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Abstract. Let D be a bounded symmetric domain in CY¥(N > 1) with Bergman-Shilov
boundary b and S(z,t) (zeD, teb) the Szegd kernel of D. The order of the integral
l[[S(rv, t)ds, (veb, 0 <r < 1) is found for the classical domains R,, (the hyperbolic space of Lie

spheres) and the matrix spaces R,(n,n), R, and R, (»n even) (using Hua's notation in [6]). An
upper bound is obtained for R,(m < n) and R;;,; (n odd). The results are applied to the family of
operators l[S(z, t) f(t)yds, "R, 4(r) (ze D, = {rw: we D} where R, ;(r) is a function of the Szegd kernel

S(rv,rv) (veb)) and a related operator to obtain necessary and suflicient conditions on vy, 6 for the
operators to map L'(b) into H*(D). Using the Harish-Chandra realization of an irreducible
bounded symmetric domain, Faraut and Korényi obtain the order of )[IS(z.t)l”"ds, for

g > gqo > 0[1]. This gives a mapping theorem for a related operator to map IP(b) into I#(D)
for p2 1.

1. Introduction

1. We begin with the family of operators

(1) (&f)(2) = J;S(z. t) f(t)ds;

Here b is the Bergman-Shilov (B-S) boundary of a classical domain D in
CN(N > 1), S(z,w) (ze D, we the closure D~ of D) is the Szeg6 kernel of D([6],
p. 88). Note that S(z, w) is called the Cauchy kernel in [6]. Additional properties
of the domains D are described in Part 2.

The idea for this paper comes from the fact that the operator (1) does not
map I[(b) into I!(b) independently of r. However, there is a well-known
necessary and sufficient condtition for the operator T, given by

(2) (T.N) @) = (&) () R()

(zeD, = {rw: weD}, R(r) a function of r) to be a bounded operator on
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L}(b) ([10], p. 377). Here the necessary and sufficient condition is given in the
lemma. Our method of proof is to obtain two-sided estimates in terms of r for

the integral

(3 (IS@rv,t)lds,  (veb).

b
The exact order of (3) is in terms of the function

1
@ R, () = (1—r)*/log’ .

(x> 0,8 = 0), where a, f depend on the classical domain D and its dimension.
(See Theorems 1 and 2.) These precise ostimates are used to prove mapping
theorems from L!(b) to H'(D) for the family of operators (2), which are
independent of r. Necessary and sufficient conditions are obtained for the
family (2) to map L' (b) into H*(D) and for a related family to map L*(b) into
L}(b). (See Theorems 3 and 4.) A mapping theorem is also proved for p > 1. (See
Theorem 5.) The estimates and mapping theorems are generalizations to
C¥ (N > 1) of the corresponding results for the unit disk.

For N =1 an example of (2) is given by the family

F,(9) =108 = (H,1) (o),

where (H,.f)(¢)= [  67f(6—¢) db is the cut-off Hilbert transform. (See

1-r<lo|<1
[14], Chapter V, or [16].) In order to obtain L' into I! mapping properties of
the family {H, f: 0 <r <1} with bound independent of r we must use the
operators F,(¢). This is so because

IH, 11l ( 1 )
su =0llo = ’
unlfq:o Sl 81—, ) =<0

which is a well-known result. (See also lemma in Section 4.1.) Since fe L,
lim (H,f)(y) exists for almost all ¢ ([14], p. 132, Theorem 100). Hence

Fr1-

lim F (p) =0 for almost all ¢. This last fact was pointed out b)'/ the reviewer

r—+1-~
in [9] for operators similar to (2).

