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Plane wave decompositions of monogenic functions

by F. SomMENn* (Ghent, Belgium)

Abstract. In this paper, we investigate the decomposition of monogenic [unctions into
plane wave type monogenic functions. Special decompositions are obtained for the monogenic
extensions of Riesz potentials in terms of so-called plane wave generalized powers. When taking
boundary values, we obtain plane wave decompositions for generalized Hilbert-Riesz kernels
and for special classes of homogeneous differential operators.

Introduction. Let C,, be the complex Clifford algebra constructed over
C™. Then in [1], [7] C,-valued functions f in open subsets Q of R™*' were
investigated, which satisfy the generalized Cauchy-Riemann system (d/0 x, +
+ D) f =0, D being a Dirac type operator in R™. These functions, which are
called left monogenic in €2, satisfy properties similar to the holomorphic
functions in the plane, where the variable z is being replaced by a *“para-
metrized hypercomplex variable” (X, 1>—xq1, X, f€R™, x, €R (see [5], [9))..
In particular, if g is a holomorphic function, then g({xX, r>—xy1) is a left
monogenic function of plane wave type. Of course not every monogenic
function is of this form, but it can be shown (see [9]) that left monogenic
functions admit decompositions into plane wave type monogenic functions.
In this paper we study these decompositions explicitly [or the so-called axial
monogenic functions, introduced in [10] and [7].

In the first section we give a general formula for plane wave decomposi-
tions, based on the Funk-Hecke theorem (see [4]). Furthermore we study the
plane wave generalized powers, which may be regarded as functions of the
form ({X, £Y—xq1)%, aeC.

In the second section we study in detail the decomposition into “plane
wave generalized powers™ of the *“axial monogenic generalized powers”,
introduced in [13]. These axial monogenic powers involve Cauchy-type
integrals of the form

- 1 ** X+
!

Aﬂ?k(x)= I_f-}-["’”’l*ﬂt"d” 77€C,

m+ 1
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the boundary values ol which correspond to Riesz potentials. Furthermore
the residues of A,5 with respect to e C. lead to generalized Hilbert Riesz
kernels and were studied in detail in [12], [13] (see also [14]).

In the final section we take the boundary values of the plane wave
decompositions obtained before. This leads to the plane wave decomposi-
tions of the generalized Hilbert-Riesz kernels and of a special class of
homogeneous differential operators. These results may be interpreted in
terms of the inverse Radon transforms for special types of spherical har-
monics (see [2], [3], [6])).

Preliminaries. Let |e,..... ¢, bc an orthonormal basis of R™. Then C,,
denotes the complex Clifford algebra constructed by means of this basis. The
product in C,, is determined by the relations ¢;¢;+¢;¢; = —24;; and a general
element of C,, is of the form a = ) a,e,. e C. where N = |1.....m! and

AN
where for 4 = la,, ..., ), % <. <o, ey = b
An involution in C, is given by a = ) a,e,. where d, is complex
A=N
conjugation and €, =@, ...&, &= —¢;, j=1,...,m.

R™™' is naturally inbedded in C,, as follows: x = (x4..... X, )ER"" " is

m

identified with x = x,+X = xge,+ Y x;¢;, where ¢, =¢, = 1. Hence R™ is

i=1
the subspace of vectors ¥ in R™"' and is identified with the hyperspace
N xo =0!. We also use the notations R"™' = (xeR""': x, Z0!. Notice

that X = xq—X. The norm of xe R" "' is denoted by |xI = |x,+¥]. The inner

product between vectors 1, Xe R" is given by

m

G, Xy =—3ux+x1)= ) nx;.
j=1

b=

By 4 we denote the m-dimensional Laplacian, whereas the gradient is as
usual denoted by F.

w,, denotes the surface area of the unit sphere $” ' in R™

Let Q = R™*! be open; then f e C,(Q2: C,) is called lefi (right) monogenic

in Qif (/Cxg+ D) [ =0 (f(/Cxo+D)=0), where D= ) ¢;7/Cx; is a Dirac
i=1
lype operator. I

