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Asymptotic stability of an integro-differential equation
of parabolic type

by DaNuta Jama (Gliwice)

Abstract. It is shown that for a large class of stochastic kernels the solutions of a linear
integro-differential equation of parabolic type converge to the same limit independent of the
initial conditions. The solutions are constructed by the use of the semigroup theory of lincar
operators; the proofs of the convergence are based on a Lasota criterion for asymptotical
stability of stochastic semigroups [3].

Introduction. The purpose of the present paper is to study the behaviour
of solutions of the integro-differential equation of the form

ou(t, x) 2%u(t, x)

©.1) ot ox?

+u(t, x) = c?

+ 1 k(x, Vu(t, y)dy,
a
xed, t 20,

where k: 4 xA4— R is a measurable stochastic kernel, i.e.,

k(x,y)20, [k(x,y)dx=1 for yed.
a4

We shall study separately two cases: 4 = R (real line) and 4 = [0, n]. In the
last case, equation (0.1) will be combined with the boundary conditions

(0.2) ut,0)=u(t,n) =0 for t 2 0.

Equations similar to (0.1) appear as models of some biological processes
(see [2] and (5] for extensive literature). They also give perfect examples of
applications of the semigroup theory (see [4], Chapter 5, 7). In fact, when k
is only a measurable stochastic kernel and does not satisfy additional
regularity condition, the classical treatment of (0.1) is inconvenient.

The paper consists of five section. In Section 1 we start with rewriting
equation (0.1) as an evolution equation in ' space and we construct the
solutions of the corresponding abstract Cauchy problem. In Section 2 we
recali the recent results of A. Lasota [3] concerning the asymptotical stability
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of stochastic semigroups and we show that the semigroup {S(s)! generated.
by equation (0.1) is stochastic. Section 3 contains a proof of asymptotical
stability of {S(r)! in the case of a bounded interval 4 = [0, n] and Section 4 is
devoted to analogous problem for 4 = R. Finally, in Section 5, we show
some properties of the limiting function

u, = lim S(r) f.

1=

1. A linear evolution equation. In order to rewrite the integro-differential
equation (0.1) as an evolution equation in L' space we first must replace the
operator d*/dx? by its closure 4 in I!. To be more specitic in the case 4 = R
we define

D, =!fel'(4)n C*o(4): f e [} (4)]
and Af = c%f”. In the case 4 = [0, ] we admit
Dy={feLl (NN C'*(4): f(0)= f(r) =0 and f"c L' (4)}

and Af = c%f”. Here C'*"(A) denotes the set of all differentiable functions
having absolutely continuous derivatives in 4. Further, set

(1.1) If =f and Kf(x)=[k(x,y)f(y)dy.
A4

It is well known that A is the infinitesimal operator of a semigroup | T, (¢)}
such that u(t, x) = T,(t) f(x) 1s a classical solution of equation u, = Au for
sufficiently smooth f. This semigroup is given by the formula

(1.2) To( f(x) = [ Tolt. x, y) f(y)dy for t>0,

4
where

o 2% 5, . .
(13)  Taft,x,y)=—+-=-Y e "cosnxcosny if 4=[0,n],
n nn'—‘l
] (e — 2'4CZ .

(1.4) Folt, X, y) = ——eme & P¥ack jt 4 _ R

20\/ e

Analogously, 4-1 is the infinitesimal operator of the semigroup e To(r)
and u(t, x) = ¢ " T, (1) f(x) for smooth f is the solution of u, =(4--7)u.
Finally, A—1{-+ K is the infinitesimal operator for the semigroup S(t) such
that u(r, x) = S(r) f(x) satisfies

(1.5) u =(A—-I+K)u
forfe D,. Accerding to the well-known Phillips perturbation theorem, S(r) is
given by

(1.6) S() = § S, (1)
0

n=
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with

17 S =T and  S,(0f = | TE=9KS,-1(5)fds.
0

Thus instead of studing solutions of equations (0.1) we shall study the
behaviour of the semigroup {S(:)}.

