-B, ¢ =484+ B,

A and B are given by (3.34)-(3.35) and r* is the unique root of the poly-
nomial (3.36) in the interval (0, 1].

Let
(64) B, =By(d)= —A°4+34—-1 for 0<A<1,
(5.5) By = By(4) =54—4 for I 4 <1,

(5.8) G ={(4,B): (—1<d<0, —1<B<A)u
ul<A<1l, B,<B< A)},
(5.7) Gy ={(4,B): (0< A<} —1<B<B)U
vil<4<1,B,<B< B},
(5.8) Gy ={(4,B): <A<l —1<B<By}.

It can easily be verified that «(r) > 0 for 0 <r <1 if (4, B)eGy;
%(r) has one root r; in the interval (0, 1) if (4, B)e G,UGs, u(r) > 0 for
0 < r < ry; hence u(r) < 0 for r, <r < 1 in this case; v(r) has one root
7, in the interval (0, 1) if (4, B)e G, UG, and at the same time 2(r) > 0
for 0 < r < ry; thus o() < 0 for v, < r < 1; finally ¢(r) < 0 for 0 <r <1
when (4, B)eG;.

Hence, becaunse of (5.1)-(5.3) and the fact that «(r*) and v(+*) must
have the same sign, we obtain the following

LemmaA 8. If: 10 (4, B)e G, or 2° (4, B)e G, and vy = r*, then (1) > 0
for 0 <r <1y, w(y) =0 and o(r) < 0 for rs<r < 1. If: 39 (4, B)e @y
and r,<1* or 4° (A, B)e Gy, then o(r) >0 for 0 <r<7r,, () =0
and o(r) <0 for r,<r<1.
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Proof. The first or the second assumption implies immediately the
assertion. If the third condition is satisfied, then, because of u(r*) < 0,
we have »(r*) < 0, thus the lemma is true in this case. Finally if (4, B)e @,,
then »(r*) < 0; thus u(r*) < 0 and 7, < #*, which ends the proof.

LEanaA 9. The rool r, of the polynomial wu(r) satisfies the condition
< 1r* if and only if
(6.9) y(4,B) = B 4+ k,(A)B*—ky(A)B+k(4) < 0,

where

ki (A) =24°—114 42,
(5.10) k(A) = A*4124° — 41474124 +1,
ky(A) = 5454104 —394°+104%4-5A.

Proof. If @(s, t) defined by (3.6) attains its minimum equal to zero
for » = r,, then Decause of (3.6) we get for r =1,
B+ B, _

(By+ By)(c— o) + B+ B+ o—o 0.

Thus
(6.11)  Ey+Eg+ (B, +E)(c—0)*+(By+ Bs)(e—pe) =0, 1 =1,.

On the other hand, in view of (3.14)-(3.15) and because of the defi-
nition of 7*, we obtain for # =,

. g(r)
(5.12) E3+-En—(E1+E4)(c'—9) - (1_7.2)(1__3’.)2'

Equalities (5.11) and (5.12) imply

X o g(7) .
2(By+ Ey)+(E,+ Ep)(e—o) = (1—1%)(1—Br)*’ r=".

Hence, in view of (3.7) and (3.15),

: 1—Ar
21— A) 1+ A1)+ [(2AB—4—B)¥ + A+ B—2]—_
1—B’l‘1
_ (A—B)g(ry)
(1—Br,)*
Thus
(5.13) AR+ (1—24) —(A—2)r—1 = I
1—Br,

Sinee #(ry) =0, we have
(b.14) A} —(8A—B)r,+1 =0.
From (5.13) and (5.14) we obtain

5.15 A% A(1— AV —A(4A—B—2) — 49T
(0 ')) ’I+ ( )11 ( ) ’.1(1_31.1)
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By (5.15) and (5.14) we get

A —2A4° 44 —B)yr,— 444 -B--2)—1 = .-1—-—-‘(1(11-)———.
( )r— 4 ) D]

The polynomial g(r) increases in the interval (0, 1) and g(0) < 0,
g(#*) = 0. Thus »; < r*if and only if g(r,) < 0. Since the rootr,, 0 <, < 1
of u(r) exists if and only if (4, B)e G,UG,, we have 4 > 0.

Therefore 7, < r* if

. (A3 —24% 4+ 44 —B)yr, < 44— 4AB—-24 +1.

Putting

. 4A*—AB—24 +1
T A3 —24°+44—B"’

we easily find that 0 < 7, < 1. It follows immediately that »; < »* if and
only if u(r,) < 0, i.e. when

A% — (34 —B)r,+1 < 0.