A function P, (S), ZeS"™ 1, X =1, is called inner spherical monogenic of
degree k if P,(¥) = ¥ P, (). is left monogenic in R™. A function Q, (%) is called
outer spherical monogenic of degree k if ¥=* "™ V0, (J) is left monogenic in
R™\ [0}. Let P,, Q,, S, be the projection operators onto the spaces ol inner
and outer spherical monogenics and spherical harmonics respectively. then
we have that for every feL,(S" ') (see [8])

Si()=P(N+Q-1(f), QN1 = —tP(e)(r).
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1. Basic plane wave decompositions. Let g be a C-valued function on R
and let h be a C,-valued function of S~ '. Then we consider integrals of the

form )
| g(<{x, ud) h(u)dS,.

sm—1
To evaluate these integrals, we shall use the expansion of /i into
spherical monogenics (see [1], [8))

h@ = Y. (Py(h)(@— P, (h) ().
k=0

As P, (i) and Q,_ | (h)(1) = —uP,_ (uh)(u) are spherical harmonics of
degree A, we obtain by using the Funk- Hecke theorem (see [4]) the [ollowing

Lemma 1. Let P, (i) be inner spherical monogenic of degree k. Then we
have the identities

(i) Vg (& i) P() dS,

gm=1 1 .
= W1 (| g(01) P () (1 =133 2 4r) P (D),
-1
(i) | 9K W) uP, (i) dS,

sm- 1

1
Om-1 (] g0 Py y V(112" D2 40) EP ().
-1

where X = o¢, ¢ = |X| and Py, is the k-th Legendre polynomial in m dimen-

sions.
Using the notation

1

L (g)(0) = | glo) Py () (1— £2)m= 32 gy

we hence obtain that

| g (K, @) P (i) dS, = @, 1 L (9)(0) P (9),
sm-l

[ g%, i) P, () dS, = -y L1 (9) (@) EPL (D).
sm—1
Next, let ¢g,. g, be C-valued functions in < C satisfying the Cauchy-
Ricmann system
¢ ¢
A B P
(x cy Ox

Then for every re R™ the function

- - - ! - -
l(<x9 ,>s XO“I)_II_-’I —92(<x’ t>, XO]{I)
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is left monogenic in Q, = (x,. ¥): ((Xa. 1 X0 1)) €Q). Hence. for suitable
domains &, we consider

I (g1 (<x, 1, X0) =192 ({X, 1), Xo)) P () dS,,

sm—1
which is left monogenic in Q = ()} €, and which, by Lemma 1, is the

. . fesm— 1
monogenic extension of

Om— 1 (Le(g1] RY(0)—ELs 1 (95 RY(0) P (E).

Hence, this integral is left monogenic and of the form (A(x,. o)+
+EB(xp. 0)) P (). Functions of this type are called axial monogenics of
degree k and satisfy the plane elliptic system (see [10])

¢ & kt+m—1 0 ok
—A-—_B=—" B, B+—A=-A.

x, co ) xo o 0

Hence we obtain plane wave decompositions of axial monogenic func-
tions. These decompositions may also. be applied to boundary values of
monogenic functions (see [1], [11], [12]). Let f,, f, be C-valued functions in

C\R, satisfying the Cauchy-Riemann equations, and put
g;(s) = fi(s+i0)—f;(s—i0), j=1,2.

Then g,, g, are hyperfunctions on R, so that
- r o
9. ((X, t>)—ﬁgz(<x,t>)

is a plane wave hyperfunction in R™, which is the boundary value of the left
and right monogenic function )
1 (G 7. o )= Fo(GE, P, xalf),
From Lemma 1 it hence follows that
f I(fl (¢x, t-.>’ xo)—ﬂz(<f, t-.>, xo))Pk(F)dS:
-

is a left monogenic representation of the hyperfunction

[ (91 (X, D) —tg, (KK, DY) Py (D)dS, = 0p- 1 (I (1) (@ — EL 41 (92) (0)) Pi (O).
Sm-l

In view of [11], this hyperfunction is well defined.

