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Extremal plurisubharmonic functions in CV

by Jozer Siciak (Krakéow)

Stefan Bergman in memoriam

Abstract. Useful basic properties of some extremal plurisubharmonic (unctions are obtained.
The extremal functions are used to obtain results giving: (1) necessary and sufficient conditions
for a subset of C¥ to be a CN-polar set, (2) characterization of holomorphic functions in
a neighbourhood of a compact C™-regular subset of CV, (3) analytic continuation of separately
holomorphic functions on cross-like subsets of C¥, (4) a condition for single-valuedness of
analytic functions of N complex variables.

Contents

Introduction 175 '
1. Some families of plurisubharmonic functions in C¥ 177

. L-extremal functions 179

. L-polar sets 182

. L-extremal functions associated with compact subsets of CV 186
. Extremal function &, for special subsets of CV 191

. L-regular sets in C¥ 195

. Extremal functions of one complex variable 198

Analytic functions on compact subsets of C¥ 199

Separately analytic functions 203

10. A sufficient condition for single-valuedness of analytic functions of N complex variables 208
References 210

NI R N

Introduction. Let PSH (D) denote the set of all plurisubharmonic (plsh)
functions in an open subset D of the space C¥ of N complex variables. Put
L:= {uePSH(C"): u(x) < B+log(1+]|x|) in C},
L* := {ue PSH(C"): a+log (1+|x]) < u(x) < B+log (1 +|x|) in C},
where a and B are real constants that may depend on u, and |x|:= max ;|
for x = (x,, ..., xy) e C". LSISN

Given a subset E of CV and a real function b: CV¥ - [ —o0, +0), define
for all xe CV
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Vep(x):= sup {u(x): ueL,u < b on E},
Ve (x) 1= sup {u(x): ueL*,u < b on E}.

The function Vg, is called L-extremal function corresponding to E and b.
If b=0 on E, we write V; instead of Vg, and call the L-extremal
Juncgion of E.

If E is bounded, we define

Pr,(x) = sup [sup {If(x)I'": feF,(E,b)}], xeCV,

where % ,(E, b) denotes the family of polynomials f of degree < n such that
|f,(x)] < exp[nb(x)] on E. If b =0 on E, we write ¢ instead of @Pg,.

The extremal function &g, was first defined and applied to solve some
questions of the complex analysis of several complex variables in [24].

If N = 1, the extremal function @, was first defined (in a different way,
based on Fekete-Leja extremal points) and investigated by F. Leja and next
by various authors, mostly Leja’s students (see [23] for references). The
method of extremal points and extremal functions on the complex plane was
applied to various questions of the complex analysis of one variable (e.g. con-
formal mappings, Dirichlet problem, theory of interpolation; see [23] and
[24] for references).

In particular, if E is a compact subset of C with the positive logarithmic
capacity, then log & is the Green function of the unbounded component of
C\E with pole at infinity.

If N > 2, the extremal function log @ is a natural counterpart of the
Green function, not only by its definition but also due to its applications.
In particular, analogously as on the complex plane, also for N > 2 the
function P is very useful in the theory of interpolation and approximation
by polynomials. E.g. &, permits to extend the Bernstein—Walsh theorem on
characterization of analytic functions on compact subsets of C to the case
of compact subsets of C¥, N > 2.

The purpose of this paper is to start a systematic study of the classes
L,L" and of the extremal functions Vg, and &g,.

In our study an important role is played by the simple Proposition 1.2,
and by some results (see Propositions 1.3 and 1.4) that may be derived as
special cases from some theorems contained in Ferrier’s book [8]. We have
proved that if E = CV is compact and b is continuous then

(1) Vep = log Pe in CV;

(ii) If Vg, is continuous at every point of E, then it is continuous at
every point of C¥.

If b =0 on E these two results were earlier obtained by a different
method by Zaharjuta [33].

We say that a subset E of CV is:
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1° locally C¥-polar, if for every point a€ E, there exists a function W plsh
in a neighbourhood U, of a such that W = —o0 on EnU,;

2° globally C"-polar, if there exists We PSH (C") such that W = — o0 on E;
3* L-polar, if there exists WeL such that W= —o on E.

B. Josefson [14] has recently proved that conditions 1° and 2° are
equivalent. In this paper we prove that 2° < 3°, so that all the three notions
are equivalent.

As applications of the developed method of the L-extremal functions the
paper contains a new proof of an extended Bernstein—Walsh theorem [24],
a modified version of a theorem on separate analyticity [26], and finally
a sufficient condition for single-valuedness of analytic functions of several
complex variables.

The main contents of this paper were a subject of a few lectures given
by the author during his stay (February-March, 1976) at the Uppsala
University as an invited professor. The author is greatly indebted for the
invitation.

1. Some families of plurisubharmonic functions in CV

Given any open subset G of CV (the space of N complex variables),
we denote by PSH (G) the set of all plurisubharmonic (plsh) functions in G.

1.1. We shall be interested in the following families of plsh functions in C",
= {ue PSH (C"): u(x) < B+log(L+|x|) in C"},
L*:= {ue PSH (C"): a+log (1+|x]) < u(x) < B+log(1+|x]) in C"},

o and B being real constants that may depend on u, and |x| max Ix;
for any x = (x,,..., xy)e CN.

It is obvious that L™ < L and both famllles are convex subsets of
PSH (C"). The elements of L are sometimes called plsh functions with
minimal growth at infinity of type 1 (see [18], [19], where L is denoted
by S)).

Observe that if f is a non-zero polynomial of N complex variables of
degree < n, then (1/n) log |f|€ L. Indeed, let M := sup {|f(x)|: |x| < 1}; then
by the Cauchy inequalities

[fO) < M +ixi+ ... +x]") < M, (1+|x|"), M,; = const >0,

whence the result follows. .

Put w(x) = Cyexp(—1/(1—|x|?) for x| <1 and w(x) =0 for |x| > |
where the positive constant Cy, is chosen so that jco(x) dx = 1, the integration
being taken with respect to 2N-dimensional Lebesgue measure in C". Given
any >0 put 0,(x) = A" w(A7'x). Then [w;(x)dx =1 and w,(x) =0
for |x| = 4

12 — Annales Palonici
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1.2. ProposITION. If ue L (resp. ue L"), then u,:= uxw, given by
(u* @) (x):= Ju(x+y)w;(y)dy, xeC¥,
is a €™-function in CV belonging to L (resp. to L*). Moreover,
u,lu as 1]0.

Proof. It is well known [13] that u; is €, u; e PSH (C") and u, | u
as 410 in CM It follows directly from the definition of u; that u,elL
(resp. u; e L™).

1.3. PrROPOSITION. Given a  function uel®, put d6:=e™* and
3,(x):= in{l B+ 1/)|y—x]], xeC", A > 0. Then
yeC

(1) 102 (x)=0: (YN < (1/A)|x=yl, x, ye CY;

(i) u;:= —logd,eL", if 0 < A < ¢é;

(ifi) uz Ju in C¥ as 4]0.

Proof. (i) may be shown by an elementary calculation.

(i) The function u; is plsh in C¥ by Lemma 2, p. 48 of [8]. One may
easily check that

u(x) < u,(x) < f+lgQ+x)), 0< i< é.

(iii) It is enough to show that 0,1td as A]0. It is obvious that
3, €9, <dfor0 < A < A" Fix xeC" and ¢ > 0. Take 4, so small that
di(x) = in£ [)+/DIx=y], 0< A< Ao

yeC

By the lower-semicontinuity of & there exists a neighbourhood U of x
such that

o(y) = 6(x)—e, yel.
We may choose 4, so small that the ball B = B(x, AM), where M := sup d(x),
xeC'

is contained in U for 0 < 1 < 2o. Then

0:(x) = inf [80)+(1/A)|x~)]] > 6(x)—e, O0<i<k. QED.

The following Proposition follows as a special case from Theorem 2,
p. 82 of [8].

1.4. PropPoOSITION. If-ueL® and 6:= e™* is Lipschitz (with Lipschitz
constant = 1), then there exist a sequence of positive numbers {c,} and
a positive integer k such that for every n there exists a family F, of
holomorphic functions in C such that

(e < iul? Il < ca(ey**  in CV
€f'p

and lim ¢/c, = 1.
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1.5. Remark. It follows from the Liouville theorem that each function
feF, is a polynomial of degree < n+k.

2. L-extremal functions

2.1. Let E be any subset of CY and b: C¥ = [ —o00, + o) any real function
defined in CM. The function b may take value —oo, but we do not allow
it to attain value + 0.

Put

L(E,b):={ueL: u<bon E}, .

L*(E,b):= {ueL*: u < b on E}.
L(E, —o0) will stand for L(E,b) with b= —o0 on' E. Observe that
L(E, —o0) may be empty, if E is too large, eg. if int E # @ or more

generally if E is not a polar set (see Section 3).
Let us define for every xe C¥

V(x) = V(x,E,b) = Vg,(x):= sup {u(x): ue L(E, b)},
Vi(x)=V*(x,E,b) = V&y(x):= sup {u(x): ue L* (E, b)}.
We shall write Vz or V', if b= 0 on E.

