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Abswmract. A simple method of the solving of the following system of functional equations
for measurable functions is presented:

Y ¥ Sy, wv)=Y glx, u)+ Y h(y, v)+A[ Y glxi, w)]-[ X A(y;, v)].
i=1 =1 =1

i=1j=1 i=1
where f, g, h: [0, 1]x[0,1]J—> R, 1 is a real constant (#0) and (x;,..., %), (J1,--- Vm)

(uy, ..., 4,), (vy,...,v,) are systems of non-negative numbers such that ) x;= ) y; =1,

i=1 j=1
n

Yu<i, Y v;<1 and n, m=2,3. The method consists in reducing the above system of
i=1 Ji=1

equations to the Pexider equation on [0, 1] x [0, 1]. As a consequence, a generalization of the
result given in [3], [9] and [12] and, in application to the information theory, axiomatic
characterizations of some non-additive information measures (non-additive entropy, directed
divergence, inaccuracy) are obtained.

Introduction. The use of a given measure in the information theory can
be mathematically justified by deriving it from an adequate system of
postulates (axioms) describing the main properties of the theory. This often
leads to functional equations of a special type, the solving of which may be
interesting in itself. The equations have been usually solved for various
classes of functions and by using various methods. There exists a large
bibliography concerning this subject (cf. [2] and [8]).

In this paper, we shall consider functional equations in the domains

Anz {P=(p[’--"pn): p,?O fOf i=ly"~7ny Z pl':l)

i=1
and

A,=P=(py,...,p): pi=0fori=1,...n Y p;<1},

i=1

where n=2, 3, ...
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We shall namely deal with the equations:

(L) Y Y fxy) =Y gx)+ Y hyp+il Y g [Y h(y)]
i=1 j=1 i=1 j=1

i=lj=1

and

(12) Y ¥ f(xiyuv)

i=1 j=1

=Y g0, u)+ Y h(y;, v)+A[ Y g0xi, w)]-[ X h(y;, v))],
i=1 i=1 i=1 i=1

where X =(x,, ..., x)€d,, Y=, ..., V€dpm, U=y, ...,u)ed, V
=y, ..., V) €d, for n,m=2,3,..., the functions f, g, h are real valued,
defined on I =[0, 1] and I x I, respectively, and A is a real constant.

The case 4 =0 has been considered in several papers, first by T. W.
Chaundy, J. B. Mc Leod [4] for equations (1.1) with f =g = h and by PL
Kannappan [7] for equations (1.2) with f=g = h.

The case A # 0 was studied by M. Behara and P. Nath [3], D. P Mittal
[9] and B. D. Sharma and 1. J. Taneja [12] (there are some inaccuracies in
the results given in those papers — see Remark in Section 3). Equations (1.1)
were dealt with in [3] and [12] (for f =g = h) and in [9] (for arbitrary f, g,
h) and equations (1.1) (for f=g = h) in [12]. In each of the three papers, the
equations are solved in the class of continuous functions and a common
method is used: the reduction of (1.1) or (1.2) to the Cauchy or related
equations by checking suitable equations for integers and rational numbers
and then by applying continuity. It is worth noting that equations (1.1), (1.2)
were considered for all n, m=2,3, ... in [3], [9], [12].

The latter case will be considered also in this paper and therefore
equations (1.1), (1.2) will be always meant with a constant 4 ## 0 throughout
the sequel. We shall extend the results in [3], [9], [12] by giving all
measurable solutions of (1.1) and (1.2). Moreover, we shall show that systems
(1.1) and (1.2) of equations are equivalent to the systems of equations:

13 Y Y Fay)=[Y 6]-[X Hopl (Xed, Yea,)
1 i=1

i=1j=1 i=

and

(14) 3 % ) =3 60 w] T3 HOp 0))

i=1j
(Xed4,, Yed,, Ued,, Ved,),
respectively, as well as to the Pexider equations:

(1.5) Fxy))=G(x)-H(y) (x,yel)
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and
(1.6) F(xy,uv) =G(x,u)-H(y,v) (x,y,u,vel),

respectively. Systems (1.1}1.4) can be considered for all n, m=2,3,... or
only for n, m =2, 3 and both the cases are equivalent. So the problem is
reduced to the solving of the Pexider equation on [/ and on [IxI,
respectively.