ExampLE. Let us start from the generalized power functions

p*(z) = |zI*(cos(xargz)+isin(xargz)), acC.
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Then, using the above procedure, we may construct the so-called plane wave
generalized powers by

—

P, x) = (<X, Y2+ x3|1]?)? (cos(fx arg(f, X) —-liflsin(a arg(f, .\'))).

where
t -
arctan Z;OI:I>+ 2kn if {x,t)>0,
arg(f, x) = % I
arctan~2"" 4+ (2k+ 1)1 if (&, 7> <0,
&, )

Notice that arg (1, x), and hence p*(i, x). is extendable to a multivalued
function in R™ '\ {x: xo = (X, 1> =0
Let 8 eR. Then by arge(r, x) we denote the branch of arg(r, x), deter-

mined by the condition argg(/, x) €[0 —n, 8+ n[. Furthermore by p2(7, x) we
denote the branch of p*(f, x), given by

r . .
pa(t, x) = ({X, 1)+ x2|1]?)? (cos(aarge(t x))— ﬁ in(xargy(r, x))),
which for a¢ Z is left and right monogenic in R™™*\ {x: argy(, x) = 0—n},
while for ke Z,

pA(t, x) = ph(r, x) = ((F, Y= xo 1)~

Notice that. in general

[<x, D (cos 2k1ta——ﬁsm 2k1ta> X, 1>>0,

[{x, O (cos(2k+ l)na——I%sin(2k+ l)rta), (X, £y <0.

Furthermore for Rea > —1, we for instance have that

pa(t-" -’.C.) =

pi(t, X+0)—pa(f, Xx—0) = x({X, 1> > 0) <K, t)[“(l—cos21tat-+-l Ismna)

Finally, notice that, instead of p*(f, x), we may as well write ((X, 1> —
—1xo)*. Indeed, as to the calculations (X, >—x,f behaves just like the
complex variable z = x+iy, where x is replaced by (X, ), y by x,(f] and i
by —/Hl.

2. Plane wave decompositions of generalized powers. First we recall the
definitions and main properties of the generalized powers p,; » and ¢, » and
of the Cauchy type integrals A, (x) introduced in [13].
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Derinmion 1. Let P, (&) be inner spherical monogenic of degree k. Then
we have that

(1) pyy.m(Xo. 0, S P.(E) is the axial monogenic of degree k determined
by the condition p,, .(0, ¢. d) = 07,

(i) Garm (X0 0, &) P() is the axial monogenic of degree k determined
by the condition g, ., (0, 0. &) = ¢*¢,

-
s

(i1) the Cauchy integrals A, (x) are given by

1 ** X+
A () = = T =
" Whit o |xi_,rm+l+2k

ProposiTioN 1. For —1 <Ren <m+2k—1, we have that

" A,f,‘ (X) =i M+ D) Py st —kteom T Oma (M Gy 1 - kbms

where

1 2k+m—n n+1
Gm.k(”l)"zwm:B(--- 2 R 2 )

In this section we shall express these power functions as plane wave
integrals of the form

I pa(r, x) P (dS, and ( py(t, x) 1P (1)dS,,
1 1

sm= sm-
where P, (f) is inner spherical monogenic of degree k and 0 = +m/2.
Notice that p%,; (I, X) = pn2(l, X)ls,-0 are given by

. Lo - _r . o
Plima(t, X) = <X, 1) (cos nay ({x, 1) < 0)+|i—,|sm may({x, t) < O))
and that p%,, are left monogenic in respectively RZ*! and R™"'. First we
introduce the following

DeFiniTioN 2. Let Rex > — 1 and let P, be inner spherical monogenic of
degree k. Then we put

CEPYE) = [ Pun2(, D) P(DS,
-1

sm

FEPIE) = [ Pinp(t, X)IP(D)dS,.

gm—1
From Lemma 1, we immediately obtain the following
PropoSITION 2. The restrictions of 6,5 (Py), ¥, (P to R™ are given by
G (P)(%) = 01 (Ci(2) 0* F ESi (@) &%) P (D),
FEPY(E) = 0p- 1 (Co 1 () £Sk-1 @ &%) P,



Plane wave decompositions of monogenic functions 107
where

1
Cilx) = .\' [t]*cos (may (1 < 0)) P () (1 =13 =24y,
-1

0
Si(@) = |l sinmaPy, (1) (1—07)"" 2 2dt.
-1

As ;) (P) and 7, (P,) are defined in R™™'. they are completely
determined by their restrictions to R™. Hence, using the definition of the
generalized powers, Proposition 2 immediately leads to

ProrosiTioN 3. We have that in R"™!
‘ Pi/z(ﬁ x) Py (D) dS, = w,, -, (Cd®) Pt (X) = Sic (@) G . (X)) Pk(C:),
sm= 1
while in R™*!