2.2. DeFiniTioN. The function Vg, (resp. Vi) will be called L-extremal
(resp. L*-extremal) function associated with E and b.

The following three properties of the extremal function V are direct
consequence of its definition

2.3. Monotonicity with respect to b: Vg, < Vg,, in CV, if b, < b, on E.
24. Monotonicity with respect to E: Vg, < Vg, in C", if Ec F.
25. Vgyye = c+ Vg, in CY for every real constant c.

26. If E = B(a,r):= {xeC": |[x—a| <r} is a ball with center a and
radius r, where || || is any norm in C", then

Ve(x) = log™ ||x—all/r.

Indeed, it is obvious that log* ||x—al/r € Ve(x) in C. In order to
obtain the opposite inequality take a fixed xe CV with*x—af > r, and
observe that for every ue L(E, 0) the function

w(d):= u(a+A(x—a))—log* |A| |x—al/r,

is bounded and subharmonic for |i] > r/|x—all, and w(4) <0 as
|A| = r/llx—all. By putting w(o0):= lim w(4), the function w becomes sub-
harmonic’ at cc. e

Therefore by the maximum principle we obtain the inequality w(l) < 0
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for all |4} = r/|lx—a]|. In particular we may take 4 = 1 and so obtain the
required inequality. N

2.7. If the set E is bounded and the function b is lower-bounded on E,

then
VE,b = VETb in CN.
In particular, if E is bounded, then V; = V.

Indeed, put m:= inf {b(x): xe E} and let E < B(0, r). Then the function
max {u(x), m+log* |x|/r} belongs to L™ (E,b) for every ue L(E, b). Hence
Ve, < Vg',. The opposite inequality is obvious.

The following property is obvious.

1 .
28. If b = — [a; b, +a,b,], where a;, a, are non-negative real numbers
o
such that a:= a;+a, > 0, then
oy VE,b1+a2 VE-"Z < aVE,,,.

29. If a: C¥ > [— o0, +0) is a real function such that Vi, is finite at
every point of C¥, then

1 1
_,1_ [VE,a+ﬁb_VE.a] < 7 [Vé,a+1’b_ VE.a] in c® as 0 < A < 4.

This inequality follows from 2.8 by putting b, = a+ b, b, = a, a, = 1/4,
oy = 1/A"—1/A.

210. If —o0o <m < b(x) < M < +00 on E, then
m+Veg < Ve S M+Ve  in CV.
In particular, if b is bounded, then Vi,(x) is finite if and only if Vz(x)
is finite. '
2.11. Bernstein—Walsh inequality. If f is a polynomial of N complex
variables of degree < n such that |f(x)] < M exp [nb(x)] on E, then
[f() < Mexp [nV,(x)], xeCV.

Indeed if f # 0, then (1/n)(log |f|—log M)e L(E, b), so the result is an
immediate consequence of the definition of Vg,.

2.12. ProposITION. If E is compact and b|E is lower-semicontinuous, then
Ve is lower-semicontinuous in CM.

Proof. Fix ue L(E,b) and ¢ > 0. By the compactness of E and lower-
semicontinuity of b one can find A = A(g) > 0 so small that

U= u»w, < b+¢ on E.
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Hence u,—ee L(E,b) and so u;—¢ < Vg, in C". It follows that ¥, is an
upper envelope of continuous functions u*w;—¢, where ue L(E, b), € > 0,
A = A(e,u) > 0. Therefore V¢, is lower-semicontinuous.

.

2.13. ProrosiTiON. If E is compact and the extremal function V = Vg,

is continuous at every point of E, then it is continuous in C". In particular
Vese L(E, b).

Proof. Since V*(x):= lim sup V(y) = V(x) for xe E, we can find a ball

y—+x
B = B(a,r) with aeE such that V< V* < M = const on B. Therefore,
by 2.6,

V< M+logt X4
.

in CV.
Hence V*e L. Now, since V,:= V*xw,€e4°nL and V,|V* in CV, in
particular V; |V on E, as 4]0, the Dini theorem implies

Vi< V+4e onE as 0 < i< iy=24(e).
Thus V,—e < V < b on E and finally

Vi—e<VEV*<V, inCV 0<i<i,.
Therefore V is a uniform limit of €® functions V,(4]0). Q.E.D.

2.14. ProrosiTiON. If E is compact and b is continuous, then
Very T Ve in C¥ asr|0,
where E" 1= UEB(a,r) = {xeCV: dist (x, E) < r}, B(a,r):= {xeC": |x—a| <r}.
oe

Proof. Take any ue L(E,b). Given ¢ > 0, we may find 4 > 0 such

that u; := uxw, < b+¢ on E. Since u, and b are continuous we may find
ro > 0 such that

u, <b+2 on E,0<r <ry=rou.
Hence u < u; < 26+ Vg, In C", 0 <r < ry, and finally Vep < 2:—:+linc1) Ver -
r—.
Since Vir, < Vg,, we get the result.

2.15. DerINITION. We say that a subset E of C¥ is 1° locally L-regular
at a point a€ E, if for every r > 0 the extremal function Vg g, is continuous
at a; 2 locally L-regular, if it is locally L-regular at every point aekE.

2.16. ProrosiTION. If E is a compact set locally L-regular, then for every
real continuous function b the extremal function V = Vg, is continuous in C".

Proof. First observe that V* < b on E. Indeed, given ae E and ¢ > 0,
we have

V(X) < VEh Bla.r),bla) +e — b (a) +e+ VEr‘\ B(a.r) in CN,
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where r > 0 is so small that b(x) < b(a)+¢ in B(a, r). Hence V*(a) < b(a)+e,
and by the arbitrariness of ¢ > 0 we get V*(a) < b(a).
Now
V*< V,:=V*sw; <b+e on Eas 0< A< 4,
whence V;~ee L(E, b) and
Vi—e<VEV*<V, inCVO<li<i,.
Therefore V is a uniform limit of the ¥ functions V, as 1/0.

2.17. COROLLARY FROM THE PROOF OF 2.16. If E is compact and b is a real
continuous function such that Vg, <+b on E, then Vg, is continuous in C".

. 1
2.18. If f is a non-zero polynomial of degree < k and b:= 710g Lf1,

then, for every subset E of CV, Vz, = b on E.

In particular if E = D, D being a2 bounded domain such that f(x) # 0
for x e D, then

1 _
Vep(x) = " log|f(x)l, xeD.

Proof By 1.1, (1/k)log|f|eL(E,b). Therefore b(x) = (1/k) log |f(x)|
< Vgp(x) in CV. On the other hand Vi, < b = (1/k)log|f| on E. By the
maximum principle the last inequality holds true in D. Q.E.D.

3. L-polar sets

3.1. DeriniTION. We say that a subset E of CV is 1° locally CN-polar,
if for every point ae E there exists a plsh function W in an open
neighbourhood U, of a such that W = —o0 on En U,; 2° globally CN-polar,
if there exists a function W plsh in C" such that W= —c on E;
3 L-polar, if there exists a function WelL such that W= —o on E
(ie. if L(E, —o0) # 0).

3.2, DerINITION. Given a subset E of CV and an open set G = CY we
put for every xe G

h(x, E, G) = hgg(x) := sup {u(x): ue PSH(G), u <0 on EnG, u <1 on G}.

The function hf; is plsh in G. If hfs(a) < 1 for a point ae G, then

hts(x) < 1 for all x in the connected component of G containing the
point a.

3.3. ProposiTioN. E < CV is locally CV-polar if and_ only if for every
acE there exists a domain D> a such that

tp(x):=limsup hegp(y) =1  for all xeD.
y—=x
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Proof. 1° If E is locally C¥-polar, then for every ae E one can find
a neighbourhood U, of a and a plsh function W in U, such that W = —oo
on ENnU,. Let D be a rélatively compact subdomain of U, containing a.
We may assume W < 0 on D. Then

%W+1 < hgp in D for all k > 1.
Hence hgp = 1 in a dense subset of D, ie. hfp, = 1.

2 Assume now that D is a domain such that h¥, = 1 in D. Since the
set {xe D: hgp(x) < hEp(x)} is of Lebesgue measure zero, there exists a point
e D such that for every keN one can find u, € PSH(D) with 4, =0 on
EnD, u, <1 in D and u,(S) > 1—2"% We claim that the function

W(x):= kzl [w.(x)—1], xeD,

is plsh in D and W = —o on En D. Indeed, the sequence of the partial
sums of the series is decreasing and W(£) > —1. Hence WePSH (D).
It is obvious that W = —o0 on EnD. -

3.4. Lemma (comp. with Théoréme 3 of [19]). Let (), be a family
of functions belonging to L. Put

w:=sup {u;: iel} in CV.

Then the following conditions are equivalent:

(1) There exist real numbers R > 0 and M > 0 such that u < M in the
ball B = B(0, R);

(2) There exist real numbers R >0 and M >0 such that
u(x) < M+log* [x[/R in CV;

(3) There exist an open non-empty subset D of C and a real constant
M > 0 such that u < M on D;

(4) u is bounded from above on any compact subset of CV;

(5) u*eL.