Hence we obtain after some calculations inequality (5.9).
Let 0 < 4 < For B = —1 we obtain

(6.16) y4d, —-1) = (1+A)".'}(A)!
where
(5.17) Y(Ad) = 5A* 043 —33A°+44 42,

Since the derivative ’(4) decreases as 4 increases in the interval
(0, §) and §'(0) > 0, 5'() < 0, ¥'(4) has a root 4 in this interval. Henee,
in view of (5.17), the ?olynomial (5.16) has exactly one root 4, in the
interval (0, 3).

LEMMA 10. For every A of the interval 4, < 4 < 1 the equation y (A, B)
= 0 with the unknown B (cf. (5.9)) has exactly onc solution B = B(A)
in the interval (—1, By(d)) for every Ae (4, }) and in the interval (B,(4),
By (4)) for every Ae [}, 1), By(A) and B,(A) being given by (5.4) and (5.5),
respectively.

Proof. For 4,< 4 <! we have y(4, —1)< 0. If 0< 4 <1, then

(5.18) Y(4,B)) =21 —A4y(4*+24°+24+1) > 0.

Thus, for 4,< 4 <3 the equation y(4,B) =0 has at least one
solution in the interval (—1, B;).
Now, differentiating the function (4, B) twice w.r. t. B, we obtain

(5.19) yp(d, B) = 3B*+ 2k (4) B—Fy(4)
and
(5.20) yup(4, B) = 2[8B+ 1k, (4)]

(ct. (5.9) and (5.10)).
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Since yzp(4, B) is negative for B < By, yp(4, B) decreases in the
interval (—1, B,;). Next we have
(65.21) o4, By) = —2[A*+(V3—1)A +1][A*—(V3+1)4 +1].

It can casily be verified that
(5.22) A4 1< (1+V3)A for A, < A<1.

From (5.21) and (5.22) it follows that y (4, B) increases in the interval
—1< B< B, for 4, < A< Hence, the lemma is true in this case.
Let 1< 4 < 1. Since

Y(A4, By) = 4(A—1)(43—34*—4+7) <0,

by (5.18) the equation y(4, B) = 0 has at least one solution in the interval
(B, B,). Next we have

y5(d, B,) = —A*4+84°—104%—244 4 31
and
Ypa(d, By) = —4434+24A4% 204 —24 < 0;
thus, because of yy(1, B,) > 0, the function y(4, B) increases in the
interval (B,, B,), which completes the proof.
CorOLLARY. If (4, B)e Gy, then y(4, B) < 0 ¢f and only if B < B(A4)
and y(4,B)> 0 for B> B(4).
Basing ourselves on Lemmas 8-10, we obtain
THEOREM 6. Let

D, ={4,B): 4, < A4<1, —1 < B<B(4)},
Dy ={(4,B): (—1< A< 4,, —1<B< A)u
Uld,< A<1,B(4)< B< A)},

where B(A) 1s the unique solution of the equation y (4, B} = 0 in the initerval
{—1, By(4)) for Ae(A,,3) and in the interval (By(4), B,(4)) for Ae [}, 1),
where A, is the unique root of the equation y(A, —1) = 0 in the interval
(0,9 (cf. (5.9), (8.4), (5.5)).

Then the radius of convexity for the family S*(4, B) is
ryy if (4, B)e Dy,
Y] if (A1 B)E-Dza

(5.23)

(5.24) r.c.8*(4, B) =
where

(5.25) 7, = (4, B) =2[3A—B+V(4A—B)(54—B)]",
(5.26) 7, = ry(4, B)

— V(4—54 +B)[24'—34+2—B+2(1—A)VA* 44+ 1_2B]"
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The equality t. c. {f} = r, holds for the functions
' p[A—Bl (1 B)] if B =0
2rex og(1l— Bezx q >
(8.27) f()—l | ’
zrexp(— dez) if B=0
(cf. Theorem 4) and r. e. {f} =, — for the function
z-exp( — ¥ Adet2?) if B=0,4 = A%,
£ 1—da
z-e Al==2 1 —dez
exp{ 3 + = og(l—de )]}
if B =04 # A",
2(1+ B)ezyz 1 z
5.28 *(2) = {z-e 4_py|_ 2 0 = L
(5.28) f*(2) exp{( ) d(l B +Blog 1 -

if B+#0,4=0,
A— B[ (1+B)d z,_.(zl—'")]}
‘exXp log W (2) - lo ‘
1{ e+ VA P m(a—2)
'lf B 0 A :':0

0

where
logl =0, e=¢%, 0:5pg27, JA*= (14 —5¥3)117",
A +3(1—A)ri—1

5.29) d = = (1—BY @+ 1B,
(5.29) A i) A =(1-—RByP@+ 1B,
VF V4 if 4>0,
V=4 if d<0,
1—B)d: (L —=DB)d+(—1)kV 4.
2’0=-—(——-6B—)—-, Zk= ( )OB( ) E_. k=1,2,