The function u(tr) = S{t) / may be considered as a generalized solution of
equation (0.1) or (1.5). In fact, if fe D, (domain of A), then u(f) is a strong
solution of (1.5) and for sufficiently smooth & and f the formula u(t, x)
= S() f(x) gives a classicai solution of (0.1). We shall not use these facts in
the sequel and we mention them only in support of our desire to study the
semigroup {S(1)} instead of the original equation {0.1).

2. Stochastic semigroups. Let (X, @, u) be a o-finite measure space and
let ' =I1(X,Q, u denote the space of all integrable functions on X. A
linear mapping P: [! - ! is called a Markov operator if it satisfies the
following two conditions

ta) Pf=0 for f=0, feL,
{b) IPAl=Nfif for 20, feL.
where ||-|| denctes the norm in I,

From conditions (a) and (b) it is easy to derive that
(©) IPAI<ilfil  for every fe L.

A family of Markov operators ! P(1)},s, is called a stochastic semigroup
if
P(ty+t,; =P(t,)P(t;) and PO =1 for t;.t,20.

By D= D(X, Q, u) we denote the sct of all nonnegative normalized
elements of L, ie.

D={fel': {20 and |f| = 1.

The elements of D will be called densities.

Thus a semigroup | P(t)} is stochastic if D is invariant with respect to
{P(1)',5o- A densily f is called stationary if P} f = j for all t = Q.

A stochastic semigroup is called asymptotically stable if there exists
fo€ P such thai
(2.1) lim[{P(1) f—-fli=0 for all feD.

[ nde &

From (2.1 it follows that f, is unique and is a stationary density.

A ronnegative function he I! is called a fower function for {P(t)},5, if

Em[|(P() f—h)"|] =0 for every feD.
-

A lower tunction h is called nonrrivial if h = 0 and !|h]] > 0.
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Our main tool in proving the stability of the semigroup generated by
equation (1.5) will be the following result of A. Lasota [3] (see also Lasota—
Yorke [4]).

Tueorem 2.1 (Lasota). A stochastic semigroup | P(t)! is asymptotically
stable if and only if it has a nontrivial lower function.

Now let us come back to equation (1.5) or rather to the semigroup
S(t): I}(4)— L' (4) generated by the operator A—I+ K. Our first step in
studing {S(1)},»0 is the following

ProrosiTION 2.1. The semigroup {S(t)},>¢ is stochastic.

Proof. It is well known that the semigroup T7,(r) which gives the
solution of the heat equation

u, =ctu,,

is stochastic. Thus, in formula (1.6) all the terms S,(f) f are nonnegative for
f 20 and consequently S(¢)f =0 for f > 0.
Further for f > 0 we have

IS f1l = ZOIIS..(!)H

and

it

22 IS\l = JIT—9KS,-1(s) fllds = Je " KS,...(s) fllds
0

0
t
= [e 7 ISa-1(s) fll ds.
0

Since
ISo () Sl = IT(s) fll = e *[If1,

we obtain by induction from (2.2)

1,011 = e~ =11,
n

and consequently

IS (e) 1l = 1IA1.
This completes the proof.

3. Stability in the case of a bounded interval. The stability of the
semigroup {S(f)} in the case of the bounded interva! A is almost an

immediate consequence of the fact that infI'y(tq, x, y) is strictly positive for
xy
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to > 0. This fact may be obtained as a consequence of some general

properties of parabolic equations. For the convenience of further
considerations we give an independent proof.

ProposiTion 3.1. A function Iy(t, x,y) given by (1.3) satisfies the
inequality

.3

1 s :
j Fo(t.x, ) f(dy > ~(1=2 % &™) for feD([0, n),
0

where t' = max (¢, t,) and t; is the unique real number such that
D 2.2
1=2Y "',
n=1
Proof. Define

3.1 ug(t, x) = [Fo(t, x, y) f(y)dy for feL ([0, n]).