If, moreover, u; is continuous for every iel, then each of conditions
(1)—(5) is equivalent to the condition

(6) u(x) < + oo for every xe D, D being a non-empty open subset of C".

Proof. Implications (1)=(2) and (4) = (5) follow from 2.6. Implications
2)=03)=(4), (55=(1) and (2)=(6) are obvious.

If w;, iel, are continuous and (6) is satisfied, then u being lower
semicontinuous there exist a ball B = B(a, R) = D and a positive constant M
such that u < M on B. Thus (3) is satisfied. Q.E.D.

3.5. THEOREM. (Compare with Théoréme 4 of [19].) Given any family
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(U)er € L, put u:=supuy; and A,:= {xeC": u(x) < +oo}. Then u*elL
i

if and only if A, is not L-polar.

Proof 1° If u*eL, then A, = CV and A, is not L-polar. 2° Assume
now u*¢ L. Then by Lemma'3.4

sup {u(x): xe B, = B(0, 1)} = +c0.
Hence for every n there exists i,el such that supu; > n. Put v,:=u;

By
and M, := supuv,. Then lim M, = +o0 and v,~M, < log*|x| in C .

Bl n— o

We claim that there exist ¢ > 0 and ¢ € CV such that

(%) lim_’sup exp [v,(&)—M,} > €.

Otherwise lim sup exp [v,(x)—M,] < 0 for all xe C". Hence by the Hartogs
lemma e

exp [v,(x)-M,] <&, x€B;,,e>0,n=n,.

If 0 < € < 1, this gives a contradiction with the definition of M,.
Let us now fix ¢ > 0 and & e CV satisfying (x) and take a sequence of
integers n, < m,, k > 1, such that )

Pk

klim exp (v, (§)—M,1>¢ and M, 22" (k=1).
We claim that the function W defined by

Wx):= Y 27*[v, (x)—M,], xeCV

k21

belongs to L(A,, — o), where v = supv, and A,:= {xeC": v(x) < +o0}.

azl

Indeed, given any R > 1 we have 2"‘[v,,k(x)—M,,k]—2“‘log+R <0,
k > 1, on B(0, R). Therefore W is upper-semicontinuous in B(0, R). Hence
it is uppersemicontinuous in CV.

If xeA,, then 27*[v, (x)—M, ] < 27*v, (x)—1 < —4, k > ko. Hence

= —o0 in A,. If x = &, then W(f) > —0. And finally W(x) < log™ |x|
in C¥. Therefore We L(A,, — ), and in particular We L(A,, —o0) because
A, A,.

36. THEOREM. If E= |J E, and L(E,, —0)# @ (n > 1), then

n>1
L(E, —©) # ©. In other words: A countable union of L-polar sets is an
L-polar set.

Proof. Taking E, v ... VE,, we may assume that E, = E,,,. Now for

each n take u,e L(E,, — ), put M,:= supu, and observe that there exist
By
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e>0 and ¢(eC" such that lim supexp [u,()—M,] = e Next define
W(x):= ) 27*[u, (x)—M,]. Then WeL(E, —). QED.
K> 1

3.7. CoroLLARY. If E = CV is not L-polar, then there exists a point ae CV
such that E B(a,r) is not L-polar for any r > 0.

3.8. DerFINITION. Given any subset E of CV the number

c(E):= h;m inf |x| exp (— Ve (x))
x|+ o
will be called the L-capacity of E.
If E is a compact subset of the complex plane C, then c(E) is the
logarithmic capacity (transfinite diameter) of E (see [23], [15]).
By applying Lemma 3.4 and Theorem 3.5 to the family {ueL: u <0
on E} we get the following

3.9. CoroLLARY. If E is any subset of CV, the following conditions are
equivalent:

(i) c(E) = 0;

(i) V¢ L;

(iil) Vg = + o0;

(iv) E is L-polar.

If ¢c(E) > 0, then there exists aecC" such that c(EnBf(a,r) >0 for
all r > 0.

3.10. THEOREM. For every subset E of CV the following conditions are
equivalent:

(@) E is locally CN-polar;

(b) E is globally C®- polar;

(c) E is L-polar;

(d) For every bounded domain D < C", h¥, = 1 in D.

Proof. The most difficult part of the theorem is the implication (a) = (b)
that was recently proved by Josefson [14].

(b)=(c). By Theorem 3.6 we may assume that E is bounded. Let W be
any function plsh in C¥ such that W = —o0 on E.

Suppose E is not L-polar. Then, by Corollary 3.9, Vi#eL. Moreover,
by 2.7, V#eL'. So given any ¢ > M, we can find R > 0 so large that
E < B= B(0,R) and

VE#(x) > M+9 on 0B, where M :=sup Vg (x).

xeE

We may assume W < 0 on B. Given any positive integer k, put
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n(x) = V& (x)/(M+g) for [x] 2R
and

vy (x) := max {(1/k) W(x)+1, V*(x)/(M+¢)} for |x] <R

Then (M+g)vy € M on E and (M+¢)v, e L. Therefore (M+g)v, < M+ Vg
1

in CV. In particular, (M+Q)( W+ 1) < M+Vg in B for k > 1. Hence

M+9 < M+ Vg in B, in particular we get ¢ < M for xe E. This contra-
diction implies that E is L-polar.

Implications (c) = (d) = (a) follow from Proposition 3.3 (or from its proof).

3.11. ProposiTiON. If F is L-polar, then for every bounded set E and
for every function b: CN »[— o0, + )

Vg_, Fb = VE‘:b in CN.

Proof. It is sufficient to show that V@, < V&,,. Take any ue L(E, b)
and any WeL(F, —o). We may assume that W < 0 on E. Therefore

1
— W4+ueL(EUF, b) and

k
1
TW-H‘ Veorp in C¥ for k > 1
Hence '
u< Vepp in C\W™({-o0})
‘and finally '

VE*,b S VE*UF,b'
4. L-extremal functions associated with compact subsets of (ol

4.1. Let 2, denote the vector space of all complex-valued polynomials
of N complex variables of degree < n. Let

x: {1,2,..9j-> %) = (%,()s ..., xN(j))eZ’i

denote a fixed one-to-one mapping such that

<Dl < PG+, j=21,
where |a| = a;+ ... +ay for & = (ay,...,an) € ZY.

It is obvious that for N = 1 we have x(j) = j+1.

Let h, denote the number of the elements of the set {j: |x(j)l = n}.
We may also say that h, is the number of monomials x* = x31... x§¥ of
degree n, or in other words h, is the number of coefficients of a homo-
geneous polynomial of degree n. One may check that

_ (N+n-1
h, = ( )

n—1
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Let m, denote the number of monomials x° of degree < n. Then

m= ("7

The sequence of monomials

= the number of coefficients of any.fe 2,.

ej(x):=x*V = x1P__ xJN0O - j=1,2, ..

-

is a basis for the vector space of all polynomials of N complex variables.
The set of monomials ey, ..., e, is a basis for the vector space #,, the
set {em,_,+1,---»€m ) i a basis for the vector space #, of all homogeneous
polynomials of degree n.
If fe?,, ge #,, then

f= ,Zl ajej, 9= Y b
=

]'=mn._l+l

where the complex coefficients a; and b; are uniquely determined by f and g,
respectively. o
Let x™ = {x,,...,x,} denote a system of n points x,,...,x, of C".
The determinant
1 U |

V(x™) = V(xy, ..., x,) 1= det [¢;(x))] = fZ(xl)’ ""fZ(x") ,

€n (xl)’ ceey €p (xn)

will be called the Vandermondian of the points system x™.
If V(x™) # 0, we define the Lagrange interpolating polynomials by

V(X1,ees Xpo15 Xy Xjg1sees Xn)

L9 (x, x™):= j=1,..,n.

b
V(Xqyoios Xjo g5 Xjy Xjg 15y Xn)

It is clear that LY(x,,x™) = d;,, where é;, =0 for j# k and 6; = I.
Hence we obtain the following Lagrange interpolation formula:

f06) = ¥ fx)LOx, x™),  xeCV, fe,,

where x™ is any system of m, points x,, ..., xp, Of CV such that V(x™) # 0.

4.2. DEFINITION. We say that a subset E of CV is

1° unisolvent (or determining for polynomials) of order n, if the following
implication is true:

fe?,, f=0 onE=f=0 inCV,
2° unisolvent, if it is unisolvent of any order n > 1.

4.3. PrROPOSITION. For every n the following conditions are equivalent:
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- (a) E is unisolvent of order n,
(b) Vi(E):= sup {|V(xq, .-, X)I: {Xy,.cc X} € E} £0, k=1,...,m,;
(¢) Vn, (E) # 0.
Proof. (a)= (b). It is obvious that V{(E) = 1. Suppose V,(E) # 0, k < m,

and let {¢,, ..., ,} < E be a system of k points of E such that V(¢, ..., &) # 0.
Then

k
V€is e € X) = V(&1,s oo E) s () + ‘21 cjej(x) # 0. -
i= .

