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An integral formula for the derivatives of solutions
of certain elliptic systems

by H. ReNELT (Halle an der Saale)

Abstract. As was shown by Polozhii and Shabat, the solutions f of elliptic systems

Sy = vf,+u/f, satisly a generalized Cauchy integral formula. Here we will show that the derivatives
J,» too, satisfy an integral formula. This formula, announced already in [6], rests upon the notion of
generalized (— 1)th powers and represents an astonishing analogue to the classical Cauchy integral
formula for the derivative ol an analytic function. The proof rests on an integral relation for
generalized powers, which is of independent interest and which likewise represents a generalization
ol a classical relation,

1. Introduction and main results. The Cauchy integral formula for analytic
functions has a counterpart for (v, y)-solutions which was shown in [4] and
[7], also cf. [5], § V.1. Here a (v, p)-solution means a function continuous in
a domain G, possessing generalized derivatives f, and f, in L,,,.(G) and
satisfying the elliptic system

fs =vf,+u7, ae in G.
Such a system is called here a (v, p)-system, with v, u in L,(G) and
vl + ||l iy < 1.
As communicated in [6] without proof, the Cauchy integral formula for
the derivative which may be written in the form

() = — L
/@)= mgf(C)d(C_z)

has also its analogue for (v, p)-solutions. This points out once more a deep and
unexpected similarity between analytic functions and (v, u)-solutions.

The proposed integral formula rests upon the notion of generalized
powers of (v, u)-solutions. Effectively, only the (—1)th power occurs in this
formula. However, considering only generalized (— 1)th powers would not be
very natural. Moreover, possible further developments in this direction, as
generalized Taylor and Laurent expansions and a certain kind of generalized
higher derivatives, require nth powers with n an arbitrary integer.
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On account of the Bers—Nirenberg representation theorem, the notions of
zero and pole of nth order of a (v, p)-solution at a point z, are well defined, also
with z, = oo (cf. e.g. [5], IIL.1). For brevity, we shall call z, a point of order n of
a (v, p)-solution fin G\{z,}, z,€ G, G a domain, if either n is a positive integer
and z, is a zero of order n of f, or n is a negative integer and z, is a pole of
order —n of f; the (trivial) case n =0 is not considered.

In defining generalized powers, asymptotic expansions of (v, u)-solutions
at points of order n play a crucial role, and that again requires additional
assumptions on the coeflicients v and pu.

DEFINITION 1. Let D be any subset of the finite plane C and p any real
number > 1. By HL (D) we denote the set of all functions f defined and
(Lebesgue-) measurable in C, satisfying

{) f(zg—i(z°) (as a function of z) for every z,eD
; :

and

@ Wl =Wl +sop{ PELED zoenf<co,

Here L, always means L,(C), also with p = 0. The condition (i) seems to
appear for the first time in [2].

We say that fe HL ({c0}) if f is defined and finite on C = CuU{e0} and
J(1/z) —f(w)eHLp({O}) (the latter is the same asf(l/z)eHLp({O})). S N, (o
means |igllaL,qop With g(z) = f(1/z).

Until further notice we suppose that
vl +]u@) < const =k <1 VzeC, and
v, pue HL ({zo}) " HL ,({o0}),

where z, is a fixed point in C, and p > 2.

Note that the condition for v, 4 to belong to HL,({z,}) is weaker than
Hélder continuity at z,.

Concerning asymptotic expansions we have the following.

THEOREM 1 ([5], Sect. III). (I) Let z, # o0 be a point of order n of the
(v, n)-solution w(z). Then w(z) admits the asymptotic expansion

(1)

@) )= c(z—zo+bz~z0))'~bé(z— 20 +B(z—20))' + O(lz — zo|"*)
at zy with some constants ¢ #0, o > 0 and
(i1) b=w(x), b=w),
x = —u(zo) (1 +1p(zol* —v(zo)I?),
0 = v(zo)/(1 +v(20)f* — |u(zo)?),
where w(x) = 2x/(1 +m), b <k, |b] <k, Vz,eC, with k defined in (1).
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(I) Let oo be a point of order n of the (v, p)-solution w(z). Then w(z) has the
asymptotic expansion

(ii1) w(z) = c(z+b2)""—bé(Z+52) "+ 0(z]"""%
at co with some constants ¢ # 0, « > 0, and b, b as in (ii) with z, replaced by .

