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Distributions invariant under compact Lie groups

by BoGDAN ZIEMIAN (Warszawa)

Abstract. A characterization of invariant smooth functions and distributions in terms of
smooth functions and distributions on the orbit space is given. To this end the concept of an
elliptic space is introduced.

Introduction. In this paper I give a characterization of functions and
distributions invariant under a smooth action of a compact Lie group. The
problem itself has rather a long history. One of the main steps was the
theorem on invariant polynomials which expresses such polynomials in terms
of basic invariants (see Weyl [10]). In some special cases, when there are no
functional relations among the basic invariants, also smooth functions are
expressable in terms of those invariants, the same being true for distri-
butions ; cf. Schwartz [9] and Oksak [6]. In these cases the basic invariants
define a sort of differentiable structure on the orbit space. Still, when
functional bounds on invariants do appear, the orbit space is a manifold with
singularities on its boundary, and trying to define a differentiable structure
on it proves to be a rather difficult task.

Given an invariant differentiable function f, one of the problems is to
express in the language of the orbit space what it means to say that f is
differentiable. I suggest a solution of this problem in terms of invariant
elliptic operators. Namely, given a continuous function f and an elliptic
operator P, we can express the fact that f is smooth in the form: P'f is
continuous for all iterates of P; this follows immediately from the regularity
theorem for elliptic operators. Now, assuming all objects invariant, the fact
that P'f is contiruous can easily be expreseed in terms of the continuity of
the respective functions on the orbit space and of the projection L of the
operator P onto the orbit space. This shows that invariant smooth functions
are characterized in terms of an operator defined on the “interior” of the
orbit space and it is only the topology at the “boundary” that matters. This
leads to the idea of introducing spaces with a distinguished elliptic operator.
Such spaces will be called elliptic spaces. Many concepts of differential
geometry can be defined in such spaces. In this paper, however, we confine
ourselves only to those which are necessary for a characterization of in-
variant functions and distributions. Such a characterization is provided by
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Theorems 1 and 3 which state that there is & natural isomorphism between
smooth functions (distributions) on the orbit space and invatiant smooth
functions (invariant distributions).

1. Notation and definitions. In the sequel G will always denote a compact
Lie group. M is a paracompact connected n-dimensional C”-manifold. We
shall denote by R: G x M — M a fixed smooth action of G on M. We also
write R;: M —» M, R (x) = R(g, x). The symbol M/G or M* will denote the
orbit space of M under the action of G together with the natural orbit space
topology.

Greek letters a, 8 denote densities on M*, while w (possibly with
subscripts) stands for densities on M.

By an elliptic operator of order m we shall understand a C* real linear
differential elliptic operator acting on C”-functions on M. In a local chart
such an operator has the following form:

m ~k
L= Z z A?(x)-f_;
k=0 I71=k x

with real C’-coefficients A, and the characteristic form

Y Ax)E"#0 for real #0, xeM.
Iv|=m '
Actually, the ellipticity of L will be applied only to ensure the validity of
the following theorem:

THEOREM. Let [ be an integrable function on an open set Q < R" and P an
elliptic operator acting on [ in the sense of distributions. Then f is equal a.e. to
a smooth function iff P'{ is integrable for all iterates P' of P.

Moreover, for a continuous function f, if P'f is continuous, then
feCm1"2Y(Q), where m is the order of P.

The proof of this theorem can be found in John [3]. In fact, in the
theorem given by John all functions are assumed continuous. However, this
assumption may be weakened assuming integrability instead. The proof in
[4] is then transformed, by obvious modifications, so as to work in this case;
also see the Remark in [4].

2. Elliptic spaces. Let N be a topological Hausdorff space in which there
exists an open dense subset A = N such that A is a p-dimensional manifold.
We shall denote any such space by (4, N). Let L be an elliptic operator on
A. The triple (4. N, L) will be called an elliptic space.