2. The domains D considered are bounded symmetric domains in the
complex vector space C¥(N > 1) with OeD. They possess the following
properties, which are used either explicitly or implicitly in the analysis. The
domain D has a group of holomorphic automorphisms G, which is transitive.
on D and extends continuously to the topological boundary of D, D has a (B-S)
boundary b, which is a compact real-analytic submanifold of C¥. The domain
D is circular and star-shaped with respect to 0 and b is circular; also, b is
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invariant under G, and the isotropy group G, = {9€G: g(0) = 0} is transitive
on b and can be represented by unitary matrices. The boundary b has a unique
normalized Go-invariant measure u given by du, = (1/V)ds, V the Buclidean
volume of b and ds, the Euclidean volume element at teb. If D is irreducible, it
can be realized as either one of the classical domains R, (j = I, 11, I11,IV), which
are generalizations of the unit disk in C', or one of the special domains with
N =16 or 27. The groups G of the domains R, are classical semi-simple Lie
groups. (See (4], (5], [6], (7])

Any bounded symmetric domain has a Szego kernel, S(z,w), zeD, weD",
which is holomorphic in (z,w) on D x D, continuous on DxD~ and has
a singularity on b at z=w. Let 0 < r < 1, Also the slice function S, defined by
§,(z,w) = S(rz, w) is hermitian symmetric, that is S,(z,w) = 5,(w,z). If t b, then

1
S -
(rt,re) Va7
[6]. If zeD,, then

[ISG 0P ds, = O((1—r)~¥*=1)  for p22
b

[10]. For R; and R;, the lower bound for p is sharpened in Theorem 2 of [10].
Note that the function R, g of (4) can be expressed in terms of the Szegd kernel

S(rv,rv)(ved). In [13] (pp. 17-19) the order of [[S(z,t)|"ds, is obtained for the
: b

complex unit ball. Also see [7]. Using the Harish-Chandra realization of
irreducible bounded symmetric domains, Faraut and Koranyi generalize these
inequalities to bounded symmetric domains in Theorem 4.1 of [1]. For the
Harish-Chandra realization and its connection with E. Cartan’s classification
of globally symmetric spaces, which includes the classical domains, see ([5],
pp. 311-327, 281, 354 and [8]). Since the Szegé kernel is unique, the Szegé
kernel of a bounded symmetric domain D, obtained {rom the Harish-Chandra
realization is the same as the Szegd kernel of D obtained from the E. Cartan
classification,

In the remainder of the paper 4, B, C,... are constants, depending on
certain parameters but independent of r and f The constants are not
necessarily the same at each occurrence. Also any complex powers are taken in
the principal value sense.

2. The hyperbolic space R, of Lie spheres
1. Preliminaries. The hyperbolic space of Lie spheres is given by
R,y = {z: [zz>+1-222 >0, |zz'| < 1} (N2=2)
(Z = conjugate transpose of z) with B-S boundary

by ={t: t =e®x, 0< 8 < x a real vector with xx'=1}.
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The complex dimension of Ry is N and the rea.l dimension of by, is N. Its
Szegd kernel at the point e = (1,0, ..., 0)ebyy is

S(re,t) = (1/V) [1 +r2e~ 2" —2rx e ]2,

We find upper and lower bounds for
I(re) = [IS(re, )| ds,.
b

Set

n

g(r, x,) = (1/V) [ |L +r2e™ 20 —2rx e~ |~ N2 4o,
0

Using ([7], pp. 1040-1041),

Irey=2n | g(r,x;)% (% the volume element of xx' = 1)

xx'<1

=2t | g(.x)dx, | £ (F=(0gexn-2)

x<1 2% <(1=-x7)

=C | glrx)(1—x2N-9dx,.
2

g1
Following ([3], p. 527) set x, = cos¢. Then
1412720 _2px,e7 = (1—re '0*) (1 —re~"*~¢)  and
[l—re™ 0292 = (1—r)2+2r(1~cos(0+ @) = [...].
Thus

(1) I(re) =C}sin“"'(pdcp}[...]‘"’4[...]’"/4d0.
0 0

The order of (1) is given in

THEOREM 1. Let N be a positive integer > 2 and O < r <1, For the domain
D = Ry (N),
2) BR.}(r) < [IS(rv,0) ds, < AR} ()

b

Jor veb and r sufficiently close to 1, where o = (N/2)—1, B =0 for N>2,
«=0, f=2 for N=2 and R, is given by (1.4).

