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Abstract. In this paper, we introduce a new class K, (a, ) of functions and discuss certain
properties of this class, in particular, the closure property for this class under the well-known

integral operator
c+ g
{———/ jreo 1f‘“(r)dr}

for suitable choice of a, ff, ¢ and 4 by making use of the corresponding results for the classes
m,-y and K(x, f) (for definition, see Sheil-Small [6]) which are also established here.

Let E be the open unit disc in C and let H(E) denote the class of
functions holomorphic in E. The class K(a, ) was first defined by Sheil-
Small [6] as consisting of functions f in H(E) such that f(z)=14a,z+ ...,
zeE with f(2) # 0 in E and satisfying

w0/ (re?) (x=f)
—an < GERe{ 0 (re") 5 }d@éﬂn

fora >0, 20 0<|zl=r<1and 0, <6, <0;+2n. A characterization of
this class of functions was obtained [6] in terms of functions belonging to
the class n; defined as follows:

DerinimioN. For A real, gen,; if and only if

14
Re{zg (z)} <3i (A>0) B

g(2) J >34 (A <0)

n, consistss of the single [unction f(z) = 1.

Sheil-Small [6] established that fe K (a, ) if and only if f (z) = g(z) h(z),
where gem,_,; and |arge” h(z)] < $nmin(x, f) for a suitable real u. Here we
first prove that the classes n,_, and K(a, f) are closed under the Rusche-

AMS classification number: 30 C 45.
Key words: Ruscheweyh integral operator.
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weyh operator

F(z)={%j[tf"f‘“(t)dt} for a < B
0

[\N]

and suitable ¢ and A. Then we introduce a new class K, (2, ) and investigate
its properties. We need the following result due to Eenigenburg, Miller,
Mocanu and Reade [2], for our discussion.

THEOREM A. Let B,v€C and heH(E) be convex univalent in E with
h(0) =1 and Re(Bh(z)+7) >0 in E. Let p(z) =1+p,z+ ... Then

zp'(z) .
I L h(z)=plz) < h E.
p(2)+ﬁp(z)+y <h)=pzy<h{z) in

We start by proving the lollowing
THEOREM 1. Let G be defined for ze E by

. P

G(2) :{ t]'r"‘g”‘(r)dt} )
0 .

N~

Then G en,_; whenever gen,_ 5 for A >0, a < f and Rec > (f—a)/24.

Proof. If gem,_5, then there exists a ¢@eS* such that g(2)
= {p(2)/z}) @ P2 g(z) #0 in E ([7], Lemma 3.2). It is clear that G(z)
defined above is holomorphic in a neighbourhood of z =0 and G(0) = 1.
Thus there exists a R > 0 such that G(z) # 0 for 0 < |z] < R. We begin by
showing that G(z) is in m,_, in |z| < R. Then there exists ¢ €S* such that
G(z) = |@(2)/z) @ P2 in |zl <R, ¢(z) #0 in E—{0]. The proof will be
complete if we show that R > 1. Indeed, if G(z,) =0, |zo| = R < 1, then, for
any given ¢ > 0, there exists a neighbourhood of z, in which |G(z)| <¢. But
G(z) = lo(2)/z) " P2 where @ €S* For § >a, we have

1 (B—2)/2 )
|G(z2) = (I_IH) in |z| < R.

This contradiction shows that G(z) # 0 in E.
Since gen, 4, where > a,

zg'(z) a2—P
>
g(z) 2

Re
and for 2 = B, g(z) = 1. Now, consider

G(z) = {C fret g'“(!)dr} with 1 > 0.
V4

c
0

s
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This on differentiation with respect to - gives
G'* 12 G (2)+ G (2) = ¢y (2).

