Lie derivative of vector fields on a differential space

by Włodzimierz Waliszewski (Łódź)

Abstract. In 1931 W. Ślebodziński (cf. [4]) introduced the concept of the Lie derivative for smooth tensor fields. This concept plays a great part in differential geometry and global analysis. In 1967 R. Sikorski (cf. [2]) introduced the concept of a differential space as a generalization of a manifold. Independently, S. Mac Lane introduced the same concept in his lectures on foundations of mechanics (cf. [1]). In the present paper the concept of the one-parameter local Lie group for differential spaces is introduced and it is proved that in a differential space the Lie derivative of vector field defined by the Lie brackets is the same as the one defined by means of the well-known limit formula for differentiable manifolds. For some details we refer to book [3] and to papers [5] and [6] as well.

1. Preliminaries. Let (M, C) be a differential space and $p \in M$. The sequence v_1, v_2, \ldots of vectors of the tangent space, $(M, C)_p$, to (M, C) at the point p is said to be tending to the vector v of $(M, C)_p$ iff for any function $\alpha \in C$ the sequence $v_1(\alpha), v_2(\alpha), \ldots$ tends to $v(\alpha)$. We recall that by tangent vector to (M, C) at p we mean a linear mapping $v: C \to R$ fulfilling the condition: $v(\alpha\beta) = \alpha(p)v(\beta) + \beta(p)v(\alpha)$ for $\alpha, \beta \in C$. Let (N, D) be a differential space and let

(1)
$$f: (M, C) \rightarrow (N, D)$$

be a smooth mapping. If V assigns to every point $p \in M$ the vector V(p) of $(N, D)_{f(p)}$ in such a way that for any $\beta \in D$ the function $\partial_V \beta$, defined by the formula $\partial_V \beta(p) = V(p)(\beta)$ for $p \in M$, belongs to C, then V is said to be a smooth f-vector field on (M, C) or, shortly, f-field on (M, C). In particular, if the mapping (1) is of the form id: $(A, C_A) \rightarrow (M, C)$, where $A \subset M$, then smooth f-field on (M, C) is said to be a tangent to (M, C) vector field on A.

Denote by E the set of all real functions of class C^{∞} on R; it is so-called the natural differential structure of R.

PROPOSITION 1. If V is a smooth tangent to (M, C) f-field, where $f: (I, E_I) \to (M, C)$, $V(t) \xrightarrow{t \to t_0} v$, t_0 is any of the open interval I, then for every

smooth on $(M, C) \times (I, E_I)$ real function α we have

$$V(t)\left(\frac{\alpha(\cdot, t) - \alpha(\cdot, t_0)}{t - t_0}\right) \xrightarrow{t \to t_0} v(\alpha'(\cdot, t_0)),$$

where $\alpha'(q, t_0)$ stands for the derivative of $\alpha(q, \cdot)$ at t_0 .

Proof. For such a function α there are the functions $\alpha^1, \ldots, \alpha^m \in C$, a neighbourhood U of the point $p = f(t_0)$ and the open interval J such that $t_0 \in J \subset I$ and

$$\alpha(q, t) = \omega(\alpha^{1}(q), ..., \alpha^{m}(q), t)$$
 for $q \in U, t \in J$,

where ω is a function of class C^{∞} on \mathbb{R}^{m+1} . Thus, there exist functions ω_i of class C^{∞} on \mathbb{R}^{2m+2} such that for any reals $t^1, \ldots, t^{m+1}, u^1, \ldots, u^{m+1}$ we have

$$\omega(u^1,\ldots,u^{m+1})-\omega(t^1,\ldots,t^{m+1})=\omega_i(u^1,\ldots,u^{m+1},t^1,\ldots,t^{m+1})(u^i-t^i),$$

where

(2)
$$\omega_i(t^1, \ldots, t^{m+1}, t^1, \ldots, t^{m+1}) = \omega_{li}(t^1, \ldots, t^{m+1}),$$

 $\omega_{|i|}$ stands for the derivative of ω with respect to ith variable, i = 1, ..., m+1. Hence

$$\alpha(q, t) - \alpha(q, t_0) = \omega_{m+1}(\alpha^1(q), \ldots, \alpha^m(q), t, \alpha^1(q), \ldots, \alpha^m(q), t_0)(t-t_0)$$

for $t \in J$. Setting $\beta(t) = V(t)((\alpha(\cdot, t) - \alpha(\cdot, t_0))/(t - t_0))$ and

