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Lie derivative of vector fields on a differential space

by WtrobpziMierz WaLiszewskl (£0dz)

Abstract. In 1931 W. Slebodzinski (cf. [4]) introduced the concept of the Lie derivative for
smooth tensor fields. This concept plays a great part in diflerential geometry and global analysis.
In 1967 R. Sikorski (cf. [2]) introduced the concept of a differential space as a generalization of
a manifold. Independently, S. Mac Lane introduced the same concept in his lectures on
foundations of mechanics (cl. [1]). In the present paper the concept of the one-parameter local
Lie group for differential spaces is introduced and it is proved that in a differential space the Lie
derivative of vector field defined by the Lie brackets is the same as the one defined by means of
the well-known limit formula for differentiable manifolds. For some details we refer to book [3]
and to papers [5] and [6] as well.

1. Preliminaries. Let (M, C) be a differential space and pe M. The
sequence v, v,, ... of vectors of the tangent space, (M, C),, to (M, C) at the
point p is said to be tending to the vector v of (M, C), iff for any function
o C the sequence v, (x), v,(a), ... tends to v(a). We recall that by tangent
vector to (M, C) at p we mean a linear mapping v: C — R fulfilling the
condition: v(xf) =a(p)v(f)+B(p)r(x) for a, fcC. Let (N,D) be a
differential space and let

(h J: (M, C)->(N, D)

be a smooth mapping. If V' assigns to every point pe M the vector V(p) of
(N, D)g in such a way that for any fe D the function Jy f8, defined by the
formula J, B(p) = V(p)(p) for pe M, belongs to C, then V is said to be a
smooth f-vector field on (M, C) or, shortly, f-field on (M, C). In particular, if
the mapping (1) is of the form id: (4, C,) — (M, C), where 4 = M, then
smooth f-field on (M, C) is said to be a tangent to (M, C) vector field on A.

Denote by E the set of all real functions of class C* on R; it is so-called
the narural differential structure of R.

ProposiTioNn 1. If V is a smooth tangent to (M, C) f-field, where
S (L E)— (M, C), V1) =50, Lo is any of the open interval I, then for every
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smooth on (M, C) x(I, E,) real function a we have

a(.’ t)_'a('1 tO)

v (BT ) o 1o,

where o' (q, to) stands for the derivative of a(q, ") at t,.

Proof. For such a function a there are the functions «?, ..., a™eC, a
neighbourhood U of the point p = f(t,) and the open interval J such that
toeJ I and

a(g, ) =w('(g),....2™9q), 1) for geU, tel,

where w is a function of class C® on R™*!. Thus, there exist functions w; of
class C® on R**? such that for any reals ¢!, ..., ™", u!, ..., u™"! we
have

oW, .., um" Y-, ..., " Y=o, ..., ™, Y -1,
where
2 o (t, . LM Yy =, L Y,

wy; stands for the derivative of w with respect to ith variable, i =1, ..., m+ 1.
Hence

a(q, N—a(q, 1o)= Wps1 (@' (q), ..., X" (@), t, 2 (@), ..., a™(q), to)(t —to)
for teJ. Setting B(t) =V ()((a(-, O —a(, to))t—to)) and
(3) wo(!, ..., u™* ) =y (W, . um W™t U™ 1),
we obtain in turn
(x(g, )—a(g, t))lt —to) = wo(a' (@), ---, 2"(q), 1),
B(1) = wo(a* (f (), ..., a™(f (), YV (D),
B()i=ig> w0y (@' (P), ..., ™ (P), to)v (@) = v(wo (@' (), .., a™(), to)).
From (3) and (2) we have
wo(@'(q); ---, a™(@), to) = Opms 1 (@' (), ---, a™(q), to)

= ((D(al (Q)’ (R am (Q), ))’(tO) = (a(q: '))’(IO)
= a’(q’ tO)-
Thus, B(f) — v(a'(, tp)) when t — ry. What completes the proof.