Let p(z) =z2G'(2)/G(z)+1; so that p(0)=1 and G'"*(z)(p(z)+ci—1)
= cig'*(z). By logarithmic differentiation with respect to z, we get

lzG'(z) zp'(2) 1zg (Z)

L GG pEtcAi-1 g

zp(2) "y()_+1<h() lw"_'(“—ﬁ_tlﬁ_
P@ ., 1 40 I+2

h(z) maps E onto the hall plane Rew > (x—pf)/2+1 and h(0)=1. The
hypotheses on a, 8, 4 and ¢ imply Re(h(z)/A+¢—1/4) > 0. Hence an applica-
tion of Theorem A shows p(z) <h(z) in E. When « =, G(z) = 1. Thus
Gen,_, whenever gem,_, under the given conditions on a, 8, ¢ and A.

THEOREM 2. Let f be in K(x, ). If F is defined by

.z A
F(z) = {( RS A dt} :

then FeK(a, f) for B=2a >0, A>a, Rec > (B—a)/24 and A = p/2nn, where
p is determinated by f in K (x, f) and n is a nonzero integer of the same sign
as .

Proof. Let feK(a, f). Then f(0) =1 and f(z) can be written as
f()=g(@@h(z) in E, where gen,_, and |arge'™” h(2)| < 3nx for a suitable
real u. Let

o= {< e e nal

By Theorem 1, Gen,_p if f=2a>0, A>0 and Rec > (f—2)/24. Now
consider

o

F(z) = {J‘r“ ‘f‘“(ndr} )
<0
Then F(0)=1. If we write F(z) = G(z)H(z), then H(0) =1, and hence
H(z) # 0 in a neighbourhood of z = 0. Hence there exist a R > 0 such that
H( )# 0 in |z] <R. We begin by showing that H(z) satisfies ]arge‘“H( )|
<4nx in |zl < R. Then |arge* H(z)] < ini if 2 > «; that is, |arg P(z)| < i,
where P(z) = ¢ H"*1(2) for A, > 4, in |z <R <1 and P(0) = 1 for our
choice of 4,. Hence |P(z)]>(R—|z|)/(R+]|z]) in |z] <R; or |H(z)
>((R—|zl)/(R+|zl))’11 in |z| < R. If possible let H(z,) = 0 with |zl = R < 1.
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Then, for any ¢ > 0, there exists a neighbourhood of z, in which |H(z)| <e.
This contradicts the fact that |H (z)| > ((R—|z])/(R+]z]))* for all z in |z] < R.
Hence H(z) # 0 in E.

Now, we have

z A
FUA(z) = GV (z) HYA(z) = {%jf‘ ! f‘“(:)d:} in E.
“ 0

This on differentiation with respect to z yields the following:

CH@H (G @)+ 6 @G @ HA @)+ G H () = of 4 (2):

12(161’1(/1)(2))’ + HYA(z) = - o) = g:;j((;) =h'*(z) in E.
_Z ¥4 “ ~1a-1 ’ 1/4
3 G AG 2)G' (2)+ G (2)

Let P(z) = ¢#*HY*(z). Then, if A = u/2nn, where n is a nonzero integer of
the same sign as u, then P(0) = 1. Also
zP'(z2)
zG'(2)
WG e

+P(z) = & hY*(z) in E,

zP'(z)
are ((zG‘ @icaye b (z))

Since P(0) =1 and P(z)e H(E), we can write

Pl — (l—w(z) @/
(Z) - l+CO(Z) ’

(1)

1 . o
= - Hh <-— 1n E.
Z larg e h(z)| 5 n

where w(z)e H(E), ®(0) = 0 and 1+ w(z) # 0 in E and a suitable branch on
the right-hand side is chosen. It is enough to show that |w(z)) <1 in E. If
not, there exists a point {, in E such that |w({,)] = 1 and {,w'({o) = k w({y),
k > 1 by Jack’s lemma [3]. Now,

Lo P'(Lo)
0 G (o)
WGy ¢

say. Let w({y) = €, so
o a 1—¢*
arg P (o) = ~arg

1+¢°

arg (Co P (Co))
P (o)

—na/24 [ 0<@ <m,
not/24 if —n<6<0;

—in f0<f<m,
in if —n<6<0.
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When f>a >0, 1 >0 and Rec>(B—a)/24, G(z)€m,_45, and hence
Re(=G'(2)/AG (z)+¢) > 0 which means |arg(zG'(z)/4G(z)+c¢)| <3m. Hence if
—n<0<0,

nx . X
ﬂmm(a, p) <arg T, < n+2}[.