Therefore V,,(E) > sup |V(,, ..., &, x)| > 0.

xeE
(b)=(c) is clear, and (c)=>(a) follows from the Lagrange interpolation
formula.

44. ExampLE. If E; (j=1,...,N) is a subset of the complex plane C
containing at least n+ 1 different points, then E:= E; x ... x Ey is unisolvent
of order n. If a set E is unisolvent, then every set F o E is also unisolvent.

4.5. DEFINITION, Let E be a compact subset of C¥ and b: C¥ - R — areal
continuous function defined in CV. Any system ¢® of n points &,,..., ¢,

of E will be called a system of extremal points of order n corresponding
to E and b, if

W™, by =2 W(x™,b) for all x = {x,,...,x,} € E,
where
W(x™, b) := |V(x™) exp {—[x ()| [b(x,)+ ... +b(x,)]}-

If b=0on E, ™ is called a system of extremal points of E of order n.
The following theorem gives an answer to an old problem due to F. Leja.

4.6. THEOREM (Zaharjuta [32]). If V,(E):= |V(E™)|, n > 1, where ™ is
an arbitrary system of extrgmal points of E of order n, then the sequence

(1) dp(E):= V,(E)',  n>1,

where 1, := |x(1)|+ ... +|%(n)|, is convergent.

The limit d(E) of sequence (1) is called C-transfinite diameter of E.

If N=1, d(E) is.identical with the Fekete transfinite diameter of E
(or with the logarithmic capacity, see [23]).

One may check that if 4: C¥ - C" is an affine mapping, then

d(A(E)) = |det A|d(E).
It is also known ([22]) that '
d(Eyx ... x Ey) = [d(E,) ... d(En)]*™,

E; (j = 1,..., N) denoting compact subsets of the complex plane.
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4.7. Given a compact set E = CV and a real function b: C" — R bounded
on E, put for every n > 1

F,(E,b):= {fe?,: |f(x)] < e™™ on E},
®,(x) = @,(x, E,b) := sup {|f(x)|: feF,(E,b)}, xeCW
It is clear that
¢, P, < b, and S< P, in C"for k,l,n>1.
Hence we obtain the following

4.8. ProPOSITION ([23], [24]). For every xe CN there exists ®(x) with
1 < &(x) < +0o0 such that

d(x) = lim'q/(b,,(x) = sup {/dT,,a
A= ® n21

4.9. DEFINITION. @ (x) = @ (x, E, b) = Pg,(x) := sup (/din(x), xeCV, is

nz1
called an extremal polynomial function of E with respect to b. If b=0
on E, we write @.(x):= P(x, E, 0).

4.10. Let E be a unisolvent compact subset of CY. Given any system
of extremal points &™) = {&,,..., C,,,"} of order m, corresponding to E and
b, we define for all xe C¥

SV (x):= max [LY(x, £m) 6,
1<j<Sm,

mp

OP(x):= Y LY (x, gma) ).
i=1

Next we define for all xe CV

& (x) : = inf {1 max |L9(x, xma) ")}
n

SjE<m

P (x):=inf Y |L9(x, x*"n) e,

j=1
the inf being taken over all x™ = {x,,...,x, } = E with V(x") # 0.
We claim that
(2) D, < PP < m @D < m Y < m P <mo,.

Indeed, the first inequality follows from the Lagrange interpolation formula.
The last inequality follows from the interpolation formula and from the
following inequalities

LD (x, £imw) eGP < ™9, xeE, j=1,...,m,,
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that are direct consequence of Definition 4.5. The remaining inequalities
of (2) are obvious.

We have just proved the following

4.11. ProrosiTioN [24]). If E is a unisolvent compact subset of C", then
for every real continuous function b: C¥ - R the sequences {3/®,(x)} and

{8/ BV (x) }az1 U =1,2,3,4) tend to the same limit $(x,E,b) as n— oo
for all xeCV.

The main result of this section is given by the following

4.12. TueEoREM. If E is a compact subset of CN and b: C¥N - R is
continuous, then )

(3) VE,b = log ¢E.b in CN.

Proof. It is clear that log ¢, < Vg, = Vgp (see 1.1 and 2.7). Let
now u be a fixed function in L*(E,b). Then by Proposition 1.3, given
¢ > 0, there exists 1, > 0 such that

4) u,(x):= —log d,(x) < ‘b(x)+a on E, as 0 < 4 < 4.

. . . 1
Hence, by Proposition 1.4 applied to the function v, := log —[+u,1, we get

1 n 1 n
(7 e“*"’) < sup Hf(x)] < ¢, (7 e"”’") , xeCV,
JeF,

where feF, is a polynomial of degree < k+n, k = const, and t/c, = 1
(n — o0). So by (4)

IO S Ak ek tmlbwrd  xeE | feF,.

Hence

e*® < e < Asup | f(x)" < i"""q'/c,, elkmt e gl 1k (x),
IEFn .
xeC¥ n>1,

so that u < log @, in C" for all ueL*(E,b). Therefore Vg, < log &,
QE.D.

4.13. Remark. Under the assumption that b=0 on E and ¥V; is

continuous equation (3) was first proved by a different method by
Zaharjuta [33].

4.14. CoroLLARY. If E is a compact subset of CV, then

(i) Vg = Vi, where E:= {xeC": |[f(x)| < | flg for all polynomials f}
is the polynomial envelope of E;

(ii) Vg > 0 in CM\E.
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5. Extremal function & for special subsets of C"

5.1. DerINITION. We say that

1° E is N-circular, if for every point aeE the set {xeC": |x;| = |aj|
(=1,...,N)} is contained in E;

2 E is circular, if for every point xe€E the set {Ax: AeC, |A| =1} is
contained in E.

5.2. Given any bounded subset E of C¥ we put
M(x) = Mg(x):= sup {{c, x*|""!}, xeCV,

the sup being taken over all monomials ¢, x* such that ial > 1 and |, x*} £ 1
on E. It is obvious that M (4, x,,..., Ay xy) = rM(x,,..., xy) If x = (x,,...
....xy)€C" and L;eC, |3 =r (j=1,...,N).

53. Given any bounded subset E of C¥ we put
H(x) = Hg(x) := sup {sup |f(x)|'"}, xeC",
nz1 f

where sup denotes supremum taken over all homogeneous polynomials f of
i

degree n. It is obvious that
H(ix) = |A|H(x), if xeC¥, ieC.
5.4. ProrosiTioN [24]. If E is an N-circular compact subset of C¥, then
@y = max {1, Mg} in CV.
Proof. It is obvious that max {1, Mg} < Pg. Let f(x) = ) c,x* be

la]€n
a polynomial of degree < n such that |f(x)] < 1 on E. Then by the Cauchy
inequalities [c,x*| < 1 on E. Hence
lezx’] < M(x)*! in CV,

Sl < Y ME® <mME)P, i Mx) =1,

lx|<n

and |f(x)] < m, as M(x) < 1. Hence |f(x)|'" < max {¢/m,, ¢/m, M(x)} in
C". Now, if we apply the last inequality to the polynomial f* (k > 1),
we get

|f(x)}'" < max {1, M(x)} in CV,
so that ¢y < max {1, Mg} in C¥. QE.D.
55. ExampLE. If E = {xeC": q(x) < 1}, where
q() = x| := (Ixg* + ... +xnl*)'?

or g(x) = |x| := 1211%\; |x;|, then @g(x) = max {1, q(x)}.
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5.6. ProrosITION [24]. If E is a circular compact subset of CV, then
& = max {1, Hg}, Hg being given by 5.3.

Proof. It is obvious that max {l, Hg} < @ Let f(x) = fv‘ Ca X"
laj<n

= )Y ()Y ax’)= Z fi(x) be a polynomial of degree < n such that

k=0 l|aj=k
|f(x)) <1 on E. Then by the Cauchy inequalities |f,(x) < 1 on E for
k=0,...,n Hence

Ifx) <n+l as Hx)<1 and |f(x) <S(n+1)H(x)" as H(x)> 1
Hence, by a standard reasoning, ®#; < max {1, Hg}. Q.E.D.
5.7. EXAMPLE, If E := {Ax: xeR", x| = 1,4eC,|A| = 1}, then

He(2) = [{z, 2> +1z A 71V = [+ Iyl +2 /Ix 2 Iy P =<x, v 1M
N
where z = x+iy, {z,z) = ) z;Z;.
j=1

5.8. For any bounded open set G in C¥ we define the scalar product

frg> = [ [(x)g(x)dx
for any two complex functions fand g with | |f)?dx < + o0, |[g]*dx < + o0,
G G

the integration being taken with respect to the 2N-dimensional Lebesgue
measure in CV.

Given a fixed one-to-one mapping
w: {1,2,...}3j > x(j)eZ}

such that |x(j)| < |x(j+1)|, put e;(x) = x*? (j = 1,2,..). By the standard
Schmidt procedure of orthonormahzatlon we deﬁne a mulnple sequence of

polynomials {p,}, a€ ZY, with the following properties:
j@

Z aje;, where j(a) = x~'(a), deg p, = |a],
20 ej = Ca Pas .’ = ];

£, P
3 {pa, pp) = 04p for all a, fe Z7.