‘. pa* 2 (fw X) Pk (F) dSl = Wy, - (Ck (1) pa.k.m (X) + Sk (1) qa.k.m(x)) Pk (E) .
sm—1

We now come to the plane wave expansion of the Cauchy integrals
Ani.r-k (Y)

THEOREM 1. Let x = n—m+1—k. Then we have that for m+k—2 < Ren
<m+k—1

Omilnt 1) [ Pl (P x) P (D)dS,.

Aﬂ%‘k (V) Pk (56) = @ | Ck (a) .
m— sm—

Proof. Let x = p—m+1—k. Then it immediately [ollows from Proposi-
tion 3 that

1 - -
_— 2o (F, X+0) 4 p* 5 (1, X—0)) P, (1) dS,
Wy - Ck(a)smj.—l(p/ p ! ) *
! g - (3 -
= i) [, (X+0)+ 4, (X=0)] P, (Y)

and that
\ - L -~ .
= | (Pr2(t. X+0) =P (1, Y= 0) P (1) dS,

Wy -1 Sk (a) Sm.— 1

I . —
= [ AR H0) = A, (= 0)] Py ().
O-m.k ('7)

Hence, in view of [11], there exist entire monogenic functions f, and g, such
that in R%*?

1 - . 1
—_ w2 X)) P (1) dS, — ———
Oy - Ck(a)smj—lpi 2 9L Omi(n+1)

Ay (X) P (X) = ££2 (%),
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and

1 -
‘. Poin2(t, X) Py (1) dS,—

- At P (%) — .
Wy — Sk (a) sm.—l Omk (;1) .k (X) k(x) 9a (X.)

Furthermore, for —1 <Rea <0 or m+k—2 <Renp<m+k—1, we
have that

Hm | phn2(f, ) P(D)dS, = lim A% (x)=0.
Io—’imsm—l xg—tw

Hence, by Liouville’s theorem (see [1)), f, = g, =0, which proves the
theorem. a

Notice that, at the same time, we obtained the identity
Omix (M + 1) S (2) = 6,4 (1) Cy ().

Of course, by holomorphicity of A% (x) P, (xX) for neC\(1—1, =2, ...} U
v m+2k—1,m+2k, ...}) (see [13]), the above formula also extends to
all these values of #.

In order to calculate C,(x) and S,(x), we make use the following
recurrence formulae.

Tueorem 2. The transforms .5 (P,), ¥ (P,) satisfy the recurrence ident-
ities

V*(P):—D—?’o“i (Py) %’WP):——D-—yﬁ (P,).
a k a+l at+1 ks a k a+l a+1l k

Proof. This theorem follows immediately from the fact that

. ¢ - - - ..
Dp*l ) (t, x) = —Kp";,.}z (F, X) = 1@+ 1) Plan2 (s X) = (@41) Plano (£, X)T. @
0

CoroLLARY 1. The. functions C,(x) and S,(x) satisfy the recurrence
formulae

a+1—k a+k+m
Cis1(®) =*&Tl"' Cila+1), Si-1(0) = —a—_FT‘Sk(OH" 1).

Proof. On the one hand we have that
'Spai(Pk) = wm—l(Ck+l(a)EiSk— 1 (a))Qa Pk(é),
while, in view of Theorem 2,
Wy -y

Y (P) = a:-_l

Do* ' K(Cpla+ 1) FES, (a+ 1)) P (%)

= 2 @+ 1=K EC, (a+ D fa+ k+m) Sy (@ + D) " Putd).
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Comparing both expressions leads to the stated recurrence formulae. m

Hence, in order to compute C,(x) and S,(x) we only need to calculate
Co(a) and So(x). Direct computation yields