Using (1.3), we may rewrite u, in the form

a

(3.2 up(t, x) = 3ao+ Y. a,cos nxe~ "%

n=1

where

%, =%Jf(y)cosnydy, n=01,2,...
(1)

For fe D([O, n]) we have

2
|l < 11 (X
n

Consequently fr~ =~ (3.2) it follows that

1 22
(3.3) . ) 2——=Y e "%  for fe D([0, n]).
n nn=l
If f20is t:. ction such that f'(0) = f'(n) =0, then the function
us(t, x) exter.’ t = 0 by continuity is a classical solution of the mixed
problem
ou  ,0%u

Frig c” aZ’ u(t,0)=u(t,n)=0, u(0, x)=f(x).
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Thus, by the maximum principle,

(34) s (0, x) = ]O'ro(r, x9S (Mdy > 0

Since Iy(t, x, y) is-bounded for every fixed ¢ > 0, using an approximation

argument it is easy to verify the same inequality for every f >0,
fe ([0, =]). Combining (3.3) and (3.4), we obtain

up(r, x) 2 ma.x( —(1_2 Z -,.zcz:)

=—(1-2 Z “n%*)  for feD([O, 1))

?—ll'—

which completes the proof.

TueorReM 3.1. If A =[O0, n], then for every stochastic kernel k the
semigroup {S(1)) generated by equation (0.1) with the boundary condiiions
(0.2) is asympiotically stable.

Proof. From (1.6), (1.7) it follows that

(3.5) S f= Z S.(0) f = So(t) f+ Z S.(0) f

=500+ T(~7) T KS,-1(0) e

0

= So(t) f+ | T(t—=7)KS (1) fdr
0

= So() f+[e P Ty (1 =1} KS () fdr.
0

Now for a fixed fe D([0, n]) we define
g(t) =KS(@) f.

Since S(r) is a stochastic semigroup and K is a Markov operator, for each
fixed t the function g(t) is a density. From (3.5) it follows that

(3.6) SO =Se()f+)e " Tt-1)g()de.
0
By Proposition 3.1,
n 1 @ '
Tlt=1g@)(x) = [Fo(t—1. x, g (Ndy = —(1-2 } g n2tu-or),
0 n=)

where (r—1) = max(t—r, ¢;). Since So(1)f =e¢ ' To(t) f 2 0, from (3.6) we
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obtain

(37) S f > ﬂ—e“""(l—z Y e~ ) dr,
n=1
]

Now, taking in account that the integrand in (3.7) is nonnegative and
(t—t) 2 t—1, we have

=i
f‘

1 x . ,
S(fz - e”“I(1-23 e‘ﬂ"czu—r))dT
B‘ n= ]
'—'!
l : ~¢~9 < -.,,Zcz(‘_ﬂ
;;E ¢ (1-2) e Jdr  for t 2 1,.
n=1

o
0

Calculating the last integral and setting

. L, v 1 -n2c2
6(t) = ——e [] an’lnzc2+le ],

we obtain
l ol 1 —n2e
Swf=— l1—2 )3 it 2 "]+8(t)

It is evident that e(f)— 0 as t > ov and that (by definition of t,)

h=-'n-e"'f1--2i-- L -e"'"z‘l} "lrl-zi ‘"”"}:0
L n

Thus finally
SO f=h+e(

which implies by Lasota theorem the asymptotical stability of {S(¢)}. The
proof is completed.

4. Stability on the real line. In the case of unbounded interval it is
necessary to admit some additional assumption concerning the kernel k. In
general these conditions can be written in the form

j k(x, y)V(x)dx < aV(x)+8,

where V: R— R, is a Lapunov function. In order to simplify the argument
we shall restrict ourselves to the case V(x) = |x/[*.
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TheoreM 4.1. If A =(— o0, ) and k is a stochastic kernel satisfying the
inequality

(4.1) | k(x, DixI*dx < alyf+p for yeR

with nonnegative constants a, s, p (@ < 1, s > 0), then the semigroup {S(t)}
generated by equation (0.1) is asymptotically stable.