If —n <6 <0, T, 1s a complex number in the half plane determined by

o
2 -
(2) 2
T, = P((,) lies on the ray arg W = na/24. Hence T, + T, is a complex number

lying in the half plane given by (2). If 0 <8 <n, —ma/2/—n<argT,
< —mnw/24; or T; is a complex number in the half plane determined by

X

<argW<1t+u.

— o —na
3 — n<argW .
3) 7 n<argW< 51

T, = P({o) hies on the ray argW = —na/24. Hence T, + T, is a complex

number lying in the half plane given by (3). Thus in both the cases 0 <0 <=

and —n <0 <0, there is a contradiction to (1). Hence |w(z)] <1 in E. Now,
o

o (1 -w (z))
~|arg < -
A l+w(z) 2/
implying that [arg P(z)| < ma/24, where é&** H'*(z) = P(z). Since F(z)
= G(z) H(z), where Gen,_; and |arg e’ H (z)| < na/2, we have Fe K (a, p) for
zeE when f2a>0, A>2a, Rec>2(f—a)24 and A= u/2nn, n being a
nonzero integer of the same sign as u.

Now, Theorem 2 leads to the following lemmas which are vital for the
subsequent results in this paper.

Lemma 1. Let pe H(E), p(0) =1 and let further p(z) satisfy

=B, " i re’pl(re”)
(4) an+———(0, Bl)go‘., Re{p(reg)_l-}_(p(re“’)—1)/A+C%
< (“"ﬁ’(92—91)+[3n,

2

Vre©,1), 0<6, <0, <6,4+2n, f2a>0and A>a.

Then F defined by

F(z) = exp {].p(t)t— : dt}

0
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is in Kia, f); that is, F(z)=G(z)H(z), where G(z)en,_; and
larg e’ H (z)| < na/2 for a suitable real u, provided Rec > (B—a)/2A, A = p/2nn,
n being a nonzero integer of the same sign as .

Proof The function

is regular in E and we have zF'(z)/F (z) = p(z)—1, F(z) # 0 in E. Consider the
function f(z) defined for ze E by |

(5 f(z)= {F”‘ (z)+§(F1“ (z))'}l _ FC(? (lc+p(z{__ 1 )A.

A

Formula (S5) implies

(6 Fhg) = i
0

c—1 fl/l(t)dt.

On logarithmic differentiation (5) yields:

zf'(2) zp'(2)
7 =pl@) 14—
" S(2) pl) p(z)—1
l _._*. c

From (4) and (7) it follows that fe K (a, ). Hence f can be written as f(z)
= g(z) h(z), where g(z)en,_, and |arge™ h(z)| < na/2 for a suitable real u. By
Theorem 2, F(z) related to f(z) by () is also in K («, f) provided f = a > 0,

Rec > (f—a)/24, A >a and A = u/2nn, where n is a nonzero integer of the
same sign as u.

Lemma 2. Let pe H(E), p(0) = 1 and let p satisfy (4), for every r €(0, 1), B
Z2a>0,42a, 0<0, <8, <0,+2n. Then

_an+(a Zﬂ)(ﬂz—()l) < | Re(p(re®)—1)do < (@ 2ﬁ)
83

(02—01)""[)’1'[,

whenever Rec = (f—a)/24 and i = p/2nn, where u is determined as in Lemma
1 and n is a nonzero integer of the same sign as .