Let CS(N) be the space of continuous functions on N, which are C*®
on A. Write L'=Lo ... oL for i> 0 and L° =id. Write L™ "(Z) for the

A

i ttmes

counter-image of a Z = C°(N) under L. Define:

k ’
Ci¥(N) = 'Do L7'(C°(N)), C’(N)= 'Oo L™HCYN)).
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Remark 1. It follows from the ellipticity of L that C’(N)
= () L™Y(C(N)), where C(N) is the set of continuous functions on N and L
i=0

acts on C(N) in the distributional sense.

DEeFINITION 1. The set C*(N) = ﬂ L™H(C°(N)) will be called the set of
i=0

smooth functions on N. Thus a function € C®(N) is smooth on N provided
L' f e C°(N) for all positive integers i.
For a compact set K = N define C §(K)= !feCj%(N):suppf = K).
Let Cg; (N) denote the set of compactly supported functions in C” (N). In
k

Ci¥(K) we introduce the topology given by the norm ||f[* = ) sup [Lf]
i=0 x

which turns C§(K) into a Banach space. In C§ (N) we define a topology in
the natural way, ie., we write C4 (N)> fjjj 0 if there is a compact set K

such that supp f, < K for j=1,2,... and ||fj||"j:’1 0 for every k. It is not

difficult to prove that Cg (N) is complete.

Now we pass to the definition of smooth densities on N.

Denote by Q52(N) the set of smooth, integrable p-densities on A.
Denoting by L* the adjoint of L (L* acts on smooth densitics on A) we
define, as in the case of functions,

Q" (N) = () (L) (Qi8(N))

i=0

Remark 2. As in the case of functions, Q7 (N)= () (L*) " (R(N))
i=0

where Q(N) is the set of integrable densities on A where densities equal a.e.
are identified. L* acts on such densities in the distributional way.

Let Q3 (N) be the set of compactly supported densities in Q” (N). We
shall define a topology in Q5 (N), but we begin with some general remarks.

Remark 3. Let a be a p-density (p-form) on a p-dimensional manifold
A; A is not assumed to be orientable. Then one can define the integral [ || of
the absolute value of a, in the following way. Choose open disjoint subsets
U, such that U U,=A, U bd U; has measure zero and each U; is in the

i=1 i=1
domain of some chart. Let «; = |y, and let g;(x) be the coefficient of «; in the
chart (&, U,)). Define

_“fli|= _[ la; ()]

™U)

if a; 1s integrable. Given another chart ¥ on U,, if b;(x) is the coordinate of
a; in ¥, we get from the definition of a p-density (p-form) that |a| = |b;| - |J 4l
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where J; is the Jacobian of H = Yo® !, which shows that the above
integral is independent of the choice of a particular chart. Finally, we set

[l = ¥ .

provided the right-hand side make sense and is independent of the choice of
the sets U,.

For xe; (N) set \
Nadl* = 3 | HL*) ol
i=1 A
Define convergence in g (N) in the following sequential way. Let
a;€Qq (N). We say that «; tends to zero if llo;l{* tends to zero for every k and
there exists a compact set K = N such that supp «; = K for all j.

ProrosiTioN 1. The space Qg (N) with the above-defined convergence is
complete.

Proof. Fix a compact set K< N. Set Q’(K)=|feQ”(N):
supp f < K. Also define Z;(K) = (k\ (L¥)™(Q(K)) with Q(K) being the set
of p-densities integrable on N with,=s?1pport in K. It is enough to show that
Q' (K) is complete. But in view of Remark 2, Q' (K) = ﬁ: Z,;(K) and, since

otviously every Z;(K) is complete in the norm || ||, we are done.

Assuming A orientable, all the above constructions can be repeated for
p-forms on N. In particular, the notion of a smooth p-form is then defined.
Also one can introduce the concept of orientability on an elliptic space N.

Derinmmion 2. Consider (4, N) with A4 orientable. We say that N is
orientable if there exists a smooth p-form a, on N such that every other
smooth p-form « on N is representable in the form a =h-a, with a
continuous function h.