The proof of equivalence and the solving of the Pexider equation will be
given (in Section 2) first for the two-dimensional case and later, as a
consequence, for the other one (see Section 3). The method of the proof
consists in using suitable substitutions and a lemma, based on the result of Z.
Daroczy and L. Losonczi [6] on additive measurable functions on a closed
interval.

In particular, the solutions of (1.1) and (1.2) for f=¢g =h lead to
characterizations of the following non-additive information measures
considered in information theory (see Section 4):

(a) the non-additive entropy of degree a,

(b) the directed divergence of type 2,

(c) the inaccurancy of type 1+8.

Axiomatic characterizations ol non-additive information measures by
using other types of functional equations were given by several authors, e.g.

by Z. Daroczy [5], P. N. Rathie and Pl. Kannappan [10] and B. D. Sharma
[11]. For more references and details see [2] and [8].

2. The main theorem. We will use the notation described in Section 1:
A, A X =(xy, ..., X); Y=, ..., yn) etc.; I =[0,1]. Moreover, let
I1° =(0, 1) and R — the set of all real numbers. By a measurable function f:
I xI - R, we will mean a function which is measurable with respect to each
of its variables. :

We start with the following lemma:

LEmMA. Let [ I xI — R be a measurable function such thai
(2.1) | Z fxi,u)=0
i=1
for all Xed,, Ued, and n=2,3. Then

(2.2) fx,w)=0 for x,uel.

Proof. By substituting X =(x,y,l—x—y), U=(u,v, l—u—v)ed,
and X =(x+y, 1-x—y), U =(u+v, 1 —u—v)ed, in (2.1) and subtracting
the identities obtained, we get

(2.3) fx+y, utv)=f(x, w)+f(y, v),

where x, y,u,v, x+y, u+vel. Hence the functions ¢, (x)=f(x,0) and

4 — Annales Polonici Mathematici XLIV. 3.
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¢,(x) =f(0, x) are additive on I, 1€,

(24) ei(x+y) =@ (x)+e;(y) if x,py, x+yel
for i =1, 2. On the other hand, the substituting y = u = 0 in (2.3) yields
(2.5) | f(x,0) =@ (X)+0,(0)  (x,vel).

Since (2.4) implies ¢;(x) = x¢,;(0) for xeI, by Z. Daroczy and L. Losonczi
result [6] (see also [2], p. 8), we obtain from (2.5) the equality

(2.6) S(x,u)y=x(1,0+y (0, 1) (x, uel).
Now, put X =(1,0), U=(0,0) and X =(1,0), U =(0, 1) in (2.1):
(2.7 S(LO)+f(0,00=0=/(1,0+S(1, 0).

Since letting X =(x,1—x), U=(u, 1—u)ed, and X =(x, 1—-x,0),
U=(u,1-u,0€e€d4; in (2.1) gives f(0,0)=0, identities (2.7) yield
f(1,0 =f(0,1) =0 and thus (2.6) turns into (2.2). The proof is completed.

In the following theorem, functions involved in equations are expressed
by means of the function I'(x, y) on I xI which is given by one of the
formulae (the symbol x* for x =0 means O if x # 0 and 1 if a = 0):

(28) TI'(x,u =x*u (x, uel);
(29) 'x,u=x" fu>0;, I'x,0=0 (x, uel);
(2100 T(x,wy=u* x>0, TO,u=0 (x, uel);
(211) I'(x,u) =1 if xu >0, I'(x,uy=0 if xu =0 (x, uel);
212) I'(x,u)=0 fu<l; I'(x,1)=x" (x, uel);
(213) I'(x,u)=0 ifx<l; ITlu=u (x, uel);
(2.14) I'(x,u)=0 if u<l;

rx,1)=1 if x>0, ro,1)=0 (x, uel);
(2.15) I'(x,u)=0 if x<1;

ra,u =1 fu>0, Ir{,0=0 (x, uel);
(216) Ir(x,u)=0 if xu<1; I, 1)=1 (x, uel);
217 I'(x, u) ' arbitrary measurable (x, uel.