Proof. By the previous lemma, we get

F(z) = (exp ].p(l)—l

0

dt)eK(a, B)
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provided f > a >0, Rec > (a—B)/24, 7 = u/2nn (where y is a real number
determined by F €K («, f§)), n being a nonzero integer of the same sign as 4.
Hence

(a—p) o2 (re‘e F'(re'%)’ (x—f)
— . ), —0)< {Rel- = JdO < 27 (0,—
am+ 5 (0,—0,) d‘, e Fire® d( 5 (0, —0))+ fin
under the stated conditions on a, ff, ¢ and 4: that is
62
- ‘ ; -f
-arr+(az—'8v!(()2—0,) < Re(p(re®)—1)d0 < (3—2—-/--)-(02—01)+ﬁn

0y
under the stated conditions on «, B, ¢ and A.

Now, we introduce a new class K, (x, f§) defined as follows:

Derinimion 1. Let fe H(E) and let f(z) = z4+a,2%+ ..., with f(z)/z #0
in E. fis said to be in the class K;(a, f) if and only if

Lp) i0 g i Q0 forg G
. ) 2 —fp+2
soms f (Ref " 2 (1 T o<

9y

with 20, 20, 0<6, <6, <6,+2n, for every re(0, 1) and 4 being
a non-negative real number.

Remark 1. When 4 = 0 we note that f/ze K(x, f). g(z) = z+a, 2%+ ...
is a close-to-convex function of order « if and only if g'eK,(a, ax+2).
K, (1, 3) = P(4) of A-close-to-convex [unctions of Bharati [1].

Remark 2. fe K, (a, ) if and only if there exist a ge K (a, f) such that
(f@)/z) A1) =¢(2). Sjnce geK(a, f), we can write g(z) =g,(z) h,(2).
where g, em,_, and |arg e h, (z)] < 1 nmin(x, B) for a suitable real u. Thus to
every feK;(a, B) there corresponds a real number .

THeoreM 3. Let feK,(x,B) for f=2a >0. Then for every c with
Rec > (B—a—2)/24, A2 a and A = p/2nn with the corresponding u of f(z), n
being a nonzero integer of the same sign as u, F defined by

2z A
F(Z) _ {C‘:Cl/i j'[c—lfl/ft(t)dt} ,

0

zeE is also in K, («, f).
Proof.

For= 4 e

0
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is holomorphic in a neighbourhood of z =0 and F(0) =0 = F'(0)—1. Thus
there exists a R > 0 such that F(z) # 0 in 0 <|z| < R. Hence

1/4 . z
FO) - et moa
z 0

-

4

differentiating with respect to z and simplifying we get

+cFY(z) = (c+)1)f”"(z)

again differentiating with respect to z, we get

F'(z)FY*1(2) { ( zF”(z)) zF'(2) }
Al +(1-4 cl
7 Fo TR T

zF' (z) F'* 7' (2)

A

- (c+;)f”‘"‘(2)f’(2).

.
v =a-n o2 (1452 )

Now putting

p(0)=1 and
F' () F (z 1
ﬁ) Do)+ et) = (c+1)f‘““(z>f’(z)

By logarithmic differentiation of the above equality we obtain

zp'(2) #f'(2) ( zf ”(2))

— 1 1.
p(z)—-1 =4 fo U
— ..