In fact, all such functions h have properties analogous to those of func-
tions in C’ (N). Since in applications these two spaces coincide, we shall not
treat them separately.

DEerFiNiTION 3. A linear functional on Q4 (N) continuous in the topology
of this space is called a distribution on N. The space of all distributions on N
will be denoted by D'(N).

The general theory of topological vector spaces applied to 27 (N) yields
the foilowing result.

_ ProrosiTiON 2. ueD'(N) iff for every compact set K < N there is a
positive integer k and a constant C such that

uladl < Cllall,  for  a€Q’ (K)

(u[a] denotes the value of u on a density a).
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We end this section by noting the general fact that when A is oricnted,
p-denstities are identified in a canonical way with p-forms. This is done with
the help of the O-density of »rientation denoted in the sequel by ¢, (for
details see de Rham [8]).

3. The orbit space of compact Lie groups. Let M and G be as in the
preceding section. Since G is compact, M* is a Hausdorlf space (Bredon [2]).
Denote by M the union of orbits of principal type (see Bredon [2], p. 179).
Then it follows from Theorem 3.1 in Bredon [2] that M is open and dense in
M : hence A = n(M) is open and dense in M* = n(M), where n: M — M* is
the natural projection onto the orbit space. Now the slice theorem implies
that A is a C*-manifold. Denote by s the dimension of any orbit in 4. Then
the differential system of rank p=n—s on M defined by the subspaces
tangent to the orbits in M is involutive. Moreover, it is regular, which is also
immediate in view of the slice theorem. Leaves of the foliation given by this
system agree with the orbits of the group G°, the identity component of G.
Denote the space of leaves by M/G°. It follows from the results of Palais [7]
that M/G° is a C®-manifold (it is Hausdorff since the leaves are compact).
Moreover, it was proved in Ziemian [11] that the projection #: M — M:G°
induces a linear operation K from the space of compactly supported densities
on M onto that on M/G°. In fact, K is determined by the identity j'(ﬁoﬁ)-o)

M
= | h- Kw for every continuous function & on M/G® and a density w on
¥ G°
M. We define an operation K: Q3 (M) - Q& (A) by summing up the values
of K over all components in M/G® of any orbit of G. Obviously, the
operation thus defined satisfies {hon-w = | h-Kw for a continuous h on A

Y] A
and we QF(M). )

Note that K extends in a natural way to the space Q' (M).

Now let us devote a bit of attention to elliptic operators. Let P be an
invariant elliptic operator on M. G being compact, this ensures that such an
operator always exists. P restricted to M induces an operator on A — simply
by operating with P on invariant functions. Denote this operator by L. It
can be proved (see e.g. Atiyah [1]) that L is also an elliptic operator on A.
Summing up the above, we see that (4, M*, L) is an elliptic space. It will be
clear from the theorems which follow that the functional structure on
(A, M*, L), i.e. the spaces of smooth functions and smooth densities on M¥*,
do not depend on the choice of a particular operator P. In the sequel, P will
denote an arbitrary fixed elliptic operator.

With the above notation we have the following theorem:

THEOREM 1. The set C*(M*) is topologically isomorphic to the set
C> (M) of C™-incariant functions on M. This isomorphism is given by

C®(M*)5ht> honeCx (M).
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Proof. If ie C* (M*) then h is continuous on M* and so is L'h for all i,
Thus f =hon is continuous on M and, for every i, Pf =(L'hjon is
continuous. (£ acts on [ in the distributional sense.) Since P is elliptic, it
follows from the regularity theorem that fis C*. Now f = hon; hence
feCr (M) To prove the continuity of J and J~!, we note that this is
equivalent to proving that the topology of local uniform convergence with all
derivatives in C* (M) is equivalent to the topology of local uniform conver-
gence of the iterates Pf for feC®(M), and this follows immediately from
Friedrichs’ inequality and Sobolev's lemma (see [5]).

