ANNALES
POLONICI MATHEMATICI
XXXVIII (1980)

On the existence and uniqueness of solutions of
a multipoint boundary value problem

by A. LAsoTA (Krakéw)

Abstract. A class of boundary value problems is shown for which the uniqueness
of solutions implies the existence. The main theorem is stated for an arbitrary system
of ordinary non-linear differential equations and then applied to a speocial case of two
equations on the plane.

1. During the last decade it has been proved that for some boundary
value problems related with systems of non-linear ordinary differential
equations the uniqueness of solutions implies the existence. Typical re-
sults of this kind may be found in [1}-[3], [6] and [7]. The purpose of the
present paper is to point out a new family of problems having the same
property. The family contains as special cases the Nicoletti boundary
value problem ([9], [10]) and the interpolation problem for an n-th order
differential equation ([2], [12]). It is necessary, however, to stress that
our results do not generalize the uniqueness-existence theorems for two-
point and three-point boundary value problems which have been proved
in [3], [6] and [6]. The reason is that in our statements the pure n-point
problem z(t;) = 7, is always imbedded in a more general class of problems.
On the other hand, applying our Theorem 1 to the system of two differ-
ential equations on the plane we obtain a corollary, which is closely re-
lated to the interesting results of E. Tutaj [6] and P. Waltman [13].

2. We consider a system of ordinary differential equations
(1) T =fi(ty @yy ey By), T=1,...,m
and the boundary value conditions
m
(2) Zdﬁmj(t‘) ="‘, i =1’ ceoy m.
J=1

We assume that the functions f;(¢, 2,, ..., 2,,) are defined and continuous
in the strip

D=A4AxR" A4cR,



306 A. Lasota

where A4 is an interval (bounded or not) of the real line, which contains
all the points ?;. We assume, moreover, that f; satisfy the following condi-
tion:

(C) For each point (tg,7y,...,7,) € D there exists exactly one so-
lution z, ..., #,, of system (1) defined on the whole interval 4 and such
that z;(t) =7, (1 =1,...,m).

Let o be a subset of the m2-dimensional space R™, which can be
identified with the space of all m xm-matrices. We shall consider the

boundary value conditions (2) with all possible coefficients a;; such that
the matrix (a,;) belongs to «.

THEOREM 1. Let a system (fy, ..., fmitiy ..oy tm; &) be given, where
fi: D>R are continuous functions satisfying condition (C), t, is an arbitrary
sequence of points from A and sf is an open subset of m xm-matrices. Assume
that for each matriz (a,-',-) € & and each vector (r,,...,7,) there exislts at
most one solution of (1)—(2). Then for each (r,...,r,) and each (a;)e€ o
there exists exactly one solution of (1)—(2).

Proof. Fix ¢, € 4 and denotc by z(l, ¢) (& = (Tyy cvvy Bp)y ¢ = (€1

..y ¢;,)) the solution of (1) satisfying the initial conditions x;(f,) = ¢;.
By assumption (C) such a solution exists and for each integer ¢ (¢ =1,
..., m) and each ¢ € 4 the function ¢—a,(t, ¢) is ‘continuous. Let (a;) € &
be given. Define the mapping

R™s c—>u(c) e R™, w = (g, ..., Up),

by the formula
" _ | S
u;(c) = 2@si$f(tia-c)v i =1,...,m.
j=1

The uniqueness of solutions of the boundary value problem (1)-(2) im-
plies that « is an injection. Thus, according to the Brouwer open mapping
theorem, the range of # is an open set. We are going to show that u(R™)
is also closed. _

Suppose the contrary. Then there exists a sequence {¢*} ¢ R™ such
that wu(c®) is convergent to a point r € u(R™) and |¢"|—oc, where | ||
denotes the Euclidean norm in R™., We claim that

m

(3) ’1cim2|wj(t¢,c")] =00, i=1,...,m.
—b&j=l

Suppose not. Then there cxists an integer ¢ such that each sequence {z;(%;,
)} (j =1,...,m) is bounded. Passing to subsequences, if necessary,
we may assume that each sequence {r;(?;, ¢*)} is convergent to a number
s;. Consider the solution #; of (1) satisfying the initial conditions @;(#;) - ;.
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From the continuous dependence on Cauchy problems it follows that

(4:) lin]. wj'(ta, Ck) - Ej(to)’ j - 1’ ceey m

k—>o00

On the other hand, by the definition of %(f,¢) we have =z(f,, c*) = c*.
Thus (4) cotradicts our assumption that ||c*|—oo and proves the claim.

From (3) it follows that for each integer ¢ there exists an integer j(i)
such that

limlmj({)(ti,ck)l = OO, i =1’.-.’m.
-0

Passing to subsequences, if necessary, we may assume that
(5) @30 (b5 €°) — @) (8, 1) > 1

for 1 =1,...,m; k =1,2,... Now write

. k) k+l)

Zyi) (tu Ok) - ﬂ%m (8,51

and consider the matrix @; = ay;+ hf 6, where ¢;; is the Kronecker
symbol. Since {u;(c*)} is convergent, 2f—~0 as k->oco and (@) € o for k
sufficiently large. Using the definition of @,; it is easy to verify that

m
g -
Z a;;; (t;, ¢¥) Za”mj( )y ¢ =1,...,m.

The equality above together with (5) shows that a(f, ¢*) and =(¢, ¢**!)
are two different solutions of (1) satisfying the same boundary value con-
ditions corresponding to the matrix (@;) € &/. This gives a contradiction
and finishes the proof of the fact that »(R™) is a closed set. Since the range
of « is both open and closed, the mapping «: R™—>R™ is onto and so, for
every r € B™, the equation #(¢) = r has a (precisely one) solution ¢ = ¢(r).
The corresponding function (t e(r ) is the desired solution of the boundary
value problem (1)-(2).