Proof. The semigroup {S(f)} is given by formulae (1.6), (1.7) with
42 Kf(= [ kix, nf(p)dy, T@Sf(x)= [ G, x—y)f(y)dy

and
1
2. /nt
We are going to evaluate the expectation of |x|* with respect to the
density S(t) f for feD(R). Thus we consider the integral

4.3) G(t, x—y)=e "Ty(t,x,y)=¢"" e~ x- Nk

(44) B = [ IS0 (dx
which could be written in the form

@) B0 = 3 £,
where )

(@) E()= ] 145,01/ (9dx.

The function E,(t) may be evaluated quite easily. Namely, we have

Eo() = _I Ix* T() f (x)dx = _I |xI* _I G(t, x—y) f(y)dydx.

Since s > 0, there exists positive constants y and 4 such that
4.7 IxI* < plx—yI*+ A1y
Thus

a a

Eo(t) <A _H |Y'G(t, x=y) f(y)dydx+y _II Ix—yFG(t, x=y) f(y)dydx

@® @ ®

=l_j |yPf (y)dy _I G(t, 2)dz+y | 12°G(¢t, 2)dz J f(dy.

- a
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Setting

(48) jlyl’f(y)dy=m,(ﬂ and j - f‘ e 4y = k,

and using the fact that f is a density, we obtain

@© . a 1
Eo(t) < Am(f) [ G(t, 2)dz+7y [ |2I°G(t, 2)dz = Am,(f) e "+ yk,e”" 1T

or, finally,

1
(4.9) Eo(t) < Coe {1 417),

where

= CO(.f) = max ['{msm’ '}’k,]

Now from (4.6) and (1.7) it follows that

E, (1) = ? lxl‘_‘[ T(t—-1)KS,- (1) f(x)drdx
0

— @

T (115 G =12 x—= 9 k(y. S s (0)f (D) dxdydzde.

0—-w
Again applying (4.7), we obtain
f{ ®
E,) <y[[fflx—yFG(t—1, x=y)k(y, 2)Sp-, (1) f (2)dxdydzdr +
0 -a

+ljm|yl’G(t-f, X=y)k(y, 2)Sp-1(7) f (z)dxdydzdc
0 -

=y ﬁ PP G(t—1, pk(y, 2)S,-, (1) f(z)dpdydzdr+

oe.—,-

+A4f j_{l FG(t—1, pk(y, 2)S,-1(7) f(2)dpdydzdr.

Q

Using (4.3) and (4.8), it 1s easy to verify that

® ® 1
[ Gu—t,pdp=e""% [ |p*G(t—1, pdp=k,e™* I (e—1)7".



74 D. Jama

From this and the assumptions concerning the kernel it follows that

a

E0) <7k | [ (=10 e 08, (0 f (s dz de +
0 -

A

1 ©
+if | e @z + ) S,- (1) S (2)dz dr.

¢ -
Further, since
a0
.L.n--l
S, (1) f(2)dz = g T
J nl()f()z (n—l)!e
— @
and
€L
{ (21°Sp.y (7) f(2)dz = E,_, (1),

the last inequality may be rewritten in the form

(4.10)
4 t
" L !
< __p—t wh — )2 —-(r—r)__ -t -t-or
E,,(t)\ﬂin!e +,A,f(t T)2 e (n_“!e dt+alfe E,_ (t)drt.
o 0

From (49) and (4.10) by an induction argument, it follows that every
function E,(t) (n =0, 1,..)) is bounded. Now write

3

(4.11) F.()= ) E.(0).

0

Using (4.10) and (4.11), we obtain

{ 1 t
4.12)  Fn() S Eo()+Pi+7k, f(1—1)7 e dr+ai (e " OF,_, (1)d
1} ]

t
< Eo()+o+aife " OF, _(t)dr,
0

where

T

-
0 =PAi+vk, [1Te dr,.
0

Since a < 1, we may choose 4 in (4.7) in such a way that x4 < 1. Setting
ai =q we may rewrite {4.12) in the form

(4.13) Fnit) SEo(D+0+qfe " P F,(v)dr.
0
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Inequahty (4.13) allows easily to evaluate F,(t). In fact, since the kernel
e “"7 is positive the functions F, are bounded by the solutions of the
corresponding differential equations [6]. Thus

Q
T+ (),

Ful) < 12

where

f
& () =Eo(h+qfe N1V E,(v)dr.