To prove the theorem we need the estimates
(3a) Cit* <l—cost< C,t2  for 0 <t < (11/6)m,
(3b) Cy(2n—t)* < 1—cost € C,(2n—1t)* for 4n <t < 2m,
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(3c) Ogsint <t if 0<
(3d) <sint<(n—t) if dn<grgm,
and for £ <r < 1,N > 2 the estimates

(4a) j' xN2=2 dx j (l—r)'ledt<C(1 —y)~WR=1)
1=r
2r x
(4b) f xM2=2dx [ N2 gr < C(1—p)"WI2-D),
1-r 1-r

n/2 n=x
6) [ XA =P +x*] "M dx [ [(1—r)? +£2] M4 de < C(1—r) W2 ),
0 0

If N = 2 (4a) is bounded by log[1/(1—r)] and (4b) and (5) by log*[1/(1—7)]. In
(4b) note that

x 2x
Mt < C(1—p~?™2~D  and | x"N2"2dxgC
1-r 1-r
if N > 2 so that (4b) holds. The estimate is clear for N = 2. The proafs of (4a)
and (5) are similar.

The method of proof to obtain (2) for N> 2 used here is to subdivide the
integral I(re) in (1) into convenient pieces and to use certain estimates to get the
order. Another method to find the order of I(re), that has been suggested, is to
use the residue theorem to estimate the cases N = 4M(M = 1,2,3,...); then
Hélder's inequality gives the intermediate cases 4M < N < 4(M +1). The cases
N =2 and 2 < N < 4 are evaluated separately.

2. Proof of the upper bounds in Theorem 1 for N > 2. Since I(re), given by
(1), is bounded for 0 < r < 1/2, we need only consider 1/2 <r < 1. We break
I(re) into:

1-r p+(1-r) n %
I={I I + I ." }dr((pso)Ell"'Il,
0 0 n—=(1-r) e—(1-7)

a—(1—-r) p+(1-1)

= [ .0,0),
1—-r @—(1-r)
r e—=(1-r)

m=f§ [ o,(p0),
1-r 1]
1-r " n/4 n n—(1-r) g
w={f | +f § + [ | }d4i0)
0 o+(L—-r) 1-ret+(l-r) n/4 o+(1—r)
EIV1+IV2+IV3,

where
(sin )N "2 depdb
'ﬁr(go’ 0) =C [ ] ‘]N/4 [ . .]NI4'
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Estimates for I-IV. We show that I is bounded and that II-IV have the
upper bound O((1—r)~"2*1),

(a) By (3a), (3b) and (3d)

r=(1-r) n
w,<C | (m-gf2dp [ [(1-r+0—)P1""*
n/4 et+(l—r)

x [(1=r)?+@2r—(0+ ¢))*]~ V4 d0.

After making the change of variable u = 0—¢,v = n—¢ the estimate follows
by (4b). By similar arguments estimates for IV, and IV, are obtained.

(b) By (3¢) and (3d) we have

nf2 n
HI<C{ | " *do+ [ (n—)"~2do)

1=r n/2

e—(1-r)
x [ [.]MA[LITNRAD = 11T, 4110,
o

(i) By (3a) and (3b)
e—(1-r)

HL,<C [ mgP 2y | (1= +(0—gF]
n/2 0

x [(1—=r?+{2rn—(0+ ¢))2] M da.
Set u=¢@—0 and ¥ =nt—¢ and the estimate follows from (4b) and (5).
(i) By (3a)
-1~

8/2
I, <C | ¢"2do [ (p—0)"(p+6)""2d0
1=r 0

n/2 [
SC | " 2de | u~N?duy,

1~-r 1=r
were u = @—0 and the result follows by (4b).