For generalized powers we have

THEOREM 2 [6]. Let n # O be any integer and ¢ # 0 any complex number.
Under the assumption (1) there exists a unique (v, p)-solution w(z) in C\{z,} with
the properties:

(i) w(z) has the asymptotic expansion

W(z) = c(z—zo+b(z~2g)) —bi(z— 29 + 5z~ 25))" + Oz — 24 "*9),

at z, with b, b, o as in Theorem 1, and
(i) co is a point of order —n of w(z).

This unique w(z) is called a generalized n-th power and denoted by
[c(z—2zo)" v,y OF simply by [c(z—z,)"] if no misunderstanding is possible.

Note that (i) means that z, is a point of order n of w(z). In the special case
v =0, x4 Hélder continuous, such generalized powers have been considered in
[1].

Now we are able to formulate our main result (announced in [6]).

THEOREM 3. Let G be a simply connected domain < C, v, ue HL,(G)
NHL,({0}), p>2, 2)|+|u@)}<const=k <1, VzeC, and let f be
a (v, u) -solution in G. With the constants b, b corresponding to 2, v, u as in
Theorem 1(ii), we have

1 b|?
Re{-mg f(z)d[c(z—zp)—l](v,p)} nglz Re {f,(zo)(c +cbb)}

Jor any positively oriented rectifiable Jordan curve C within G and any z,
inside C.

N.B. The formula given in [6], Theorem 3.2, contains two misprints.
By putting c+¢&bb = 1 and = i, respectively, we obtain from Theorem 3

— -1
J2(zo) = Re2—1,§f(z)d[c, (z—20)" 'y.p+ilm 2—ng§f(z)d[c2(z—-zo)' o, -
c

with ¢, = (1=b0)/(1—1b|?), ¢, = (1+bB)/(1—|bt?).

The following theorem could be seen as a deeper reason for Theorem 3. In
any case, it represents a surprising result on generalized powers, of independent
interest, Moreover, it might lead to a reasonable theory of generalized Taylor
and Laurent expansions as well as to a residue theory for (v, u)-solutions.

THEOREM 4. Let v, u satisfy the assumptions of Theorem 3, and let n, j be any
nonzero integers. Then
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Re 5§ (a(c =2 T 16— 2o} o = (1= Ib1)j85, - Re(ac)
Ti ¢

with C as in Theorem 3 and b as in Theorem 1 (ii); 3, ., denotes the Kronecker
symbol.

(Of course, Theorem 4 also remains valid if either n or j or both are zero,
the O-th power being understood as a constant.)
Obviously, Theorem 4 is a generalization of the classical relation

1 dz
2rit(z—zg)" ™
The proofs of Theorems 3 and 4 (given in Sect. 4 below) require
asymptotic expansions for the derivatives of (v, u)-solutions (Sect. 2) and some
approximation considerations (Sect. 3).
2. Asymptotic expansions for the derivatives of (v, u)-solutions

THEOREM 5. In addition to (1), let v, u possess Hdélder continuous partial
derivatives with respect to z and Z in a whole neighbourhood U (z,) of z,, and let
f(2) be a (v, p)-solution in U(zo)\{z,} having an asymptotic expansion

f2) = c(z—zo+b(z_—_zo))"—bc‘(;:_z;+5(z—zo))”+0(lz—zo|"""')

at z,, with ¢,b, b, n,a as in Theorem 1. Then f,(z) admits the asymptotic
expansion

[2) =nc(z—zo+b(z—z,)" "' —nbeb(z—zo+b(z—z))" P +0(lz— 2z, "1 *%)
at zy with o' > 0.

Proof. By means of affine transformations (in the z- and f-planes, cf. [5],
§11.3) we can teduce the assertion to the case when z, =0, v(0) = u(0)=0,
v, ue HL ({oo0}), v, 4 and their partial derivatives with respect to z and Z are
Hoélder continuous in a neighbourhood U(0),

f(2) = cz"+0(z"*?)
and
fi(2) = nez" " 4+Q(zI"***), o >0.