Let f be a holomorphic function in G such that || f{? := {|f|*dx < + c0.
G

Then, by the Cauchy integral formula for polydiscs, one obtains the following
known inequality

(%) If@* < (mr’)™ | f12,

where a is any point of G such that B(a,r):= {xeC": |x—q| < r} = G.
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5.9. ProposITION, If E = E,; x ... xE;, where E; is a compact subset of
CVi, then
Be(xy, ..., X;) = max {Pg (xy),..., Pp (%)}, x = (x;,...,x;)eC",

where N = N+ ... +N,. ' .

Proof Without loss of generality we may assume s = 2. Put 4 = E,
B = E,. Given any r > 0 define 4" := {J B(a,r) = {x e C"1: dist (x, 4) < r}
acA

and B’ = {yeC"?: dist (y, B) < r}. Let {p.} (xe Z!) and {gs} (BeZ\?) be
the orthonormal sequences of polynomials defined in 5.8, when G = 4" and
G = B', respectively.

It is obvious that

(Pe(¥) g5 (»)} (e Z), BeZ’?)

is an orthonormal system of polynomials with respect to the scalar product

Sogdi= § f(xp)g(x,y)dx dy.

AT x B

I f(x,y) = Y agpx*y*is a polynomial of degree < n, then

[ +[Bl<n -

f66,9) =¥ cyp(x)g() in €' xC?

jal+(B1<n
for suitably chosen c,;€C. Moreover, ¢,y = {f, p.qs>. Hence
leagl < M, /v (A" % B),

where M, = sup {|f(x, y)|: xe A", ye B'} and v(A" x B") denotes the Lebesgue
volume of A"x B’. By () of 5.8 we have

P(X)*> < (mr?)™™t  for xed and |g(y)* < (wr*)~N2  for yeB.
Therefore

106, 9 < M, (/v(4"x BYm, (nr?)""'? max {@,(x), Pp(»)}",
 xeCM, yeCMa.
Hence, by substituting f* (k > 1) in place of f, we obtain
|f e, I" < M, max {®, (x), ®5(y)}-
If r|0, then M, = M,(f){M = M(f):= sup {|f(x, y)I: xe A, ye B}. There-
fore for any polynomial f(x, y) such that [f| < 1 on AxB we get
If (x, I < max {@4(x), Ps(y)} in C”l x CN2,

Hence @,.5(x,y) < max {&,(x), Pg(y)}. Since the ropposite inequality is
obvious, the proof is concluded.

13 — Annales Polonici
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5.10. Remark. If N; =1 (j = 1,..., 5), Proposition 5.9 was first proved
by a different method in [24].

5.11. ProrosiTiON (M. Mazurek). If E is a compact subset of C¥ and
R > 1, then

Ve, =-max {0, Vg—log R} = Vg,
where Eg:= {xeC": Vg(x) <logR}, Dg:= {xeC": Vg(x) < log R} and
FR = ER' .
Proof. 1° Vg, = max {0, Vz—log R}. Indeed, it is obvious that

max {0, Vg—log R} < Vg,. In order to show the opposite inequality, given
r > 0, put

ER:= {xeC": Vir(x) < log R}.

Next, given any u € L (E%, 0), the function v defined by v(x) := max {u(x)+
+log R, Ver(x)} as xeCV\ER and v(x):= Vir(x) as xeEg, belongs to
L(E’, 0). Therefore

u(x)+log R < Ver(x) < Ve(x), xeCN\Ekg.
Hence
VE;‘(x)'s Ve(x)—log R in CM\E%.

By 2.14, ER|Eg and VE;TVE as r|0. Thus VER(x) < Veg(x)—logR in
C¥\Eg, and finally Vg, < max {0, Vz—log R} in C".

2° For every R’ with 1 < R’ < R we have Eg. © Dy € Fy < Eg. Hence,
by 1°,

Vep < Veg < Vi = max {0, Vg—logR’}, 1 <R <R,

If R" —» R, we get Vg, = Vi, = max {0, Vyz—log R}. Q.E.D.

3.12. CoroLLARY. If Vg is continuous, then, for every R > 1, Vg, is
continuous. .

5.13. QuesTion. Is F# := Dy polynomially convex? (The positive answer
implies that Ex = Dg.)

5.14. PROPOSITION. Let q be a non-negative real continuous function in
CV, such that q(Ax) = |Alq(x) for AeC,xeC" and logqeL*. If E:=
{xeC": g(x) < 1}, then '

Ve(x) = log* g(x), xeCN.

Proof. Let x be a fixed point in C¥\E and let u be a fixed function
in L* such that u <0 on E. Then the function A — u(Ax)—log q(4x) is
subharmonic in €C\{0} (where € = C U {0}) and

u(Ax)—loggq(Ax) <0 as |l =r,
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where r is a positive number such that g(rx) = |. Now by the maximum
property for subharmonic functions the last inequality holds true for all
AeC with 1] > r. Hence u(x) < log q(x). Therefore V¢ < log™ q. Since the
opposite inequality is obvious, the proof is concluded.

5.15. CoroLrary. If q: C¥ - [0, +©) is a norm and E:= {xeC":
q(x—a) < r}, then Vg(x) = log* q(x—a)/r.

6. L-regular sets in C¥

6.1. PrOPOSITION. Let E be a compact subset of CN. Then the following
conditions are equivalent:

(@) Vg is continuous in CV;

(b) Vg is continuous at every point ac E (ie. V¥ = Vg = 0 on E);

(c) h¥p, =0 on E for every open bounded neighbourhood D of E (the
polynomial envelope of E);

(P) For every ¢ > O there exists an open neighbourhood U of E such
that for every polynomial fe #,, n > 1,

Ifllo < i flle€™”.

Proof. (a)<>(b) by Proposition 2.13. .

(@)= (®). I feP,, then, by 2.11, |f(x)| < |fllexp(nVe(x) in C
Hence (&) is satisfied with U := {xe CV: V;(x) < &}.

(@)= (a). If (P) is satisfied, then, by Theorem 4.12, Vg(x) < ¢ for xe U.

(@)= (c). Put m:= inf {V(x): xedD}. Then m > 0 and V¢ > m on dD.
Let u be a plsh function in D such that ¥ <0 on E and u <1 in D.
Then the function » defined by

v(x) := max {mu(x), Vg(x)} for xeD, wv(x):= Vg(x) for xeC"\D
belongs to L and v < 0 on E. Hence
mhf (x) < Veg(x) 1in D.

In particular, ht, = 0 on E.
(c)=(b). If hfp =0 on E, then by Theorem 3.10 and Corollary 3.9,
V#eL. Put '

M := sup {VZ(x): xeD}.

Then for every ue L with u < 0 on E we have u/M < hg, in D. Hence
V¥ < Mhtp in D, so that V¢ =0 on E. Q.E.D.

6.2. PrROPOSITION. If E is a compact subset of CV, then Vg is continuous
at ac E if and only if for every bounded neighbourhood D of E the function
he p is continuous at a (ie. V¥ (a) = 0<>h¥ p(a) = 0).

Proof. 1° V¥ (a) = 0= h§ ,(a) = 0. Indeed, given any ¢ > 0 take r > 0
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so small that Vgr(x) = m—eg, where m := inf Ve(x). Then for every function
u plsh in D such that ¥ <0 on E and u < 1 in D, we have
max {(m—e)u, Vgr} < Vg in D.

Hence mhf, < V¢ in D and hfp(a) = 0.
hE p(a) = 0= V¥ (a) = 0 because Vg(x) < Mhgp(x), where M := sup V.
D

6.3. DerINITION. Let E be a subset of C¥ and let a be a point of its
closure E. We say that:

1° E is locally L-regular at a, if for every r > 0 the extremal function
Venb,r (corresponding to the set En B(a,r)) is continuous at a;

2° E satisfies the polynomial condition (L}) at a, if for every ¢ > O there
exists a neighbourhood U of a such that

I fllv < Il fllg exp (e - deg f)

for every polynomial f;
3° E satisfies the polynomial condition (L') at a, if for every r > 0 the set
E N B(a,r) satisfies condition (L) at a;

4° E satisfies the polynomial condition (L) at a, if for every family #
of polynomials f such that

sup |[f(x)) < +, x€E,

feF

and for every & > 0 there exist two positive numbers M and ¢ such that
/() < Mexp(e-deg f), [x—al <3, feF.

5° E satisfies the polynomial condition (L) at a, if for every r > 0 the set
E n B{a, r) satisfies condition (L,) at a;

6° E is CV-fat at a (or E is not C -thin at a), if for every open connected
neighbourhood U of a the following Proposition (Modified Hartogs Lemma)
is true:

“Let {v,} be a sequence of functions defined in U by

v,(x) := sup {4, log | f,(x,t)|: te T}, xeU,n=1,

where A, is a positive number, T, is an arbitrary set of arbitrary elements
and the function f, is holomorphic with respect to x € U for each fixed teT,.
If v, < M (n>1)in U and limsupv, < A on E, then for every ¢ > 0

there exists & > 0 and n, = ny(¢) such that
v,(x) < A+e, n=ng, |x—al <d”

6.4. ProposITION. If N = 1 and E is compact, then conditions 1°, 2°, 3°, 5°
and 6 are equivalent.
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If N>1 and E is compact or not, then °=>3F =2 =4 =2 and
5=6°. If N> 1 and E is compact, then 6 = 1°.