3. In the case of two differential equations on the plane
(6) w; = fi(t, @, @), 1=1,2,

the statement of Theorem 1 may be substantially simplified. Instead
of (2), consider the boundary value conditions of the form

(7) az1(0) +2,(0) =1y, b2 (1) +24(1) = 7y,

where (a, b) belongs to an open set @ =« B . We have the following
THEOREM 2. Let a triple (fi, f.; @) be given, where f;: [0,1] xR* >R

are continuous functions satisfying condition (C) (with D = [0,1] xR?)

and G is an open subset of R®. Assume that for each choice (a,b) €@ and
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(71, 72) € R? there exists at most one solution of the boundary value problem

(6)—(7). Then for each (a,b) €@ and (r,,r,) € B* there exists exactly one
solution of (6)—(7).

Proof. Fix (ay, b,) € @ and choose an ¢ > 0 such that the square
S, ={(a,b): la—a,l < e, |b—b,| < ¢}

is contained in G. Denote by &/, = R* the set of matrices (a;) satistying
the inequalities

@1 —@ol < 8, [B19—=1] <, [Bsy—bo| < 8, [ay,—1] < 4.
Now consider the boundary value conditions (2) for m = 2, that is,
(8) 813 %1(0) + 8422, (0) =7y, Gy %1 (1) + By3%2(1) = 73,

It is easy to see that for sufficiently small é problem (6)-(8) with (a;)
€ o/, admits at most one solution. In fact, (8) is equivalent to
A 71 B3y

- -2,(0)+x,(0) = .7 2 (1) +2,(1) = Ji;

12 12 27 Qg

and for each (a;,) € of, with 6 < /(2 +&-+1ay] + |by|) we have

'
ayy

G,
@32
which means that the point (a,, /a,,, @;,/a,,) belongs to 8,. Thus, according
to Theorem 1, problem (6)—(8) for (a;) € o, and (r,r,) € R* admits exactly
onc solution. In particular, setting a,, = a,, 8, =1, @, = by, @y =1
we obtain the desired solution of problem (6)—(7) (with a = a, and b = b,).

Remark. In the statement of Theorem 2 the boundary value condi-
tions (7) may be, obviously, replaced by

— g < &, < E,

ST

(9) 211(0) +a5,,(0) =71,  @5(1) +b2y(1) =17,
or, which is more interesting, by
(10) a1 (0) +215(0) =71y,  @1a(1) + b3 (1) = 15,

4. Now we shall examine Theorem 2 in some special cases. Our
first application is related with the two-point boundary value problem
for the second order differential equation and is interesting mainly from
the methodological point of view. The same result may be proved by
different methods (e.g. see [8]) but, in general, the proofs are much more
complicated. The second application is stimulated by the classical results
of Krasnosel’skii [4].

ExAMpLE 1. Consider the second order differential equation
(11) a" = f(t, z, o)
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with the boundary value conditions

(12) z(0)+azx (0) =r, 2(1)+ds’(1) =7,.

Assume that the function f is continuous in the strip D = [0, 1] X R?
and satisfies the following

ConpITION (C). For each point (#,, 7o, 7;) € D there exists exactly
one solution » of equation (11) defined on [0,1] and such that x(f,}) = 7,,
@' (ty) = 74.

From Theorem 2 it follows that problem (11)-(12) admits exactly
one solution if f(¢, #,, #,) is increasing in x#, and ¢ < 0, b > 0. In fact,
the uniqueness of solutions follows from the maximum principle (e.g.
sce [11]) and the set @ = {(a, b): @ < 0, b > 0} is evidently open.

EXAMPLE 2. Assume that the functions f;: D—R (D = [0,1] xR?)
are continuous, satisfy condition (C’) and admit continuous partial de-
rivatives f; = af;/0x;. Assume, moreover, that for each triple (¢, x,, ,)

the quadratic form
©(Uyy %) = Fr10] + (Fro—For) a8 — Fro %3

is semipositively defined (@ > 0). Using Theorem 2 we shall show that for
a, b satisfying a® < 1, b2 > 1 the boundary value problem (6)-(7) admits
exactly one solution. The set @ = {(a, b): a? < 1,b* > 1} is open and it
remains to prove only the uniqueness. Let z; and y; (¢ = 1, 2) denote
two solutions of (6)—(7). Write », = 9;—x; and v = u}— 3. From the
boundary conditions (7) it follows that
(13) 9(0) = (%, (0))° — (w2 (0))° = (1 —a?) (u,(0))?
(14) p(1) = (uy (1)) — (w2(1))* = (1 =12 (w, (1))
On the other hand,

30’ (1) = uyu; —uguy

= Uy [f1(ty Y1y ¥2) —[1(8, @15 )T —Us[fo(ty Yyy Yo2) —fo(ty @1y 25)]

II

// \V

0,
: 0.

=ty [ [:f12(8) + afra(8)1ds — s [ [t61F21(8) + UaSoe(8) 1,

where

Ji(8) = Fiy (3, @y + 814, w5+ 8%0,).
Consequently

1
v'(t) = f (uy, u)ds = 0
(1}

and incqualities (13) and (14) cannot be strict. Therefore we have wu,(0)
= 0 and u,(0) = —aw,(0) = 0, which means that z,(0) = %,(0). Accord-
ing to condition (C'), this implies that z;(t) = y;(#) on the whole interval
[0, 1] and finishes the proof of uniqueness.
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