0 4 —
So(2) = — [ It Vsin (1 — )™= M2 gp = —81921‘33(32‘“,'"—2—1)
-1

and

1 , _
Co(x) = (1+cos na) ft“(l —2)m-2 g — + cos na (QH. m ),
0

2 27 2
which leads to the final formulae

. a—k+1 m-—1
Ck(a)=1+cosn(a—k)l(a+1)r( 2 )r( > )

k+1 ’
T e ()
. r(a+1)r(°‘;k+1 r("’—_l
S, () sinm(k —a) 2 2
k()= k+ 1 .
2 r(a—k+1)r(a+k;m+l>

Notice that, as

k—a 2+a—k
r r
t+cosmla—k) ( 2 ) ( 2 )

sinm(k—a) r(1+k—cx)r(l——k+a>’

2 2

we reobtain the identity

k—a a+k+m+1
Ck(a)_r<2)r( 2 )_am.k(m)

Sy (@) —r(1+k—-a>r<d+k+m) Omi ()

2 2
where n =a+k+m—1.

By Theorem 2, it is possible to extend %; (P,) and ¥;(P,) holomor-
phically to at least C\{—1, —2,...}. Of course, from the definition of %, (P,)
and Y7 (P,) it is already clear that, at least for xe R7*!, these functions
extend holomorphically to the whole complex plane.

Indeed, for xq # 0, p%,(f, x) has no singularities for reS™ 1.

Hence also S,(x) and C,(a) are entire functions.
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We now study 7. (P,) and ¥ (P,) for the integer values a = [ Z.
Notice that, immediately from the delinition of S, (%) and C,(x). it follows
that S$,(/) =0 for [eN, while C,(/) =0 for /eN and k+1! odd. Further-
more, for k4 even and [ <k, it follows from the orthogonality properties
of P,,.(r) that C, (/) =0. Hence we obtain

ProprosiTiON 4. For | = k+2s,

CE(P) = [ (& D —xoD 2 P(0)dS,

sm= 1
= Wpo 1 Co(k+29) Prs 250m (X) Py (E)

)

I

and for | =k+2s+1,
FEP) = | (F D=xgi BP0 dS,
sm-l

= Wy oo 1 K25+ 1) gt 254 1 4m (X) P, (),

whereas ¢, (P,) and ¥ (P,) vanish for all other vaiues of e N.

This means that (see [13]) the sets of polynomials % ,,(P,) and
S s+ (P) form a basis [or the spaces of inner spherical monogenics.
As to the negative integer points, we first prove the [ollowing

Lemma 2. (i) For k+1 odd and 1eN\ 0}, S;(—=1)=0 and C,(—-1)=0.
() For m odd and | > m+k, S,(—1)=0.
() For m even and 1> m+k, C,(—=1)=0.

Prool. (i) follows immediately {from the relation

(e
l+cosm(k+1) I'(l-1) 2

o (m—l
KD = Fa S rakm—) \ 2 )

Furthermore for k+/ odd, 1+cosn(k+z) has a second order zero at z =k,
whereas the other [actor may only have a pole of order at most one.
As to the function §,(x), we have that

n m—1
cosi(k+1) I'(I—I)I‘(T)

> X PEYEURY
r(1—1-k)r(—;—'>r(ﬂ’+—7—+l)

Si(=h=m

which clearly vanishes for k+1/ odd.
For m odd and [ > m+k, I'((m+k—1+1)/2) will have a first order pole,
which leads to (i1). m
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In all other cases, C,(—1) # 0 and S,{—/) # 0. Hence for k+/ odd we

have that %4,*(P,) = %7~ ,(P,) = 0. As to the other cases, the previous theory
leads to

THeOREM 3. (1) If m is even and | = k+m-+2s, then
C2(PY) = Fom 1 Sil=q-10m Pi(5),
S (P = Oy Sk (= 1= 1) p_ iy som Pl
() If mis odd and | = k+m+2s. then
F2(P) = 0p-y Cowi (=D G- s P(©),
621 1(P) = 0oy Gl =1=Dp-i- 1 m Pild)-
A special case of this is the following
CoROLLARY 1. (i) For m even, we have that in R"*'

1 Xo—X (=)™ (m—1)!

e %, iy— xS,
W+ 1 I-YO—.\'Im+1 2(2n)m Sm.[_l(<( > Xo -') S'
(i) For m odd, we have that in R™*!
1 Xg— X (— D) D2 (m—1)! o }
T z %, 1= X0 1)~ ™dS, .
Wy 41 IXO—XIM ! 2(27t) Sm“j_ 1 (< > 0

The above expressions are the plane wave decompositions of the funda-
mental solution of the operator ¢/(x,+ D, in even and odd dimensions.