(c) For II we have
18k r~(1-r)
HN<Cl-ry™2{ | + [ }sin" 2qde
1-—r (7/8)n
et(l-n)

x [ [(M=r?+2r(1—cos(0+¢)] M*do

a=(1-r)
=11, +11,.
(i) By (3b) and (3d)

rR—={1l-—r (1-¢)

) o+
H; <CU=-nN" | (-0)""2dp | [2n—(0+¢)] M2d0.

(7/8)n e-(1-r)
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Setting # = 2n—(0+¢) and then s =2(n—p)—(1—r) gives

n/4=(1-r) s+2(1~r)
H, < CA=n72 [ s¥24s [y =N2gy,
1-r s

from which the result follows by (4a).
(i) By (3a) and (3¢)

_Nz('TIB)ﬂ e+(1-r)
I <CU-n™2 [ ¢"2dp [ (0+¢)™?do
1-r p—(1-7r)
(7/8)r

SCA-nN2 [ oN=2dp < C(L—r)* N2,
1-r
(d) In I, set y =n—¢, t=n—0. Then I, =1, and

p+(l1-r)

1—-r
Iy [ " 2de [ [(1=1P+2r(1—cos(p+6)] M4 [(1—7)
0 0

+2r(1 —cos(p—8))] N4 4

1~r 2(1-r)
<Cl—r"2 [de | do<C.
0

0

This completes the proof of the upper bound in (2).

3. Proof of the lower bound in Theorem 1. The integragds of I, II, II],,
II1,, IV and intervals of integration are all non-negative for r > 1/2. Hence

n/2 p—(1-7)
P2 I 1, =C [ | o, (06
)

1=-r

We show that the lower bound of III, for N > 2 is -C(1—r)""2*1 and for
N =2itis Clog?[1/(1—7)].
. 2 .
For III, since 1—r < @0, 1—cos(p+0) < Clp+0)% sing >Ecp in

[O,Ejl and ¢+0 < 29, we have

2
/2 e=(1-r)
(©) 1> C [ ¢" 2 | (p—0)"{p+0)"df
1-r 0
~/2 p=(1-r) :
2C [ o"*"2dp [ (p—0)""?d6.
1-r 0

Set u = ¢@—6 in the inner integral and integrate. We get if N > 2

x/2 QMi22 » 1 1\
I(re)> Cl:‘:r(mﬁl—zq—q, >d(p> C(;—I—log; ’
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where s = [2(1-»)/r]V?~ 1. But 1/2s > 1 +log(1/s) for 1—r sufficiently small.
Thus I(re) = C(1—r)¥*~*. If N =2 the inner integral in (6) is

t 1
[ uldu= log(p+log$ =>logp, and I(re) = Clog’m.
1_

This completes the proof of Theorem 1.

Remark. Theorem 1 is likely true for any p, 0 < p < o0, but the details of
the proof would be more complicated.

3. The matrix spaces R;(j = L II,11])
1. Preliminaries. The classical domains R, (j = I,II,1II) are defined by
D ={z: I-zz* > 0},

where z is a matrix of complex numbers, z* its conjugate transpose and I an
identity matrix. If D = R;(m,n) (m < n), z is of order mxn and I of order m;
R,(1,n) is the complex unit ball in C"; if D = R;;(n), z is a symmetric matrix of
order n; if D = R;;;(n), z is a skew-symmetric matrix of order n. The B-S
boundary is given by

b={z zz* =1]

where z is an mx n matrix for R,(m,n), a symmetric unitary matrix of order
n for R;;(n), a skew-symmetric unitary matrix of order n for R;(n), n even. For
n odd

-10 -10

The complex dimension of the domains R, is mn, (n/2)(n+1), (n/2)(n—1)
respectively, while the real dimension of their B-S boundaries is m(2n—m),
(/2)(n+1), [n+(1+(=1)""")] (n—1)/2 respectively [6].

The Szegd kernel is

b= {UDU" U is unitary and D=( 0 1)4-...-}- ( 0 l) +0}.