In view of well-known smoothness results, our conditions on v, u imply
that every (v, p)-solution f in U(0)\{0} is twice continuously differentiable
there, and the derivative f,(z) = h(z) satisfies the elliptic system

v Vi — V,up, i+ uv,
= h,+ hy+——=h+—2——2h
e e N R T

in U(0)\{0}. Due to the representation theorem we then have

(2) hs
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3) [.2) = h(z) = ¢PFoy(z) in UO)\{0}

where s(z) is bounded and Hélder continuous in C, and ¥(z) can be chosen to
be a schlicht solution in C of

Xe= A" X,
with

1 h .
]_IM (V"‘#‘-’#) ac, 1 U(O), 1 =0 otherwise in C.
Moreover, x(z) is conformal in a neighbourhood of infinity, with a Laurent
expansion

a,  a,
Z)=z+4+—+—=4 ..,
x(2) T+

there, and F is analytic in x(U(0)\{0}), in particular it is analytic in some
punctured disk {0 < |x—x(0)] < R}. A(z) is equivalent to a function from
HL,({0}), for

[v]

1A(2)] < WVl +|vyl)) = —— < v|+ ae. in C.
Hence, by Theorem 1, x(z) admits an expansion
4) 1(2) = x(0)+dz+0(z|* **) at z=0,

with constants 4 # 0, a* > 0.

Next we have to show that y(0) is not an essential singularity of F. It is
clear that F is even analytic at x(0) if n is positive. Now let n be negative. Since
s(z) is bounded in C, there exist positive constants K,, K, such that

() K12 < |Fox(@) € Kyl fe(z)l  Vze U(O\{0}.
Consider the annulus

G' ={r <lz] <ro} € UON{O}, ro=3r.
Then Lemma 1.3.22 from [5] gives
(6) max{|Fox(z)l: |z| = 2r} < Kr %2~ 9||FoyllL,@,

where g is a constant satisfying 1 < g < 2 as well as k'C(g/(g—1)) < 1 with ¥
being a bound <1 for |v|+|y| in U(0) and C(}) the norm of the Hilbert
transformation in L, (C(/)— 1 as [—2); K denotes a constant depending only
on k', g and sup{|z]: zeU(0)}.

We want an estimate

(7) max {|[Fox(z)|: |z| = 2r} < const-(2r)""

4 ~ Annanles Polonici Math. 54.1



50 H. Renelt

with 7 a real constant. To this end we have to estimate the L -norm of Foy on
the right-hand side of (6). By (5) we first have

(8) IFoxllsie) < Kallf:@lleye
and by the Holder inequality
©) 1o @Mleer < 1fo@lea@n R —rA)T2 9%,

f(2) itself, of course, also admits a representation according to the
representation theorem, namely

J(2) = Hoo(2)

with ¢ being a quasiconformal mapping of U(0), ¢(0) = 0, and H analytic in
@(U(0)\{0}). Since z, = 0 is a point of order n of f, ¢(0) = 0 is a point of order
n of H. Consequently there exists a special representation

(10) @) =(e@@)

where ¢ is a quasiconformal mapping of some neighbourhood U’(0) of z, = 0.
The r, of G' may be chosen in such a way that U'(0) = {|z| < ro}. Then

(11) ({11 do. = [ [n*lo ()" Io. () do,

2

n -
e 1] lof = do,
@(G")
Because ¢ and its inverse, being quasiconformal mappings, are in particular
Haolder continuous at z = 0, there exist positive constants D,, D,, y, 8, such
that

<

D,lzl” < |¢(2)| < D,|z|® when ze U'(0).
Thus
(12) {Dyr" <ol < D,r3} 2 0(G).

The estimate (7) is now a consequence of (5), (6), (8), (9), (11) and (12).
Furthermore, since also x(z) is Holder continuous at z = 0, (7) implies that x(0)
cannot be an essential singularity of F, and this fact, along with (4), means that
f.(z) in any case has an expansion

(13) f.2) = AZ/+0(z/!*%)  in UQO)\{0},

with 4 #0, o/ > 0, j an integer. It still remains to prove that 4 = nc and
j=n—1. For this we put m+1=min{j, n—1}. Then the function g(z)
=f(@z= ™" = ez DL O(|z]" "™ * V¥ s continuous in U(0), g(0) =0,
and differentiable in U(0)\{0} with