Now we shall establish the connection between smooth densities on M
and C™-densities on the elliptic space (4, M*, L).

LemMA 1. There -exists an orientable invariant neighbourhood of every
orbit.

Proof. It is enough to prove the lemma in the case where G is
connected since every component of an orbit can be treated separately. Let
xeM and let U be the domain of a chart at x. Then the neighbourhood

InvU = {J R;(U) contains the orbit of x and is orientable since it is
9eG

obtained by translating U by diffeomorphisms belonging to a connected Lie
group and thus having positive “transition” functions.

LEMMA 2. (a) Let o be a p-density on A < M*. If a is integrable on A,
then there exists a p-density @ on M integrable on M and such that Kw = a
and

(1) fa=fw.
A M
(b) Let @ be an n-density on M. If w is integrable, then « = Kw is
integrable and satisfies (1).

Proof. Suppose that a is an integrable density on A. It follows from
properties of the operation K (see [11]) that one can construct a density w
on M which is integrable on compact subsets contained in n~'(A4) = M and
such that Kw =« and [K|w| = |af. Denote by A4; for 6 >0 a family of
compact sets contained in A such that {JA; = 4. We have o = | w where

] A M
M;=mn"1(4,), and since the integral [a exists, we get that fw exists and
A M
satisfies (1). The proof of (b) is analogous.

Lemma 3. Let w,, w, be two integrable n-densities on M such that Kw,

= Kw, on A. Then

(2) Inv w, =Inv w,

where Inv @ = [ R¥ wdy is the invariant averaging of a form w over the group
G
G with its normulized Haar measure .
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Proof. Let w,, w, be two integrable n-densities. We shall prove (2)
locally. For this end let x be a point in M. Let £, be a local 0-density of
orientation in some neighbourhood of the orbit of x given by Lemma 1.

Denote by w, an invariant n-form non-vanishing on this neighbourhood.
Then

(3) Invw, = firwee,, i=1,2,

where f; are invariant integrable [unctions. Thus there are h, on A such that
Ji =h;on. Since K is invariant, we have Kw, = K Inv w;, i =1, 2. Now (3)
implies that K Invw; = h;- K(wg-e,). Since by assumption K Inv w,
= K Inv w,, it follows that h; = h, ae. for K(w,-¢,) # 0 at every point.
Thus f; = f,, which proves the lemma.

Now we can prove the following analogue of Theorem 1.

THEOREM 2. The set Q% (M*) (QF(M*) is isomorphic to QF, (M)
K
(2% (M)). The isomorphism is given by QF (M)swt KweQ* (M*).

Proof. We shall prove that K~! is well defined and continuous. To
prove this fix aeQ2*(M*) and denote by w; (for i =0, 1, 2, ...) the unique
invariant form, existing by Lemmas 2 and 3, such that (L*a = Kew;,. Since
wy € Q2(M), we have K(P*)w, = (L*) Kwg. It follows in view of Lemma 3
(both (P*)w, and w; being invariant) that w; = (P*) w,. Thus (P*)w, is
integrable for all i. Applying locally, on account of Lemma 1, the regularity
theorem for elliptic operators, we get that w,eQ*(M). The proof of the
continuity of K~! is analogous to the case of functions. To prove that K is
continuous, note that for all i=0,1, 2, ... and weQ* (M)

JIiL*) Kol = fIK (P*Y w| < [KI(P* | = [|(P* .

ProrosiTION 2. The elliptic space (M*, L) is orientable if only and if M is
orientable.

Proof. Suppose that M is orientable and let w, be a C* non-zero
invariant n-form(') on M. Then it follows from Theorem 2 that a, = Kw, is
C* on M*. Given a Q> (M?¥), there is we QS (M) such that Kw = «. Since
w = [ w,, we see that f is both C* (M) and invariant; thus it is of the form
f=hon for heC*(M¥*). We get a=h-ay, which shows that M* is
orientable.