THeOREM 1. Ler f, g, h, F, G, H: I xI - R be measurable functions
connected by the identities:

(218)  f(x,uw)=A '"[F(x,u)—x], g(x,u)=A"1[G(x, u)—x],
hix,w)=A"'"[H(x,u)—x] (x,uel),
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where Ac R, A # 0. The following conditions are equivalent:
(D) f, g, h satisfy (1.2) for n,m=2,3, ...;
(D) f, g, h satisfy (1.2) for n,m =2, 3;
(Il1) F, G, H satisfy (1.4) for n,m=2,3,...;
(IV) F, G, H satisfy (14) for n,m =2, 3;
(V) F, G, H satisfy (1.6);
(VD) f, g, h are of the following form on I xI:

(2.19)  f(x,u) =A"'[abl(x,w)—x], ¢g(x,u)=Ai"'[al(x, u)—x],
h(x,u) =A"'[bl(x, u)—x];
(VI) F, G, H are of the following form on I xI:

(220) F(x,u)=abl'(x,u), G(x,u)=al(x,u), H(x,u)=>bI(x,u),

where I' in (2.19) and (2.20) is given by one of formulae (2.8)«2.17) and a, b are

arbitrary real numbers; in case (2.17) one of constants a, b equals to 0.

In particular, all the continuous solutions of (1.2) are of the form (2.19) on
I xI, where 1° I'(x, u) is given by formula (2.8) (for a, p = 0) and constants
a, be R are arbitrary or 2° I'(x, u) is arbitrary continuous and one of constants
a, bis O .

Proof. In view of (2.18), we have (I) < (III), (II) <= (IV) and (VI) <(VII).
One can easily check that the functions f, g, h given by formulae (2.19); (2.8)-
(2.17) satisfy equations (1.2) for all n, m =2, 3, ... or, equivalently, that the
functions F, G, H given by (2.20); (2.8)(2.17) satisfy equations (1.4) for all
n,m=2,3,... Since, moreover, (I) implies (II) and (III) implies (IV), 1t
remains only to show the two implications: (IV)=(V) and (V)= (VII).

To prove the first one, define for arbitrarily fixed Xed,, Ued,
(n = 2, 3) the function

i=1

Axu(.0) = ¥ Flxy, wo)= 3 Glx, w) HO. 0
for y, vel. Because of (1.3), we have
E Ax(0.0) =0
for any Yed,, VeAd, (m=2,3) and hence

(221 Axe(y, ) =0 (y,vel),

in view of the lemma. In turn, let

B,,(x, u) = F(xy, uw)—G(x,u)-H(y,v) (x,uel),
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where y, vel. Then (2.21) can be written as
Z Byv(xh ui) =0
i=1

for any Xed,, Ued, (n =2, 3). Again by the lemma, we have
B,,(x,u)=0 (x,uel),

1e., (1.6) holds, as desired.

Now, we will show the second implication: (V)= (VII). First denote:
Fi,(x)=F(x, 1), F,(x)=F(1, x), G,(x) =G(x,1), G,(x)=G(1, x), H,(x)
= H(x, 1) and H,(x) = H(1, x) for xel. Owing to (1.6), we have

(2.22) Fx,y=G(x,w)-H(,1)=G(, 1)-H(x,u (x,uecl);

(2.23) ] F(x,u)=G,(x)-Hy(u) (x,uel)
and

(2.24) Fi(xy) = G;(x)-H;(y) (x,y€el)
fori=1, 2.