7.2 = —(m+1)f(2)z~" 2 +f ()2~ """,
gs(z) = 27" (v f, 4+ u f),
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and g, g, can be extended continuously to the origin, that is, to all of U(0).
Thus,

f@@zm 1= gg,dz+g,di, Vze{z| < ry},

where the straight line joining 0 and z can be chosen as the path of integration.
This gives

f@z ™= i[—(m+ Det" =2+ Ad™m~ 1 3. O(|t)*")] dt

+ VA ey A P O (e ) dE
-m—1 J—

_ z’ 2" 1+ar 2
= —(nt Doy b A 0l )+ O ()

(note that v(z) = O(|z]), u(z) = O(Jz]), after the affine transformations mentioned
at the beginning of the proof). This is cz" ™ '+ 0(|z]"~™"1*%), which is
possible only if j—m=n—m—1 and A = nc.

3. Further preparations. Next we prove a preliminary step towards
Theorem 4.

LemMa 1. Let f(z) be a (v, u)-solution in {0 < |z| < R,} and let v, u have
continuous second order partial derivatives in {|z| < R,}. Suppose f (z) has a point
of order/n at z=0,

f(@) =a(z+bz)"—ba(z+bz)"+0(|z|"*%),
and [cz™"], is the generalized power of degree —n with respect to

a (v*, u*)-system that coincides with the adjoint (v, ji)-system in {|z| < R}, v*
and p* satisfying condition (1). Then with any re(0, R,) we have

) Res— § f()dlez™], = (1~ bP)(~n)Re(ad
Jtl|z|=,
(b, b as in Theorem 1 with z, =0).

Proof. Let us denote the left-hand term in (i) by I,. By the generalized
Cauchy integral theorem (cf. e.g. (5], § I1.6), we obtain, after putting { = z+bz,

(14) [ =limRe—— § {al"—bal*+0((I"*9)dr(0)

r=—0 21'Cl|¢|=,

where h({) = [cz({)~"],, is a (v, f,)-solution with some v,({), u,(0), v(0) =0
and -p‘_(O—)= —b (cf. [5], §11.3). Since [¢z™"], has the expansion

c(z+b2)"—bé(z+bz)""+0(z| ")

at z=0, h({) admits the asymptotic expansion c¢{~"—bel "+0(|{|™"*%) at
{ = 0; also note that b (and b) is invariant under the substitution { = z+bz.
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Thus, when applying Theorem 5 and neglecting all the terms on the right-hand
side of (14) whose limits are at once recognized to be zero, we obtain

I, —llch——- § {al"—bal™}{cL "1 d{+p, ()L " 1dp

r20 20 i,
= —n Re(ac+&ébu1(0)) = (1—=|b*)(—n)Re(ac),
which we had to prove.
Let m,(z) be mollifiers as in, e.g., [5], §0.3,
(15) m,(z) = m,(z/e)e”%, @ any positive number.

Any integrable function, in particular every v, g€ HL (D), will be carried into
a C*-function by

16) v ()= [[ ve+Dm0do, pG)= [ plt+2Im,(t)do,.

Itl<e I"<e

We want to know how the HL,-norm changes under this smoothing
procedure.

LemMA 2. Let ve HL,({|lz]l <R}), p> 2, R> 0. Then

||Vq ||HL,,((|z|<R-o)) < "V"HL,,([lzl <R))
Jor t:;Jery positive ¢ < R, and v,(z) - v(z) (even) locally uniformly in {|z| < R} as
V.

Proof. By the definition of v, and the Hélder inequality, for any positive
T we have, with g =p/(p—1),

vq (z)qvq (ZO) g
z—z,

do

z

|z—20| <T

= ff | §§ (ve+2)—v(t+2z0))m,(t)do,|” do,

|z-zol <le - O'p It| <@

< ff 1 (ff lv(e+2)—v(t+zo)lm, ()7 m, (1) do )* do,

|=-zo|<r|2—20|p It|<e

{f : { [ pe+2)—v(@+ 2P m,(0)do,( [f m,(t)do,)"} do,

- 4
|z-zo|<T|z Zol It <@ il <a

= ] (§f pe+2)- —v(t+2zo)|"m,(t)do,)do

I:—zo|<'r|z z,|? Il <e

since {4 <,m,(t)do, = 1. Furthermore,
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v(t+2)—v(t+2z )|
(17) ( | o do )m t)do
1jj 241~ (£§+:)|<Tl t+z—(t+2,) | a() ‘
v(h)=v(t+2z,)[" }
Ssup{ | do,: It <@p-1,
|h—(z§+l)|<7‘| h—(t+2,) vl <e
which is finite for every T, as long as |z,+¢| < R. Since the integrand on the

left-hand side in (17) is positive and measurable, the order of integration can be
changed, which, after letting T tend to infinity, finally gives