Since fe K;(a, B), this gives, for |z|] <R,

o2 i0 £ (00 0 £ (pei®
—an +‘@(92—9) [Re{(l—A)MQ+l<l+re S '—"—’-1)}610

p(z)—1+

f(re’®) 1 (re')
5] ) 10 ,(rea) }
- (R i) _ | do
9{ e{p(reg) +((p(re“’)—l)/l+c+l/l).
<" Pw,-00+pr

An application of Lemma 2 yields for |z| <R
62

et (5 )00 < |Re(p(rew>—1)d9<(“—;—B)wz—ﬂwn
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provided f > >0, Rec > (f—a—2)/24, A 2> a, 2 = u/2nn with the u corre-
sponding to f, n being a nonzero integer of the same sign as u. This implies
that in |z| <R

—an+(a;ﬁ)-(02—91)
52 re' F'(re'®) . re' F'"(re')
< 0“; Re {(1 —4) W-_+A (l +*‘"'P—‘Wo—)—)— ]}d()
<" P9, 0,1+ pr

under the stated conditions on a, f8, 4 and ¢ in |z] < R. Hence by Remark 2,
(F(z)/z)! "*F'(z) = G(z) H(z), where Gen,_, and large™ H(z)| < n/2 in |z|
< R. We know that G(z) # 0 in E. H{(z) can also be proved to be nonzero
in E as in Theorem 2. Hence F(z)/z # O in E. Proceeding as above, in E we
have FeK,(a, ) in E under the stated conditions on «, f§, ¢ and /.

Remark 3. For f# =3 and a = 1 the above result implies that the class
P(4) of Z-close-to-convex functions is closed under the transform by the
Ruscheweyh operator when 4> 1 and Rec > 0 [4].

THEOREM 4. For 22 f—a and B> a >0 and A > a, 4 = u/2nn, where u
and n are as in the previous theorem, e K, (x, p) implies fe Ky (2, f).

Proof. Let feK,(a, f). Then there is a real number yu associated with f.
Taking p(z) = zf"(2)/f (z) and differentiating, we get

zp'(2) zf"(2)
z =1 X
PO+ e T e
Since feK,(a, ), we have
—an+(a_ﬁ)(02—01)
2
) r( b oo il )
_ ,‘0f (re) ( mf (re) _
Sojl Re{(l A)re f(re“’)+2 l+re 7 (ré®) 1>d0
_OZR { (re®) — 1 re' p'(re'’)
‘0{ VP T T e =1y 1a
<%= P9, —0,)+pr.

2
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An application of Lemma 2 yields

—ant P 0,0 < TRefpiee - 10 <P 0,0,
61
provided f>a >0, 2> f—a, A2 a and 4 = pu/2nn, where y and n are as
stated 1n the theorem. Hence

Lp) v i0
. ey a—p+2
an < | Re {re Fré® 5

0
provided f 2 a >0, 2> f—a and A > a. This means f €K, (2, B) under the
above conditions on x, f and 4 given in the theorem.

}df) < fin

Remark 4. For f =3 and 2 = 1 we get the inclusion relation K, (1, 3)
= P(4) € Ky(1, 3) = CS* of close-to-star functions for 4> 1, a result ob-
tained in an earlier paper [5].

References

[!] R. Bharati, On a-close-to-convex functions, Proc. Indian Acad. Sci. 88 A (1979), 93--103.

[2] P. Eenigenburg, S. S. Millar, P. T. Mocanu and M. O. Reade, On a Briot- Bouquet
differential subordination, Rev. Roumaine Math. Pures Appl. 29 (1984), 567-573.

[3] 1. S. Jack, Functions starlike and convex of order a”, J. London Math. Soc. (2) 3 (1971),
469-474.

[4] K. S. Padmanabhuan and R. Bharati, On a close-to-convex functions I, Glasinik
Mathematici 16 (1981), 235-244.

[5] R. Parvatham and S. Radha, On certain classes of anaiytic functions, this fasc., 31-34.

{61 T. Shetl-Small, The Hadumard product and linear transformations of classes of anulytic
Sfunctions, J. Analyse Math. 34 (1978), 204-234.

[71 —., Some remurks on Basilevic functions, ibidem 43 (1983/84), 1-11.

RAMANUJAN INSTITUTE
UNIVERSITY OF MADRAS
MADRAS. INDIA

JRAS. COLLEGE FOR WOMEN. MADRAS

Requ par la Rédaction le 30.05.1986