(3)
$$\omega_0(u^1, \ldots, u^{m+1}) = \omega_{m+1}(u^1, \ldots, u^m, u^{m+1}, u^1, \ldots, u^m, t_0),$$

we obtain in turn

$$(\alpha(q, t) - \alpha(q, t_0))/(t - t_0) = \omega_0(\alpha^1(q), \dots, \alpha^m(q), t),$$

$$\beta(t) = \omega_{0|j}(\alpha^1(f(t)), \dots, \alpha^m(f(t)), t) V(t)(\alpha^j),$$

$$\beta(t) \xrightarrow{t \to t_0} \omega_{0|j}(\alpha^1(p), \dots, \alpha^m(p), t_0) V(\alpha^j) = V(\omega_0(\alpha^1(t), \dots, \alpha^m(t), t_0)).$$

From (3) and (2) we have

$$\omega_{0}(\alpha^{1}(q), \ldots, \alpha^{m}(q), t_{0}) = \omega_{|m+1}(\alpha^{1}(q), \ldots, \alpha^{m}(q), t_{0})$$

$$= (\omega(\alpha^{1}(q), \ldots, \alpha^{m}(q), \cdot))'(t_{0}) = (\alpha(q, \cdot))'(t_{0})$$

$$= \alpha'(q, t_{0}).$$

Thus, $\beta(t) \to v(\alpha'(\cdot, t_0))$ when $t \to t_0$. What completes the proof.

For any tangent to (M, C) vector fields X and Y on the set U open in τ_C (see [2]) the vector field [X, Y] defined by the equality

(4)
$$[X, Y](p)(\alpha) = X(p)(\partial_Y \alpha) - Y(p)(\partial_X \alpha) \quad \text{for } \alpha \in C, \ p \in U$$

is called the Lie product of X and Y.

Let U be a set open in τ_C . The smooth mapping

(5)
$$\varphi \colon (U, C_U) \times (I, E_I) \to (M, C),$$

where $I = (-\varepsilon; \varepsilon)$ and $\varepsilon > 0$, is said to be a *one-parameter local Lie group* iff the following conditions:

(i) if
$$t, s, t+s \in I$$
, $p, \varphi(p, t) \in U$, then $\varphi(\varphi(p, t), s) = \varphi(p, t+s)$;

(ii)
$$\varphi(p, 0) = p$$
 for $p \in U$;

are fulfilled.

Setting $U_t = (\varphi(\cdot, t))^{-1} [U]$ and $\varphi_t(p) = \varphi(p, t)$ for $p \in U_t$, we have the diffeomorphism

$$\varphi_t: (U_t, C_{U_t}) \to (U_{-t}, C_{U_{-t}})$$

such that the inverse diffeomorphism is of the shape

$$\varphi_{-t}: (U_{-t}, C_{U_{-t}}) \to (U_{t}, C_{U_{t}}).$$

Moreover, for any $p \in U$ there exists $\delta > 0$ such that $p \in U_t$ for $t \in (-\delta; \delta)$.

The mapping (1) defines the tangent mapping, f_* , which to any vector v tangent to (M, C) assigns the vector f_*v such that $(f_*v)(\beta) = v(\beta \circ f)$ for any $\beta \in D$.

The vector tangent to (M, C) at the point $\varphi(p, t)$ defined by the formula

(6)
$$\dot{\varphi}(p,t)(\alpha) = (\alpha \circ \varphi(p,\cdot))'(t) \quad \text{for } \alpha \in C$$

will be denoted by $\dot{\varphi}(p, t)$.

Thus, we have the mapping $\varphi(p, \cdot)$: $(I, E_I) \to (M, C)$ and the smooth $\varphi(p, \cdot)$ -vector field for $p \in M$.

Proposition 2. For every one-parameter local Lie group (5) setting

(7)
$$X(p) = \dot{\varphi}(p, 0) \quad \text{for } p \in U,$$

we obtain a tangent to (M, C) vector field on U such that

(8)
$$X(\varphi(p,t)) = \dot{\varphi}(p,t) \quad \text{for } p \in U, \ t \in I.$$

Proof. Smoothness of X is obvious. For any $p \in U$, $t \in I$ and $\alpha \in C$ we have

$$X(\varphi(p, t))(\alpha) = \dot{\varphi}(\varphi(p, t), 0)(\alpha)$$

$$= (\alpha \circ \varphi(\varphi(p, t), \cdot))'(0) = (s \mapsto \alpha(\varphi(p, t), s)))'(0)$$

$$= (s \mapsto \alpha(\varphi(p, t + s)))'(0) = (s \mapsto \alpha(\varphi(p, s)))'(t)$$

$$= \dot{\varphi}(p, t)(\alpha).$$

Hence we obtain (8).