Proof. For the case N =1 see [23], [25], [26], [15]. If N > 1, the
implications 1°=3°=2" and 5°=4°=2" are obvious. The proof of the
implication 5°=6" may be found in [26] (see the proof of Theorem 2.1
in [26]). Finally, if E = C" is compact, 6° = 1° follows from Theorem 4.12.

6.5. Remark. All conditions 1°-6° are invariant with respect to one-
to-one mappings of CV onto itself. Indeed, if 4: C¥ - C" is any non-singular
affine mapping and E is any subset of C¥, then

VA(E) = VAOA_I.

If F o E and E satisfies any of conditions 1°-6°, then F satisfies the
same conditions.

6.6. ExampLE 1 (F. Leja [16]). Let E be a subset of C and let a be
a limit point of E. If there exist a positive number ¢ and a subset S of
the interval (0, ¢) with the Lebesgue measure m(S) = ¢ such that for every
re S the circle {z: |z—a| = r} intersects E, then E satisfies (L) at a.

6.7. ExampLe 2. If Fy x ... xFy < E, F; being a compact subset of the
complex plane such that F; is locally L-regular at gq;eF; (j=1,...,N),
then E satisfies all conditions 1°-6° at a = (a,, ..., ay). For instance E satisfies
1°-6° at aeE, if there exist continua F; (j = 1,..., N), not reduced to the
point qg;, such that aeF, x ... xFy c E.

Remark 6.5 and this example imply

6.8. ExaMPLE 3. Let E be a subset of RY (we identity RV with the
subset R¥+i-0 of CM). If P is a parallelepiped with non-empty interior
contained in E, then E satisfies all conditions 1°—6° at every point a€ P.

6.9. ExaMpLE 4 (Baouendi—Goulaouic [3]). Homothety Criterion. Let
I = [A, B] be any interval in C". For h > 1 denote by I(h) the homothetic
interval obtained from I by the homothety contered at (4+ B)/2 and whose
ratio of similitude is h.

If E is a subset of CY denote by E(h) the union of I(h), where I is any
interval in E, E(h):="{J I(h).

IcE

If acR" (resp. aeC") and E(h) is a neighbourhood of a in RV (resp.
in CM) for every h > 1, then E satisfies condition (L) at a.

6.10. ExaMpLE 5 (Baouendi-Goulaouic [3]). Let ¢ be a strictly increasing
continuous function defined on [0, 1] with ¢(0) = 0. Then the compact set
E = R? defined by

E={x,x)eR: 0<x;<r,0<x, <o(x)}, 0<r<li,
satisfies the homothety criterion (and hence L') at a = (0, 0).
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6.11. ExampLE 6 (Dudley—Rundal [7]). If E is a compact convex subset
of R¥ with non-empty interior, then E satisfies 5° at every ae E. The same
remains true if E is a union of compact convex sets with non-empty interiors.

. This follows easily from Example 1 and Remark 6.5.

7. Extremal functions of one complex variable

In this section we shall recall (without proof) some of the known
properties of the extremal functions of one complex variable. More detailed
informations and references may be found in [23].

7.1. Let b denote a real bounded function defined on a compact subset
E of C. If c(E) > 0 (c(E) denotes the logarithmic capacity of E), then Vj,
is harmonic in C\E.

Indeed, if B(a,r) is a disc in C\E, one may replace every ueL(E, b)
by u' e L(E, b) given by

, 1 7 r—|z—af? ; :
u'(z) = o (_!' P u(a+re)dt in B(a,r)

and «' = u in C\B(a,r). Hence V;, is harmonic in B(a, r).

7.2. If ¢(E) > 0, then V; is the Green function of D, with pole at oo,
where D, = D, (E) denotes the unbounded component of C\E,
C:= Cu{mo}.

7.3. THEOREM [23]). Let E = 0D, (E) and let D, (E) be regular with

respect to the Dirichlet problem. Let b denote a real continuous function
defined on E.

Then for every A > 0

ur(z) = (1) [V (2)—Ve(2)], zeC,
is continuous on € (u;(o0) = lim u,(z)), harmonic in C\E and u, —» u := l}lrg u,
uniformly on € as 1)0. The limit function u is equal to b on E, so that u is

the solution of the Dirichlet problem for C\E with boundary values b.

Proof. By 7.1, u, is harmonic in C\E. The continuity of u, on C follows
from Proposition 2.16. The limit u = lim u, exists by 2.9.

By the Dini theorem and by the maximum principle for harmonic functions
it is now enough to show that u,7b on E as A}0. This is, however,
a direct consequence of Proposition 2.17 and of the following known (e.g. [23])

7.4. ProrosiTiON. If E = 0D_(E) and b: E — R is continuous, then there
exists a sequence of holomorphic polynomials {g,} such that

exp b(z) = fl:[: lg«(2)l, z€E.
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8. Analytic functions on compact subsets of C"

8.1. Given a compact set E ¢ CY and a complex continuous function f
on E, let T, f e 2, denote a Ceby3ev polynomial of best approximation to f
on E of degree < n. The polynomial T,f is defined by the condition

-3

e E, )= If—T,fllge < | f=plg:= sup | f(x)—p(x)| for all pe 7,.

xeE
Put

¢(E, f):= lim sup /¢, (E, f).

n—x

8.2. Remark. Put

(Lo f)(x) 1= 3, fEHLD (x, &),
i=1
where & is any system of extremal points of E of order m,. Then

If=Lafle < Mf=Taflet IL, (/- Dle < U+m) | f~T, fle, n=1,
whence
¢(E, f) = lim sup &/|| f— L, flle-
We shall need the following known
8.3. ProprosiTION [13]. If f is holomorphic in a polynomial polyhedron
D:={xeC": |x| <é(j=1,..,N)L|px) <o (i=1,..k},

where p; (i=1,...,k) is a polynomial, 3 is a positive number and k is
a positive integer, then there exists a function F holomorphic in the polycylinder

A:={(x,y)eC"xC*: |x| < §, |yl < 8},
so that

f(x) = F(x,p(x)), x€E,
where p(x) = (p,(x), ..., pi(x)).

84. LEMMA. Let p; (i = 1,...,k) be polynomials of degree < d. Given
R > 1 and t > 0, define '

= {xeC": ¢(x) < R},
where @(x):= 1nsuiié(k|p,~(x)|”". Assume that D, is bounded.
If 0 <s <t and f is holomorphic in D,, then
e(D,, f) S R

Proof. Take 8 > 0 so large that D, lS contained in the. polydisc
{xeC": x| < §-R*“}. Then

D, = {xeC": |x| < &-R™|5-p;(x)) <6-R4(i=1,.. k)
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so that D, is a polynomial polyhedron. By 8.3 there exists a function
F(x,y) = Ycypx"y* (aeZl,peZt),
holomorphic in the polydisc
A={x,y)eC"*: |x| <é-R", |y <dé R
such that
f(x)=F(x,d-p(x)), xeD,

where 6-p(x) = (8- p;(x), ..., 8- pr(x)).
Take 8 < 1 so close to 1 that

{x,6-p(x))eC¥**: xeD,} = 8- 4.
Since @ - 4 is a relatively compact subset of 4, the Cauchy inequalities imply

lcagl < M/(6-5-R")I*1B1 M = M () = const.
Put

fx):= ) Capx“(cs-p(x))", n=>1.

le[+]Bl<n
Then f, is a polynomial of degree < n-d and
| f=filo, < My67"(R*™9, M, = const,

because |x| < §-R*%, |6-p(x)] < 6-R*? as xe D,. Hence
(1) hm Sup "'\/d Qno'd(bsr f) s Rs_l'

Now, by a standard reasoning (see e.g. [24]), one may easily show that (1)
holds true also for d = 1. Q.E.D.

8.5. THEOREM [24]. 1° If E is a polynomially convex compact subset
of C¥ and f is a function holomorphic in a neighbourhood G of E, then

e(E, f) < L.

2 Let E be a compact subset of C" such that the extremal function &g
is continuous. Put

() D:={xeC" &dg(x) <R} ([R>1).
Then

(@ If f is holomorphic in D, then o(E, f) < 1/R;

() If @(E,f) < 1, then f is continuable to a function f holomorphic
in D given by (2) with R = 1/o(E, f).

Proof. 1° By the polynomial convexity of E we can find a positive

integer d, a positive number ¢ and polynomials p,,..., py, deg p; < d, such
that for a real number R > 1
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EcD;:={xeC" |pjx)|" <R (j=1,..,k} =G.

Now Lemma 8.4 implies the inequality ¢(E, f) < 1.