3. Boundary value results. Theorem 3 leads to the calculation of the
boundary values of % _,(P,) = %*,(P,) and ¥ _,(P,) = ¥%,(P,). which are
defined in R™™'\R™ We first treat the even dimensional case.

In this case we have that for [ = k+m+ 2s,

%_1(PY(X+0)—%_ (P)(X=0)
= =Wy - Sk(—l)(q- l.k.nl(f+0)+q*I.k.m(;(._O)) Pl.(g)

X o
“2(’911'"' 1 sk(_ I)W Pk (i),

whereas

S (PYX+0) = (PY(X—=0)
=Wy Sy (= 1= U(P—l— thm (X0 +po oy i (X=0) Pk(g)

I z
= 2Wp-y Sg-y (= 1= ])l;z‘i',';'f' P, (Q).
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Notice that both boundary values are restrictions to R™ of outer
spherical monogenics, which may be regarded as singular integral kernels for
generalized Hilbert—Riesz transforms (see [12], [14]).

As on the other hand (see [2]),

r‘(_ l)l—l

(R, =00 = (¢, Dy +00™" = 2m=

67X, 1),

we obtain

ProrosITION 5. For | = k+m+ 2s, we have the plane wave decompositions

. =) (=1) X 2
[ 84~ V((F, )P (1) dS, = (_Mwm_,sk(—l)%&(é)
oot n IX]
and
1{__ 11
| 80(G, i) Pu@as, =

sm—1

1 -
wm—lsk—l(—l—l)li_w—lpk(f)-

Taking the Hilbert—Riesz transform of the expressions in Proposition 5,
we obtain that (see [11], [12])

. 1
| ka(t—)d&: — 3 O 1 Ot 1 (=) V(P
sm—1 ’

and

—

t

—o"+
X, 15+

[ Pk(ﬂdsn=’liwm-lwm+1Sk—l(—l—l)éuﬂ)(Pk),

Sm—l

where for [ = k+m+ 2s,

-

1
q-tkm (x))Pk (%),

m+1

o"(P) = BV (

SR = BV(

m+ 1

D-1- l,k.m(x)>Pk (E)

Notice that 6 (P,) and 8*V(P,) correspond to homogeneous differen-
tial operators with constant coefficients.

We have that (see [12]),
m+1
b3 )> r( 2 )

|m+l+2k

(k +m) = BV!| —
6 (Ph) ( wm+l Ix
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By Theorem 2, we have the expressions

—I‘(k+m)r(—m;—l)

4°P (V) 6,

2“r(k+m+2s)r(k+fnzi1>_

5(k+m+2s)(Pk) -

F(k+m)l"(mT+l>(—1)‘

DZs+1 Pk(V)(S.

5(I¢+m+2s+l)(P ) —
, m+1
2“I“(k+m+2s+l)1"(k+T)
For k =0, s =0 we reobtain the classical formula (see e.g. [2])
(=)™ (m—1)! S
, £y~ mdS,.
G 0

sm=
In the odd dimensional case we obtain the following

5=

ProPOSITION 6. For | = k+m+2s we have that

(I-ni(=1
2n

[ UV (X, 1) P (1) dS, = Om—1 Ot Crs 1 (=)D (P)

sm- 1
and

(=1
( )wm—lwmﬂCk(—l‘l)éuﬂ)(Pk)-

[ 80K, 1) TP ()dS, =
sm—1

The Hilbert-Riesz transform of this again gives rise to the plane wave
decomposition of the generalized Hilbert-Riesz kernels in odd dimensions.
The explicit calculations are left to the reader.

Notice that for k =0, s =0, Proposition 6 leads back to the classical
decomposition (see [2])

(_ 1)(m— 1)/2

— m=D /3 ¢
= o smj_la ((X, 1)) dS,.
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