The vector field X defined by (7) is said to be generated by the one-parameter local Lie group (5). In the connection with that above it arises the problem of determining the one-parameter local Lie group by the vector field. In particular, it is a question about conditions for a differential space under which for any smooth vector field X and any point p there exists one-parameter local Lie group (5) such that $p \in U$ and $X \mid U$ is generated by (5).

2. The limit formula. In the section we derive the limit formula for Lie derivative for vector fields. It seems to be interesting that the one-parameter local Lie group which generates the vector field X need not to be uniquely determined by X, but Lie derivative calculated by means of this one-parameter local Lie group is independent of the choice of it.

THEOREM. If a vector field X is generated by the one-parameter local Lie group (5) and Y is any tangent to (M, C) vector field on U, then

(9)
$$\frac{1}{t} (Y(p) - (\varphi(\cdot, t))_* (Y(\varphi(p, -t))))_{t \to 0} [X, Y](p).$$

Proof. Let us take $\alpha \in C$ and $p \in U$. Then, setting

$$\beta(t) = \frac{1}{t} \Big(Y(p)(\alpha) - (\varphi(\cdot, t))_* \Big(Y(\varphi(p, -t)) \Big)(\alpha) \Big),$$

by (6) and (7), we have

$$\beta(t) = \frac{1}{t} (Y(p)(\alpha) - Y(\varphi(p, -t))(\alpha \circ \varphi(\cdot, t)))$$

$$= \frac{1}{t} (\partial_{Y} \alpha(p) - \partial_{Y} \alpha(\varphi(p, -t))) - \frac{1}{t} Y(\varphi(p, -t))(\alpha \circ \varphi(\cdot, t) - \alpha),$$

$$\frac{1}{t} (\partial_{Y} \alpha(p) - \partial_{Y} \alpha(\varphi(p, -t)))$$

$$= \frac{1}{t} (\partial_{Y} \alpha(\varphi(p, 0)) - \partial_{Y} \alpha(\varphi(p, -t)))_{t \to 0} (\partial_{Y} \alpha(\varphi(p, \cdot)))'(0)$$

$$= \dot{\varphi}(p, 0)(\partial_{Y} \alpha) = X(p)(\partial_{Y} \alpha).$$

By Proposition 1 we get

$$\frac{1}{t}Y(\varphi(p,-t))(\alpha\circ\varphi(\cdot,t)-\alpha)=Y(\varphi(p,-t))\frac{\alpha(\varphi(\cdot,t))-\alpha(\varphi(\cdot,0))}{t}$$

$$\xrightarrow{t\to 0}Y(p)((t\mapsto\alpha(\varphi(\cdot,t)))'(0))=Y(p)(\dot{\varphi}(\cdot,0)(\alpha))=Y(p)(\partial_X\alpha).$$

Hence, by (4), it follows that $\beta(t) \xrightarrow{t\to 0} [X, Y](p)(\alpha)$. This completes the proof.

It seems to be rather difficult to describe the set of all one-parameter local Lie groups for a given differential space.

References

- [1] S. Mac Lane, Differentiable spaces, Notes for Geometrical Mechanics, Winter 1970.
- [2] R. Sikorski, Abstract covariant derivative, Colloq. Math. 18 (1967), 251-272.
- [3] -, Wstęp do geometrii różniczkowej, PWN, Warszawa 1972 (in Polish).
- [4] W. Ślebodziński, Sur les équations canoniques de Hamilton, Buletin de l'Académie de Belgiques, Classe des Sciences, 5 Série, 17 (1931), 864-870.
- [5] W. Waliszewski, Regular and coregular mappings of differential spaces, Ann. Polon. Math. 30 (1975), 263-281.
- [6] -, On vector fields coinduced on a differential space and their Lie product, ibidem 32 (1976), 129-133.

Reçu par la Rédaction le 1978.08.14