It is not difficult to reduce equation (2.24) to the Cauchy equation on
[0, o) and, consequently, to obtain the following general measurable
solutions of (2.24) on I° for i =1, 2:

(2.25) F,(x) = abx®, G;(x)=ax*, H,(x)=bx" (xel,
where a, b, a are arbitrary real num‘bers, depending on i =1, 2;
(2.26) F:(x) =G;(x) =0, H;(x) arbitrary (xel9;
(2.27) Fi(x) = Hi(x) = 0, G;(x) arbitrary (xel°)

for i =1, 2 (cf. [1], p. 142-145).
Combining (2.25)+2.27) with the identities: -

F;(0) = G;(0)- Hi(x) = G;(x)  H;(0) (xel)
and
Fi(x) = G;(1)- H;(x) = G;(x)- H; (1) (xel),

follbwing by (2.24j, one can easily find all the measurable solutions of (2.24)
onl fori=1,2:

(2.28)  F;(x) = ab(x), . G;(x) = al'(x), H;(x)=bI'(x) (xel),
where

(2.29) rx=xt (xel);
(2.30) rx)=1 if x>0, TI'0)=0 (xel);
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(2.31) rx=0 ifx<1; r)=1 (xel);
(2.32) I'(x) arbitrary measurable (xel);

I'(x) and constants a, b, « depend on i = 1, 2; for (2.29)(2.31) constants a, b
are arbitrary, for (2.32) one of them is O.

Substituting in (2.23) functions G,(x), H,(u) of the form (2.25); (2.29)
(2.31), we see that each non-trivial F(x, u) is of the form:

F(x,u)=abl(x,u) (x,uel),

where a, b # 0 and I'(x, u) is a function given by one of formulae (2.8)«2.16).

Now, relations (2.22) allow us to determine the functions G(x, u) and
H(x,u) as in formulae (2.20); (2.8){2.17) and the proof of implication
(V)= (VII), as well as of the theorem, is finished.

Remark. Formulae (2.8)«(2.16) can be expressed by one formula, if the
following notation is adopted: 1, f =,

0 if xe[0, 1),
(1o N)(x) = {[(1) f oo

and

0 if x=0, a#0,
i if x=0, a=0
for i =0, 1. Then the formula

x* if xe(0, 1], 2€R,

I'(x,u) =105(x) 10 () (x,uel)
for i, j, k, =0, 1 and arbitrary a, f€ R covers all cases (2.8)12.16).

3. Corollaries. From Theorem 1, we will deduce its one-dimensional
analogue:

THEOREM 2. Let f, g, h, F, G, H: I — R be measurable functions connected
by the identities:

F(x)—x _G{x)—x

H(x)—x
;. s g(x) j. ’ - .

A

G5 fx= h(x) = (xel,

where AeR, A # 0. The following conditions are equivalent:
(i) f, g, h satisfy equations (1.1) for n,m=2,3, ...;
(m) f, g, h satisfy equations (1.1) for n,m =2, 3;
(i) F, G, H satisfy equations (1.3) for n, m = 2,3,...;
(iv) F, G, H satisfy equations (1.3) for mym =2, 3;
(v) F, G, H satisfy equation (1.5);
(vi) f, g, h are of the following form on I:
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(32) f) = abF(x)—x, g(0) = aI"(x)—-x, h(x) = bI'(x)— x :
A A A
(vii) F, G, H are of the following form on I:
(3.3) F(x) =abl'(x), G(x)=al(x), H(x)=>bl(x),

where I'(x) in (3.2) and (3.3) is given by one of formulae (2.29)H2.32) and a, b
are arbitrary real numbers; in case (2.32) one of them equals to 0.

In particular, all continuous solutions of (1.1) are of the form (3.2) on I,
where 1° I'(x) is given by (2.29) (for a = 0) and constants a, be R are arbitrary
or 2 I'(x) is arbitrary continuous and one of constants a, b is 0 (cf. [9]).

Proof. The functions f; g, h, F, G, H: I xI — R defined by the formulae:

S, uy =f(x), glx,u) =g(x), h(x,u) =h(x)

(34) F(x,uy=F(x), G(x,uy=G(x), H(x,u)=H(x)

(x,uel
are measurable and if any of conditions (i}«(vii) is satisfied by f, g, h or F, G,
H, respectively, then the suitable condition from among (I}« VII) holds for f]
g, hor F, G, H, respectively. The converse relation holds, due to (3.4) and the
following substitutions u; =v; (i=1,...,n;j=1,...,m) in (1.2) and (1.4);
u=v=01In (1.6); u =1 in (2.19) and (2.20).