W(2) = — Be*2*—(1— B)dez+1.
Proof. In view of Theorem 1 and Lemma 8§
7y if (A, B)e@ or (4, B)e Gy, v < ¥,

r.c. 8*(4, B) = ] .
7y if (4,B)eG; or (4, B)eGy, 1= 7%

where @, (k = 1, 2, 3) are given by (5.6)-(5.8), 1; (j = 1, 2) are the roots

of polynomials «(») and »(r) (cf. (5.2), (5.3)), i. e. are the numbers (5.25)

and (b.26), respectively, and finally s* is the root of equation (3.36).
Because of Lemma 9 the condition 7, < #* is satisfied if inequality (5.9)

is satisfied, and this.is equivalent to B < B(4) (Lemma 10). Ience, we

obtain (5.24). For B = B(4) we have r, = 7,.
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Let f*(z) be a funetion of &*(4, B) sueh that

2f* () »
5.30 = = P*(2)
( ) ) f* (E:) ’
where P*(2) is given by (3.37). Then, from (5.30) we find
- ff¢) 1 (A—B)e
(5.31) o 2= 1 Be

The functions of the variable # which appears on the right-hand
side and the left-hand side of equation (5.31) are regular in the disec K;
hence the integrals of these funetions exist along any regular curve I'c K
with the origin and the end-point at 0 and 2, respectively, where ze K.
Thus we conclude that f*(2) is of the form (5.27).

Evidently

M)
re(” @) )’0
for |z| < r, with equality if and only if 2 = r,&. Thus f*(z) is not convex
in the dise [2| < for » >y, Le. voc. {f*} =r;.
Next, let f**(2) be a function of §*(4, B) for which

2 **’(z) -

- =P ,

f**(z) (z)
where P**(2) is given by (3.38).

Thus

ORI
5.32 —_——=J
(>3 TR
where

d—ez

(5.33) J(#) = (A—B)e TR

We distinguish four cases.

1. B =0,d = 0. Integrating (5.32) we obtain the first formula
in (5.28). Since B = 0, we have X,(ry; 4, 0) = 0. Thus

(5.34) (44°—5A4)4—2(242~34 +2)11+4—84 =0
and in view of d = 0 we have
(5.35) Ari4+3(1—4)r2—1 =0

(cf. (5.29)).
Eliminating », from (5.34) and (5.35), we obtain 4 = 4% It can
casily be verified that (A%, 0)e D,.
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2. B =0,d #0. We have W(2) = 1—dez, thus because of |d]: 1
the function (5.33) is regular in K. Integrating (5.32), we obtain the second
formula in (5.28).

3. B #0. 4 =0. In this case W(2) = —Be*(x—2y)% where B< 0
and z, # 0. Next, we obtain || =1 — B! > 1. Thus

(Jl—B);T d—e2

B 2\?
-3
)

is a regular function in K. Integrating (5.32) we obtain the third formula
in (5.28).
4. B #0, 4 # 0. The polynomial W(z) can be represented in the

form
hl Nﬂ

We state that [ = 1fork =1,2.If 4 > 0 and B > 0, then g2, < — 1.
Supposing the contrary, we would have 4 < 2B—(1—B)d and henee
(1—B)(1+d) < 0, which is impossible. Similarly we prove that ez, > 1.
As in the case just considered, we find that, for 41 >0 and B< 0, ¢z, > 1
and ez, < —1. If 4 < 0, then B < 0 and [4,)2 = —B~'> 1. Thus |2, > 1
for & =1, 2 in cevery case. Hence, J(2) is regular in I, Integrating (5.32),
we obtain the fourth formula in (5.27).

Evidently, in each of the four cases considered above, we lhave

SR
re (1+—f—")—) =0

for |2] < ry, with equality if and only if ¢ = re. Thus r.e. {f**} =1,
and this completes the proof.

Applying Theorem 6 to the case where 4 = 1—2a and B = —1,
we obtain the result for the class 8% given by Zmorovit [9]. The problems
of the radius of convexity for 8* and S: have first been solved by Nevan-
linna [5] and Mac Gregor [3], respectively. If 4 =1, B =1/ —1 or
A = f, B = —8, then we obtain the corresponding theorems on r. e. S*(1I)
[1] and r. c. 8*™ [6], respectively. For the class S, we have

ry i fe<f=1
Tay if 0< ﬂ = ﬂ(n
where 7, = 2,(f, 0), ¥ = ra(f, 0) and

(3-V5 )(1+1’0)

2¥5

J(z) = —

i —'* d—
I. C. b(ﬁ) =

fo =
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