2 (a). Let £ denote any system of extremal points of E of order m,.
It follows from 4.7-4.11 that given ¢ > 0 we may find an integer d so
large that

Pr(Xx)R™° < @(x) < Pe(x), xeD,
where

¢(x) = ( max [L?(x, ™))"

1<j<my
Put for t > 0
D,:={xeC": ®p(x) <R}, D,:={xeC": p(x) <R'}.
Then
E c D, c D; © Dy, if 0 <tand t+¢ < 1.
Hence by Lemma 8.4
¢(E, f) <e(D;, f) SRTU™ = R*7Y,

because f is holomorphic in D|_,. By the arbitrariness of ¢ we get
o(E,f) <R L

(b) Take g, > ¢ = o(E, f). Then g,(E, f) < Mgj (n = 1) for a posi-
tive constant M = M (g,). Take p,eZ, such that ¢,(E, f) = | f—p,llg. Put
Qy:=p1, @n:= Pa—Ps-1 (n = 2). Then

10, (x)) < M(1+1/e))e}, x€E,n>1.

Hence

10, ()| < M(1+1/¢,) [0; Pe(x)]", xeC" n>1.

Therefore the series ) Q, is uniformly convergent on compact subsets of
{xeC": &g(x) < 1/g,}. By the arbitrariness of g, (¢, > ¢) the series is
uniformly convergent on compact subsets of D given by (2) with R = 1/p
and its limit f gives the required continuation of f.

8.6. CorOLLARY. Let E be a compact subset of CN such that ®g is
continuous. If f is a continuous function on E and {p,} is a sequence of
polynomials such that degp, < n and

(3) limsup g/|| f—p.lg < 1/R  with R > 1,

then f is holomorphic in D given by (2) and for every ¢ (0 < ¢ < 1)
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) lim sup 3/11.f = pallp, < R°71,

where
D, := {xeC": dg(x) < R}.
Proof. Put Q, =p,, Q,:= p,—Pn-1 (n = 1). It follows from (3) that

lim sup ¢/|@,lle < R™".

Hence for every & > O there exists M > 0 such that |Q,(x) < M(R°*™!)y
for xeE, n > 1. Now, by the Bernstein—Walsh inequality 2.11, |Q,(x)|
< M(R°* Y for xe D,. Therefore

If=Pallp, € Y 1Qjllp, € My(R***71)y", M, = const,

jzZn+1 \

¢ > 0 being any positive number such that o6 +¢ < 1. Q.E.D.

8.7. Remark. Point 1° of Theorem 8.5 implies the Oka—Weil approxi-
mation theorem. If N = 1, Theorem 8.5 is due to Bernstein and Walsh.
If N> 2 it has been first proved by a slightly different method (based
on the Weil integral formula) in [24]. Yet another proof of Theorem 8.5
was recently given by Zacharjuta [33].

8.8. Let us consider the following three conditions, where E is a compact
subset of CV:

(A) fe¥(E), ¢(E, f) < 1= fed(E);

(B) For every real number > 1 there exist an open neighbourhood

U of E and a positive constant M such that for all polynomials f of N
complex variables

Iflle < MIfllea™;

(P) @, is continuous.

&7 (E) denotes the space of all holomorphic functions f in a neighbourhood
of E that may depend on f. &/(E) may be considered as an inductive
limit of the sequence of Banach spaces {A,}, where A, is the Banach space
of all bounded holomorphic functions in

U, := {xeC": dist (z, E) < 1/n}.

We say that E is determining for &/ (E), if for every n the following
implication is true:
feAd,, fIE=0=f=0 in U,.

8.9. THEOREM (comp. [3], [27]). Under the assumption of 8.8 (B)<>(®)=(A).
If, moreover, E is determining for .</(E), then the three conditions are
equivalent.
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Proof. By Theorem 8.5 it remains to show that (under the additional
assumption) (A) = (B). Put

%, := {feC(E): supw'g,(E,f) is finite}, w > L.

nz0

Then | f| := | flg+ sup w"g,(E,f) is a norm in ¢, and ¥, endowed with

nz0
this norm is a Banach space. Consider the following injective linear mappings

0. %, > AE), V:AE) —>%CE and j: 6, > €(E),

where ¢ is given by condition (A), ¥ (f) denotes the restriction of fe .o/ (E)
to E, and j denotes the inclusion. Since E is determining, ¢ is well defined.
The mapping j and y are continuous and j = Y o¢. Therefore the graph
of ¢ is closed. Hence by a well-known Grothendick’s theorem ¢ is con-
tinuous and there exists s such that ¢(¢,) c &, and ¢: €, - & is
continuous. Therefore there exists M > 0 such that for all fe%,,

1f o, < MAIS
If fis a polynomial of degree < k, then fe %, and
1f o, < M(Ifllg+ sup w" g, (E,[)) < 2M || f [|g W,

n=z0

because ¢,(E,f) =0 for n > k+1. Q.E.D.

9. Separately analytic functions

9.1. Let E and D be subsets of CV. We say that the pair (E, D)
satisfies condition (h*), if E < D, D is open and if for every increasing
sequence of compact sets {E;} such that E,1E

htplhtp in D as k- o,
where hg p and hgp are defined by 3.2

9.2. PropPoOSITION. Let E be a compact subset of CV such that &g is
continuous. Put
(1) D:={xeC" &g(x) <R} (R>1).

Then
(1) hgp = log @/log R in D (see [33]);
(ii) The pair (E, D) satisfies condition (h*) if and only if for every sequence

{E\} of compact subsets of E such that E,TE (k - o), we have VE N Vg
in C" as k - .

Proof. (i) It is clear that V; = log @ < hgp - log R in D. Take ue PHS (D)
such that u < 0 on E and v € 1 in D, and define

v(x):= max {u(x)log R, Vg(x)} in D, v(x):= Vg(x) in CV\D.
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Then veL and v <0 on E. Hence ulogR < V; in D. Therefore hgp x
xlog R < Vg in D. The proof of (i) is concluded.

(i) First assume that (E, D) satisfies (h*). Since E, TE and VzeL, by 3.6
and 3.5 there exists k, such that V& eL for k > ko. Put M, := Sl‘l)p V..

Then M := M,, > M, (k > ko) and Vg, < Mhg,p in D for k > k,. Indeed,
if ue L and u < 0 on E,, then u < Mhgp in D. Hence. Vg, < Mhgp in D.
Therefore the function

V= lim V,.;k

k— o
belongs to L and V< 0 on E. Hence V < Vz. On the other hand by 2.3
VE < VEI.;‘ (k = 1), so that Ve < V.

Now, in order to prove the implication in the opposite direction take
any sequence of compact sets {E,} such that E,TE. It is obvious that

(2) hep < hep < hE,p  for k > 1

- Take any ¢ > 0 and let k, be so large that V@ < e on E for k > k,.
Take ue PSH(D) such that ¥ <0 on E, and u <1 in D, and define
v(x) := max {u log (Re ™), ng—e} in D, v(x):= V&&—¢ in C"\D. Then velL
and v < 0 on E. Therefore v < V;. Hence

log R
log (Re™®)

because by (i) Vg/log R = hgp in D. Now by (2) we get the required result.

ht.p < Vg/log (Re™") = hgp in D for k = k,,

9.3. PROPOSITION, Let D = C?, G = C? be open sets, Ec D and F = G
compact subsets such that hgp and hpg are continuous. Put

Q:= {(x,y)e DxG: hgp(x)+hp(y) < 1}.
Then

hix, y):= hexpa(x,y) = hep(x)+hec (),  (x, y)eL.

Proof. Fix (a,b)e Q. Take ue PSH(£2) such that u < 0 on ExF and
< 1lin Q. If aeE, then of course u(a, b) h(a,b) = hgg(b). If a¢ E, then
hm(b) < 1—hgp(a). Therefore

u(a, b)—hgp(a) < heG (V)
1 —hgp(a) Tol- hep(a)’

because hpg, () = hpe (v)/(1—¢), where G, := {ye G: heg(y) < 1—¢}.
Propositions 9.2, 9.3 and 9.3’ imply the following

ie. u(a,b) < hgp(a)+heg (),

94. CorOLLARY. Let D; be a domain on the complex plane C and let E;
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be a compact subset of D; (j=1,...,N). If hajnj is continuous and D s
given by

(%) D:={xeDyx...xDy: hg,p (x)+ ... +hgypy(xy) < 1},

N .

then hgp(x) = Y, hgp;(x;) (where E = E,x...xEy) and the pair (E,D)
=1

satisfies condition (h*).

9.5. THEOREM. Let E be a compact subset of C? such that ®g is con-
tinuous. Put

D:={xeCP: ¢z(x) < R} (R >1}.