(18) sup{” % (@)= V(z°)

do,: |z4] < R—Q}

< sup{jj do,: |zo| < R}.
¢

The L -part of the asserted norm estimate is obvious. Concerning the last
statement note that the condition ve HL,({|lz]| <R}), p > 2, implies the
continuity of v in {|z] < R}, by [5], Theorem 11.5.49. The lemma is proved.

v(z)—v(zo)?

A corresponding statement holds with ve HL,({oo}).

LemMa 3. Let ve HL ,({o0}), p > 2. Then v, € HL ,({0}) with v,(c0) = v(c0)
for every positive g and

Vo llae,qeon < KyllVllarL,wn

for every positive ¢ < 1, where the constant K, depends only on p and |]v||., (i.e
K, depends only on p for all v satisfying |v(z)| <1 Vze().

Proof. By hypothesis v(1/z)—A4eHL,({0}), A = v(c0). By a reasoning
similar to the one in the proof of Lemma 2 we obtain

(19) jcj vL(l/Z)_A|pd0,$l_|” t)” v(t+1/z

z |
< Sup{” v(t+lz/z)—A
Cc

dazda,

do,: |t| < Q},

LEMMA 4. Let v,, u, be sequences of functions satisfying

from which our assertions follow.

v, () + 1, (2)l € k=const<1, VzeC,

WV llire iz < &Y + mllpL, el < r)y € K = const,

with any fixed R >0, p> 2, v,, p,€ HL ({c0}) for every m=1, 2,
Moreover, v,,, u,, are supposed to converge to v, ue H L,({o0}), respectively,
pointwise almost everywhere in C as m— co. Further, let a be any fixed constant
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# 0 and | be any fixed integer # 0. Then [az'](,,, 4, tends to [az'] .. pointwise
in C\{0}, and the derivatives of the [az'],, .. are uniformly bounded in each
domain {d < |z| < D} with any d, D satisfying 0 <d <D <R.

Proof. Note first that by means of affine transformations not affecting the
agsertions of the lemma we can additionally obtain v,,(0) = ,,(0) = 0 for every
m. Now put H,(z) = [az],.um)> Bm(Z) = H,(2)/|H,(1)|. By the representation
theorem every h,, admits a representation h,,(z) = (¢,,(2))' (cf. [6], Corollary 2.3)
where ¢,,(z) is a quasiconformal mapping of the extended plane with ¢,,(0) = 0,
@q(0) = 0, |¢,(1) = 1. By well-known compactness criteria (cf. [3], p. 73) the
sequence ¢,, is relatively compact in the set of (1 + k)/(1—k)-quasiconformal
mappings of C onto itself. Thus, a subsequence of ¢, tends to a quasiconformal
mapping ¢ of C onto itself, ¢(0) = 0, p(c0) = ©, [p(1)| = 1, h(z) = (¢(2))' is the
limit function of the corresponding subsequence of h,,, and h is a (v, u)-solution
in C\{0}, cf. e.g. [5], Theorem IL4.1(V). Every ¢, admits an asymptotic
expansion

al/‘
Pm(2) = W-z+0(lz|”’)

with a positive y, the O-term, of course, depending on m. Since the ¢,, are locally
uniformly bounded in C, the derivatives

al/l

(sz(O) = W

are bounded away from 0 and oo, cf. [5], Theorem IL5.2(II) and Theorem
11.5.47. Therefore the H, (1), too, are bounded away from 0 and oo, and thus the
H,.(z) themselves are locally uniformly bounded in C\{0}. Every H, (z) admits
a representation

H,(2) = (®,,(2)

where the quasiconformal mappings ®,, of C onto itself admit an asymptotic
expansion

®,.(z) =a''z+0,(z'"?)

each, with one and the same y > 0, and there is an O-term 0*(|z|' *?) such that
for every m

0,021 ¥1| < 0*(21**7),  say, for |2 < 1,

cf. [5], Theorem IL5.2(I). Thus, every limit function @ of ®,. again being
a quasiconformal mapping of C onto C with #(0) = 0 (®(0) = c0), has an
asymptotic expansion

P(z) = a''z+0(|z)* *7).
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Hence, every corresponding limit function
(20) H(z) = (9(2))
admits an expansion
H(z) = az' +0(z'*") at z=0.