Therefore the assertion follows, by virtue of Theorem 1.

Immediately from Theorems 1 and 2, we obtain

CoROLLARY 1. All measurable solutions of (1.2) withf=g=h (for n=m
= 2, 3 or, equivalently, for n,m = 2,3, ...) are of the form

' (x, uy—x

(3.9) f(x, u) = 1

(x, uel,

where I'(x, u) is given by one of formulae (2.8}(2.16) or by
(3.6) Fx,uy=0 (x,uel).

In particular, all continuous solutions of (1.2) with f=g = h are of the
form (3.5) where I'(x, u) is given by (2.8) (for a, f = 0) or by (3.6) (cf. [12]).

CoRroLLARY 2. All measurable solutions of (1.1) with f=g =h (for n, m
= 2, 3 or, equivalently, for n,m = 2,3, ...) are of the form

3.7 f(x)=

rx)—x
1 (xel),

where I'(x) is given by one of formulae (2.29)«2.31) or by
(3.8) rx=0 (xel.
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In particular, all continuous solutions of (1.1) with f =g = h are of the
form (3.7), where I'(x) is given by (2.29) (for a = 0) or by (3.8) (cf. [3] and
[12]). :

Remark. Let us compare the results obtained for continuous solutions
with those given in [3], [9] and [12].

In [3], the general continuous solutions of (1.1) for f=g =h are
discussed occasionally (see remarks after the proof of Theorem 3.1 in [3]).
The list of solutions is not complete: the trivial solution, i.e., of the form (3.7)
with I'(t) = 0, is omitted. Moreover, there is not clearly written that in the
non-trivial solution (i.e., with I'(¢) of the form (2.29)) the parameter a is non-
negative.

In [12], the range of parameters, describing non-trivial continuous sol-
utions of (1.1) for f=g = h and of (1.2) for f =g = h, is not given properly.
Namely, the assumption that the parameters a, § in formulae (2.29) and (2.8)
are non-negative is omitted; on the other hand, the assumptions a # 1 in
(229) and a#1, B#1 in (2.8) are superfluous and eliminate some of
solutions (see [12], Theorems 1 and 2).

In [9], the continuous solutions of (1.1) are the same as in the second
part of Theorem 2. However, it is not explained (for 0 < f < 1) what values
at the point 0 are taken by the solutions given in Theorem 2 in [9], p. 33:

f)=Fabx"1=1), gl =T@d =1, k) =SB 1),

4. Applications to information theory. Now, we will derive from
Corollaries 1 and 2 some characterizations of the following non-additive
information measures:

(a) the non-additive entropy of degree B with B %1 (see [5]; [2],
p- 184): ‘

(4.1) H,(P)=(2'""=1)""(X pf-1);
i=1
(b) the directed divergence of type a with a # 1:

(4.2 D,(P, Q) = (r-'—l)"(i_il Pl 1)
(c) the inaccuracy of type 1+ f with g > 0:
(43) (P, Q) =27 =1 (.--i. piaf 1)
where P=(p,,...,p,) 1s a complete probability distribﬁtion and

Q=(qy,-...,q,) is a probability distribution, possibly incomplete (ie.,
Ped, QeAdl) for n=2,3,... The convention O* =0 for « <0 and 0° =1,
adopted in Section 2, is used here. '
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- For probability distributions

P=(pl,~--a pn)EA;r and Q=(ql9"'s qm)EA:m
let

PxQ =(piqi, ... PrGm ---» Pad1s -5 Pnm)-
Of course, if Ped,, Qed,, then PxQe4,., and if PeAd,, QeA,, then
PxQed,,, (n,m=2,3...).
THeOREM 3. If functions H,(P) defined for Pe A, satisfy the postulates:
(i) The Non-additivity Postulate:

(4.4) H,n(P*Q)=H,(P)+H,(Q)+(2' =) H,(P)- H,(Q)
for Ped,, QeA,, (n,m=2,3), where 8 is a constant different from 0 and 1;

(1) The Sum Postulate:

(4.5) H,(P)=Y f(p)
i=1 .

for Ped, (n=2,3,...), where f is a measurable function such that:
(iit) The Normalizing Postulate:
(4.6) f@) =1
then H,(P) represent the non-additive entropy of degree B. :
Conversely, the functions H,(P) of the form (4.1) satisfy postulates (1){iii)
for all n=2,3, ...
Proof. From (44) and (4.5), we obtain system (1.1) of functional
equations for Xed,, Yed, (n,m=2,3) and A =21"F—1 #0.
By Corollary 2, one of measurable solutions of (1.1) is of the form (3.7);
(2.29):
x*—x

A

where a is an arbitrary real constant; from (4.6), it follows that « = . The
other solutions ((3.7); (2.30)«2.31) and (3.8)) are eliminated by Normalizing
Postulate.

Thus postulates (i)iii) tmply (4.1). One can easily check that H,(P)
given by (4.1) fulfil postulates (iHui) for all n,m=2, 3, ...

THeoreM 4. If functions D,(P, Q) defined for PeA,, Qe A, satisfy the
postulates:

. (I) The Non-additive Postulate:

47 Duyu(Py % P;, Q1 %Q5)
= Dn(Ph Q1)+Dm(P2a Q2)+(2a—l_l)Dn(Pl’ Ql)'Dm(PZ’ QZ)

S = (xel,
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for Pyed,, P,ed,, Q,€4d,, Q,cd, (n,m=2,3), where a is a constant
different from 0 and 1;

(II) The Sum Postulate:
4.8) D,(P,Q)= 3 f(pi» q)
i=1

for Ped,, Qed, (n=2,3,...), where [ is a measurable function such that:
(III) The Normalizing Postulate:

(4.9) f, =1, fG, 9=

then D, (P, Q) represent the directed divergence of type a for n=2,3, ...

Conversely, the functions D, (P, Q) of the form (4.2) satisfy postulates (I}~
(ITII) for all n=2, 3, ...

THEOREM 5. If functions I,(P, Q) defined for Pe4d,, QeA, satisfy the
postulates:

(I') The Non-additive Postulate:
(4100 In(Py %P3, 0, xQ))
= In(Pl’ Ql)+1m(P29 Q2)+(2_ﬂ—1)1n(Pls Ql).lm(PZ’ QZ)

for P,ed,, P,ed,, Q,€4,, Q,€A, (n,m=23), where B is a positive
constant;

(I The Sum Postulate:
(4.11) I(P,Q)=Y f(piq)
i=1

for Ped,, Qed, (n=2,3,...), where [ is a measurable function such that:
(HI') The Normalizing Postulate:

(4.12) f4,5=1 fGy=1%

then 1,(P, Q) represent the inaccuracy of type 1+8 for n=2,3, ...

Conversely, the functions 1,(P, Q) of the form (4.3) satisfy postulates (I'y-
(IIT") for all n=2, 3, ...

Proof of Theorems 4 and 5. From postulates (I), (IT) and (I'), (II'),
we obtain systems (1.2) of functional equations for Xed4,, Yed,, Ued,,
Ved, (n,m=2,3) with A=2*"1~1 and A= 2"#—1, respectively.

By Corollary 1, measurable solutions can be given by formulae (3.5);
(2.8), i.e

xTyP —x

(4'13) f(x, .V)=2¢_1__1

(x, yel)
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and

Pl
(414) f(x, y) = F——I— (X, yEI),
respectively.

The remain solutions of (1.2), given by (3.5); (2.9)(2.16) and (3.6), do not
fulfil Normalizing Postulates (III), (III').

By using those postulates in (4.13) and (4.14), we get x =a, f = 1—a in
(4.13) and @ = 1, B = B in (4.14). In view of the Sum Postulates, the functions
D,(P, Q) and I,(P, Q) of the form (4.2) and (4.3), are obtained as a result of
postulates (I)-(III) and (I')—(IIl'), respectively.

On the other hand, the functions of the form (4.2) and (4.3) satisfy
postulates (I)(III) and (I'){1II), respectively, for all n =2, 3, ... -
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