For any tangent to (M, C) vector fields X and Y on the set U open in 7.
(see [2]) the vector field [X, Y] defined by the equality

4) [X, YI(P)(@) = X(P)(&y )Y (p)(ox®) for aeC, peU
is called the Lie product of X and Y.
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Let U be a set open in 1. The smooth mapping
(5) Q’: (U, CU) X(I, El) - (M’ C),
where I =(—¢; ¢) and ¢ > 0, is said to be a one-parameter local Lie group iff
the following conditions:
() if t,s, t+sel, p, o(p, Ne U, then o(p(p, 1), s)=@(p, 1 +53);
(i) @(p, 0) = p for peU;
are fulfilled.

Setting U, = (¢ (;, r))_l[U] and ¢,(p) = @(p, 1) for peU,, we have the
diffeomorphism

(Pl: (Uu CU,) _’(U—n CU_.,)
such that the inverse diffeomorphism is of the shape

o0 (U, CU_,)_’(UH CU,)-

Moreover, for any pe U there exists 6 > 0 such that pe U, for re(—9; 9).
The mapping (1) defines the tangent mapping, f,, which to any vector v
tangent to (M, C) assigns the vector f, v such that (f, v}(B) = v(Bo f) for any
BeD.
The vector tangent to (M, C) at the point ¢ (p, t) defined by the formula

(6) @(p, (@) =(@oep(p, ) (1) for aeC

will be denoted by ¢(p, ).
Thus, we have the mapping ¢(p, ): (I, E;) = (M, C) and the smooth
¢(p. )-vector field for pe M.

PROPOSITION 2. For every one-parameter local Lie group (5) setting

(7 X()=o¢(p,0) for peU,
we obtain a tangent to (M, C) vector field on U such that
®) X(ep,0)=¢(p, 1) for peU, tel.

Proof. Smoothness of X is obvious. For any pe U, tel and aeC we
have

X(o(p, D)@ = ¢(e(p, 1), 0)(@)
=(xo@(e(, 0, ) (O = (s—a(o(ep, 1), S)))I(O)
= (s—a(o(p, t+9)) (0 = (s =2 (o (p, ) (1)
= ¢(p, N(®).

Hence we obtain (8).



102 W. Waliszewski

The vector field X defined by (7) is said to be generated by the one-
parameter local Lie group (5). In the connection with that above it arises the
problem of determining the one-parameter local Lie group by the vector
field. In particular, it is a question about conditions for a differential space
under which for any smooth vector field X and any point p there exists one-
parameter local Lie group (5) such that peU and X|U is generated by (5).

2. The limit formula. In the section we derive the limit formula for Lie
derivative for vector fields. It seems to be interesting that the one-parameter
local Lie group which generates the vector field X need not to be uniquely
determined by X, but Lie derivative calculated by means of this one-
parameter local Lie group is independent of the choice of it.

THEOREM. If a vector field X is generated by the one-parameter local Lie
group (5) and Y is any tangent to (M, C) vector field on U, then
|
9) Y@ =(oC, (Y (@, —N))=LX, Y1(p)-
Proof. Let us take xeC and pe U. Then, setting

1
B =—(Y(D@~(oC, 0 (¥ (0(p. ~0) @),

by (6) and (7), we have
B = (Y@~ Y(o(p, ~D)(x00(, 1)
=}(6ya(p)—ﬁya(<p(p, —r)))—%Y(cp(p, —D)(xoe(, n-a),
Hova - dralo(p, )

1 ,
= 7(0y a(@(p, 0)—dyale(p, —0))i=>(rale(p, 1)) (©)
= @(p, 0)(dy2) = X(p)(éy ).

By Proposition 1 we get

(@C, 0)—2(e(, 0)
!

1
~Y(o(p. —1)xowl. n-2)=Y(o(p. —n)>

== Y {(r ~2(0(, ) @) = Y(p) (@, 0(@) = Y (p)(@x2).

Hence, by (4), it follows that f(1);=g~[X, Y1(p)(2). This completes the proof.
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It seems to be rather difficult to describe the set of all one-parameter
local Lie groups for a given differential space.
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