H is a (v, u)-solution in C\{0} and has a point of order —! at oo, by (20). Since
the limits v and p of v,, and pu,, respectively, do also satisfy the conditions
posed on v,, y, in Lemma 4, by the uniqueness statement of Theorem 2

H(z) = [az'](y -

Morcover, since every convergent subsequence of H,, has the same limit
function, the original sequence must be convergent.

The boundedness of the derivatives of H,,, locally in C\{0}, is again
a consequence of Theorem IL5.2(I) from [5]. The lemma is proved.

4. Proof of Theorems 3 and 4. We start with proving Theorem 4. Without
loss of generality we may assume z, = 0. Let h(z) = [az"]),. > 9(2) = [€2D 0,
K@ (2) = [az") v, uo)» 99 (2) = [c2')v, 5, Where v, u, correspond to v, u, respec-
tively, according to (16). For a suitable null sequence g,—0, on putting
h@m = p ., g =g  we have
(21) lim ¢ h,dg, = § hdg,

Mm@ |5, |z[=r

r any positive number such that {|z| < r} = G, by Lemmas 4 and 2. Thus,
Theorem 4 holds if it holds under the additional condition v, pe C® which we
shall now suppose.

Furthermore, let 4,, be a function with continuous second order partial
derivatives, satisfying A,(z) =1 for |zl €m, [1,(2)| <1 for m< |zl < m+1,
A(z)=0for |zl >m+1, m=1,2, We now put

Vi = ’lm vV, Uy = j’m "YU hm(z) = [az"](vnnum)’ gm(z) = [czl](\'m.ﬁm)'

The sequences v,,, i, again satisly the assumptions ol Lemma 4. Thus we again
have (21), at present even with C in place of G, and, consequently, Theorem
4 holds if it holds with every v, ue C3(C). In order to prove Theorem 4 for such
v, it we distinguish three cases: n+[=0,n+/< —1 and n+!2 1. The first
case is settled by Lemma 1. For the second case fix an R >0 such that
v(z) = p(z) = 0 when |z| > R. Since h and g are analytic there, they -admit
Laurent expansions

(22) hz)=Az"+A,-,2"" "+ g(2) = Biz'+ By-, 2 '+

for |z] > R. By the generalized Cauchy integral theorem,

1 |
——dhdy = Re — hdy,
Rc 21!1? g c2ni|z|=§;‘+1 g
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which is at once recognized to be zero in the case n+I < —1, because of (22).
Finally, in the case n+[> 1, we have

e——j'hdg-—hmRe-z— $ hdg-—hmRe— § 00" ") |dz| =

r-0 T gsr re0 2T ,x,
Theorem 4 is proved.
Proof of Theorem 3. f(z) has an expansion
23) f(2) =1 (z0) +8(z— 20+ B(z—20)) — ba(z — 20+ B(z — 25) + 01z — 2" **)
at z, with some constant a (not necessarily # 0), thus
@4)  fuz)=a—abb and  a=(f(z0)+DBbf(zo)/(1—bD?).
Let us first consider the case a = 0. This means f,(z,) = 0. Then

[f(z)d[c(z—zo) '](v a = lim {"‘ § [C(Z—Zo)_l](v.mdf(z)} =0,

r—0 |z—zo|=r
because
$ [C(Z—zo)_lj(v.ﬂ)df(z)l
|z=zo|=r
const
$ = ||ciz|(1+k)max{|f(z)| lz—z4| =}
|z—zg|=r
and

lim f,(z) = 0 = f,(z,),

zZ- 20

by the continuity of f,(z) in G, cf. [5], Theorem IL.5.2. Thus the asserted
formula holds for f,(z,) = 0.

Now let f,(z,) # 0. This means that we also have a # 0 in (23), (24). The
function

f*(Z) =f(z)—[a(z'—zo)](v,p)

is a (v, p)-solution in G, and f'¥(z,) = 0. According to the first part of our prool

1
Reﬁif*(z)dtc(z“zo)-lj(v.m =0,

and along with Theorem 4 this finishes the proof of Theorem 3.
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