Conversely, let M* be orientable and let «, be the orientation form. We
shall prove that w, = K™ ' aq e Q% (M) is non-vanishing on M. Let xe M. It
follows from Lemma 1 that there exists an orientation form w, on some
neighbourhood of the orbit of x. Also w, can be assumed C* and invariant.

(*) Such a form always exists, which can be shown by using e.g. an invariant Riemannian
metric on M.
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By assumption there exists a continuous h on M* such that Kw,
= h-Kw,, w,, w, being invariant; this implies that w, = (hon)-w,. Since
w,(x) # 0, we have hon(x) # 0 and wq(x) # 0, which was to be proved.
On account of Theorem 2 we can establish the following characteriz-
ation of invariant distributions.
THeOREM 3. The space D'(M¥*) is isomorphic to the space D,,,V(M) of
incariant distributions on M in the following way :

D'(M¥*)> Ti—» ue D/, (M),
where

) ufw] = T[Kw] for weQF(M).

Proof. First we remark that there is a natural isomorphism between the
space of invariant distributions on M and the space of continuous linear
functionals on Qg;,, (M) of compactly supported invariant C*-densities on M,
defined by the operation of averaging. Given TeD'(M*) and weQF (M),
define u by (4). It follows from Theorem 2 that u is well-defined and
continuous.

Conversely, given ueD;,, (M) and x¢QJ (M*), we take the unique
invariant o (existing by Theorem 3) such that Kw = « and set T[x] = u[w].
Theorem 2 shows again that u is well-defined and continuous. The continuity
of K and K™! is obvious.

in case of M being orientable, we get the following version of
Theorem 3.

TutorRem 4. Let M be orientable. Then the space (CE,. (M)) of invariant
linear continuous functionals on C,;,, (M) is isomorphic 10 the space (C§ (M *))
of continuous linear functionals on CY(M*). The isomorphism is given by

(C3(M*) 5 T ue(Can (M)

where uhon] = T[h], heC§ (M¥*).

Prool. This follows from Theorem 3, in view of Proposition 2. since the
space of functions h on M* of the form x = h-a, for a € Q5 (M*), where a,
is an orientation form on M*, is isomorphic to CJ(M*).

ExampLe. Let G =SO(n), M = R" and suppose that G acts on R" in the

natural way. Set P = A, the Laplace operator. We shall express the orbit
N 1

space M* = R"/SO(n) with the help of the “chart” R,3s b |x: |x?
=5, < R", where R, is the set of positive real numbers. It is easily checked
that S(M*) =R,.S(4)=R,. S can be regarded as a “diffcomorphism”
between the elliptic spaces (M* L) and (R,, Ls), where Lg =4sd*/ds*+
+2nd/ds. 1t follows from Theorem 1 that the set of C* rotation invariant

functions is isomorphic to the set of continuous functions 1 on R, such that
(Lg) I 1s continuous for all i =1, 2, ... We shall find this set.
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First note that for every differentiable function h on R,, if Lgh = ['is
continuous on R, , then

h(s)=3% [u"2([f()- 1" 1dt+C,)du+C,.
0 (1]
Il =2 and h is continuous, then C, =0 and C, = h(0). Wc sec that

W(s)=1s""2 {f(n-1"2"'dr.
0

Writing f(t) = f(0)+¢g (1), g(0) = 0, it is immediate to see that I’(s) is con-
tinuous at 0.

Thus the set of C’-functions on the elliptic space (R, , L) coincides
with the set of functions continuous with all derivatives on R, . In this case

Theorem 3 is just the theorem on rotation invariant distributions given by
Schwartz in [9].

4. Concluding remarks. The paper shows that it is possible to deline
smooth functions and distributions on the orbit space of compact Lie groups
in inner terms, i.e. without passing to the higher level of M, and the objects
just dehined have all the desired natural properties. The concept of an elliptic
space allows one to translate singularities of the orbit space into a loss of
ellipticity on the boundary for an elliptic operator.
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