0

Using (4.5), (4.11) and passing to the limit as m— oo, we finally obtain

E() <

1 ().

Since E,(f) converges to zero as t— oo, it is evident that g, () has the same
property. Thus
E()< M=1+-"2—
1—q

for sufficiently large ¢ (say r = t,(f)). Finally, using (4.4), we have
(4.14) j' IXES(5) f(x)dx <M for t21,.

Having (4.14), we may use the Chebyshev inequality to evaluate the integral
of S(f} f(x). Namely, setting r = 2M and d = r'”* we have

[S(t)f(x)dx 1-E(tfr>=3% foret>1,.

Now we may easily find a lower function for {S(¢)}. In fact, from (1.6) and
(1.7) it follows that

S+ 2TMHS@) f(x)
and further by (4.2) and (4.3)

d

e-(x—)')2/4c2 S(I)f(y)d}’

e—l
St+1)f > ——
(+1)f > e r )
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The last inequality shows that

h(x) — l e—[l +c—12‘32+;1542]

4 /n

is a lower function for {S(t)} which according Theorem 2.1 completes the
proof.

Remark 4.1. Theorem 4.1 is not true for o == 1. To construct a counter-
example set

=4, kix,y=

—-fx—1)2 -
e~ =M¥2  and  f(x) = e~ *l2.

2n 2rn

In this case equation (0.1) has the form

(4.15) u (t, x) = du, (t, x)—u(t, x)+—,l= j e“"'”zlzu(t, Y dy
Jan

with the initial condition

1
(4.16) u(0, x) = e~ *22,

T

We have
[ k(e Ixdx < | Ix—ylk(x, y)dx+1yl [ k(x, y)dx =|yl+/2n,
and thus, condition (4.1) is satisfied fora =1,s=1and 8 = \/ 571; A simple

calculation based on formula (1.7) shows that the function
N 1

n! /an(t+n+1)

is a solution of the Cauchy problem (4.15), (4.16) or more precisely that
u(t, x) = S(t) f(x). It is evident that

e~ *H2utn+1)

u(t, x) = ioe‘

which shows that u(t, x) converges to zero as t —» oo uniformally in x. Thus
u(t, x) does not converge to any density as r-» oo and {S(f)} is not
asymptotically stable.

S. Properties of limiting functions. From Theorems 3.1 and 4.1 it follows
that the limiting function

(5.1) u, = limS(t) f for feD(4)

t —*a
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exists and is independent on f. The properties of u, can be found using the
following

ProposiTion 5.1. If the assumptions of Theorem 3.1 or 4.1 are satisfied.
then the functions u, given by (5.1) is the unique solution of
u=Au+Ku

belonging to D(4).
Proof. Passing to the limit as ¢t —» oo in the equality

St+0f =8OS/,

we obtain
u, = S(t)u,,

which shows that u, is the common fixed point of all transformation S(). It
is well known that the fixed points of a continuous semigroups are precisely
the zeros of its infinitesimal operator. Thus

(A—I+K)u, =0,

which completes the proof.

As an application of Proposition 5.1 consider again equation (4.15) and
denote by {S(¢)} the corresponding semigroup. Assume for a while that S(1)
is asymptotically stable. Then according to Proposition 5.1 the limiting
function u, satisfies

10%u 1 J 2
— 5 —u+ e 2y(y)dy =0.
20x? \/2_“

Consequently the Fourier transformation i, of u, is the solution of

[%(iw)z— 1 +L._e“"2’2]'7* =0.
\/ 2n

Since the expression in brackets is always different from zero, the last

equality implies that ui, as well as u, are identically equal to zero. This

contradicts to the definition of u, and shows once again that the semigroup

generated by equation (4.15) is not asymptotically stable.
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