Let G be an open subset of C* and F a compact subset of G such that
hrg is continuous. Assume that the pairs (E, D) and (F, G) satisfy condition
(h*). Put
X:=ExGuDxF,
Q:= {(x,y)eDxG: hgp(x)+hee(y) < 1}.
Let f: X — C be a separately analytic function on X, ie.
1°V__, the function y = f(x, y) is holomorphic in G;
r Vye,, the function y — f(x, y) is holomorphic in D.
Then there exists a (unique) holomorphic function ' in © such that f = f|X.
Proof. Put

D, :={xeD: hgp(x) <o}, O0<o<1,
G, :={yeG: hpg(y) <1}, O0<t<1
Since £ is a union of the open sets D,xG,, where o+t <1, it is
sufficient to show that there exists a function g holomorphic in D, x G,
such that q|[ExF = f|[ExF (then q|X n(D; xG,) = f|X n(D, x G,)).
Fix ¢ >0 and 7 > 0 such that 6+7 < 1. Take ¢ > 0 so small that

2Ze<o and o+1+7e < 1.

By the Vitali theorem the set

(3) E ;= {x€E: |f(x,y| <k, yeG,}
"is closed for every k > 1. By 1°, E,TE (k - o0). Take k so large that
4) Pt (x) < P(x)R*  in D.

The existence of k follows from Proposition 9.2 (ii). It follows from 4.7-4.11
that there exists d so large that

(5) 5, ()R < 9(x) < 5, (x) in D,
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where

-

¢(x):= max |[LO(x, "),

Sjsmy
¢ = {¢4, ..., y,} denoting any system of extremal points of E, of order
m,. Since @y < &g, , we get from (4) and (5)
(6) Pr(x)R™* < p(x) € Pp(x)R" in D.
Hence

Ek cEc Da < D’Ze’ Da < Da’:+ca '1—28 < Dl—c’

where
D;:={xeCP?: ¢(x) <R}, t>0.

Let ¢{™ be any system of extremal points of E, of order m,. Put

© A9 = T (€ )Lk, E7),

() Qulx,y):=filx, V) —faoi(x, ), x€C?, yeG, n 21 (fo =0).
Then by (3), (4) and 2.11
(8) |Qn(x, y)| < 2km,(R°*%)", xeD,, veG,, n> 1.

Now for any fixed yeF put g(x):= f(x,y), (L,g)(x).:= f,(x, y). Let

pa(x) be a polynomial of degree n such that g,(D5.,q) = llg—p.l py,- Lhen
I(Lag—pn) ()| = |Ln(g—pa) (X} < m, ||g—Ppallg, PE, (x) in CP. Hence

Sup | £, Y)—f (6, Y = 19— Laglp, < 9= Pallo, + | Ls(@— P,

xeDg

< 9= "Pallp, + 1M 19— Pallpy, (R9).

Now, by Lemma 84, lim sup 24(g—p,|p,, < R**7" "2 = R*~! Hence,
A=
since E < D),, we get

lim sup ¢/llg—pallp, < R]™' = (R'7#)°~1 < RO*4 L

Therefore

©) lim sup (sup 10, (x. y))*" < R7** Y, yeF.
Hence

(10) lim sup (sup 10, (x, V)" < RTFS1 yeF

Put for every integer | > 1
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(11) F,:= {yeF: (sup |Q,,(x,y)|)”" SR n >}

xeDy
The set F, is compact and by (10) F;TF (l— o). Take ! so large that
hre(y) < t+e  on G,.
Then by (8) and (11)

1
— log|Q, (x, y)| —log R™**:"!

lOg (c /M,, Rd+5)_log R¢r+6£—1
where M, = 2km,. Hence for xe D,,~yeG,, n 21 -

IQn(x9 y)|”" < Ra+t+7c_l_(5‘_‘n)(f+€)’

< hF,G(y) < t+¢, XGD,,, ye€ Gn nz l,

/

where ¢, —» 0 is given by R = g/M,. Now, if n > 1, > 1, |, being suffi-
ciently large, we get

o+t+7e—1—(5e—¢,)(t+e) < —a <0, n2=l,

so that the series ) @, is uniformly convergent on D, x G,. Its limit g is

nz1
a holomorphic function in D, x G, and, moreover, by (7) and (9), q(x, y)
= f(x, y) for xeD,, ye F. Hence

g{x,y) = f(x,y) in XnD,xG,,

because E (resp. F) is a determining set for functions holomorphic in D,
(resp. in G,). Q.E.D.
As a corollary from the proof we get the following

9.6. PROPOSITION. Under the assumptions of Theorem 9.5 let &™) denote
any extremal points system of E of order m,. If f, is given by (6), then the
sequence {f,} is uniformly convergent on compact subsets of Q. Its limit f gives
the holomorphic continuation of f from X to L.

By induction with respect to N one can easily deduce from Corollary 9.4
and Theorem 9.5 the following

9.7. THEOREM. Let domains D; of Corollary 9.4 by given by
Dj = {ZG C: ¢EJ(Z) < RJ} (RJ > 1).

Let f be defined and separately analytic on the set

X :=(D, szx o XENU(E{xDyx ... xEy)U ... U(Ey X ... XxE,_; xDy),

ie. for every j=1,...,N and for every point (a,...,a;_y,Qj+y,...,ay)€
€E, x ... xE;_{xEj;;x ... xEy the function f(a,,...,a;-1,2,8j4y,..., ay)
is holomorphic for ze€ D;.
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Then the function f is continuable to a (unique) holomorphic function f in
N .
Q:= {xeC": ,;1 l-og P, (x;)/log R; < 1}.

9.8. Remark. Theorem 9.5 holds true if D is given by (x) of Corollary 9.4
(see [24], Theorem 7.1). Recently Zaharjuta [34] has obtained a version of
Theorem 9.5 by a different method developed in his earlier papers (see [31]
for references). We obtain the required continuation f of f by using the
Lagrange interpolation formula with nodes. at extremal points, while Zaharjuta
obtains f by means of Schauder bases of some spaces of analytic functions.
Nguyen Thank Van was the first to point out (in his thesis [20]), that
Schauder bases of some spaces of analytic functions may be used to obtain
holomorphic continuation of separately analytic functions.

9.9. CoNJECTURE. If hgp is continuous, the pair (E, D) satisfies’ condition
(h*). Observe that the conjecture is true if N = 1.,

Added in proof. By a recent result due to E. Bedford the conjecture
holds true for all N > 1.

10. A sufficient condition for single-valuedness of analytic functions of N
complex variables
Given a compact subset E of C" consider the following condition:

(&) For every bounded open neighbourhood D of E there CXIStS a point
e D such that h, () < 1.

Observe that by 3.3 and 3.10 condition (§) is satisfied by E if and only
if E is not CN-polar.

10.1. THEOREM. (Comp. [9], [10].) Let U be a domain in CV and let (f, U)
be an analytic element of a complete analytic function f whose natural domain
of existence is W;. Let E be a compact subset of "U satisfying (£). Let A be
an infinite set of positive integers.

If for every ne A there exists a polynomtal Pn> deg p, < n, such that
= [ f=pal¥" >0 asn>o (ned),
then for every compact subset F of Wf
I f=pallF"™ = as n— o (neA),

so that f is single-valued and W; is schlicht.

Proofl. 1° By 3.9 it [ollows from (&) that VZFe L. Let D be a relatively
compact schlicht open neighbourhood of E contained in W;. Since
Ipalle < | flle+6e3 < M; = const,

I f=pallo < I f o+ 1Pallo < ||f||o+SUP[MxeXP"VE(X)]
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M being a sufficiently large constant. Hence

(1/n) log | f(x) — pa (x)| —log &,
log M —loge,

< hgp(x) in D for ne A.

Therefore

|f(X) = pn(x)] < [Mg} ~rED]", xeD, neA.

Take ¢ > 0 so small that h¥,({)+e < 1. Then G := {xeD: hfp(x) < 1 —¢}
is an open neighbourhood of ¢ and

(1) | f=pallgd" >0 as n—> oo (neA).

2° It follows from (1) that without any loss of generality we may assume
that E is a compact ball. Let F be any compact subset of W, and let D
be any relatively compact subdomain of W, such that EUF < D. Since E
is a ball, h¥p(x) <1 in D. Take ¢ > 0 so small that G := {xeD: %"}
< 1—¢} contains F. Then by (1)

I f=pallF"—>0 as n—> oo (ned). Q.E.D.

10.2. CoroLLARY. (Generalization of the Ostrowski theorem on lacunary
power series.) Let ) f, be a series of homogeneous polynomials (deg f, = n)
0

convergent in a neighbourhood U of 0eC¥.
If '

=0 fornm<n<nk=1),

where {n,} and {n,} are increasing sequences of positive integers such that
k]im m/m. = + oo, then the maximal analytic extension of f := Y. f, is single-
—- @ . .

valued.

Proof. Put A:= {n} and p,:= fo+ ... +f,. Let E:= B(0,r) be a com-
pact ball contained in U. Then there exist constants 6 (0 < 6 < 1) and
M > 0 such that

4 nk

|f () =P, ) < Y 10 < M =g
s2>ny -

x| <r, k> 1.

Hence | f—p,,[I"""— 0 as k — oo, and by Theorem 10.1 we get the required
result.

10.3. COROLLARY. If W is a domain of convergence of a lacunary series
of homogeneous polynomials Y Jn,» where deg f, = n, and Jim n/nyy =0,
k21 - ®

then W is identical with the natural domain of existence of f := 3 Jo:

14 — Annales Polonici
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