1 i
S(z,w) = Vet (I —zw%) (zeD, weD™),

where V is the volume of the domain b, a=n for R,(m,n), (n+1)/2 for
R;/(n), (n—1)/2 for Ryy(n), n even, and 4n for R, (n), n odd.

2. Upper and lower bounds for the integral

I(rv) = [|S(rv,t)|ds, (veb, 0<r<1)
b

are given in

THEOREM 2. For matrix spaces R,(n,n), R, (n), and R;;; (neven)
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(1) BR;; (r) < [IS(rv,t)| ds, < ARZ} (),
b

for allveband 1—r .mﬂ‘ iciently small. If n is even for R, and R,,, then f =0 and
o = n2/4 for R; and n*/8 for R,; if nis odd f =1 and a =4(n*~1) for R, and
$(n*—1) for Ry,. For Ry, if n = 4u, u a positive integer, then f = 0 and a = n2/8,
ifn = 4u—2 then B =1 and o = (n—4)*/8. Upper bounds for R; (m < n) and R,
(n odd) are given by (30) and (27).

Proof of Theorem 2. The upper bounds in (1) were obtained for the
spaces R;(n,n) and R;;(n) in [12].

3. Lower bound for the space R;(n) = R,(n,n). By formula (2.1) of [12]

n 2x
Ir)=CT] [Il—re'®™~md0, TJ] | —e"?
k=1 0

1Sj<k<n
o nf2 ] In/2 ) ) .
CIT fn—re®="do, T] § 11—re®™~"d0, T[] le%—e 3,
k=10 k=¢+1 O ISj<k<n

where o is a positive integer to be chosen later. It can be shown that

g nj2k
I} 2 C[] j 1—re'™="dg, ] |e%—e®?=CU
k=1 0 1<j<k<a

and
nj2e nf20-1 n/2 a
@ U= (do, | db,_,...[ do, [TI1—re®™™ [ [e"—e™.
1-r 20 262 k=1 1€ J<k<o
From the inequality |a—b| > |aj—|b| follows for 0 <r <1
) €% — e%(2 > (|1 =] —[1 —re®)?,
also, there exists a constant b, 0 < b < 1, independent of 7, §, and 6, such that if
0,>20, for j<k l-r<@ <mand r>%
4) [1—re'®™ < b|1—re®|.
Under these restrictions on 6, 6, and r by (3) and (4)
(5) et —e'%{* > B|1—re®|* (B=1-b)
for any o > 0. Inequality (5) implies that

o
(6) [T 1€ =€ > Bll—r®**™) (1<j<oa).
k=j+1
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Also since Bk z1—rand r =3

(7) > (6 +r0}) = $[(1 =2 +r0F] > 3[1—re'™>.
Use (6) with « =2 in (2). This gives
nj2° nj2e -1 n/2 Py
®) U>C | do, | dO,_,...§ db, [T 11 —re®
1=r 264 20, k=1
If n is odd, take o = 3(n+1). Then 2(c—k)—n =1—-2k and by (7)
w2e  m2e-t )
U>C [ do, | dO, .. ] do, []01 2
1=r 20, 202

In the following assume that 1—7 is so small that the lower bounds are all
positive. Note that 6, < 1 for 2 < k < o so that 0, < 0i’%. Also, the set

©) (6:26, < < A} > {6: 26, < 0 <20}, 0, < (4/27},
since 2012 < A. Here A takes on the values n/2*. When A = n/2
/2 nj20-1 /22 20472
A>C [ d, | db,_y... | do, 1’[01 %197 do,.
1-r 28, 203 202
The inner integral equals %log(1/6,). Repeating with 4, = (4/2)*
(4 =4 4y . 2047
WzC | d, | df,_,... | d0,]0i%* [ 03°log(1/6,)do,.
1-r 20, 20, k=3 203
The inner integral > Blog(1/2%6,)05 2 so that
74 #=E4Y) 4 c
W>C | db, | dB,_y... | dby [] 0L 2*03*log(1/220,)ds,.
1-r 20, 204 k=3

Notice that upon integrating the power of 0, is decreased by 1 and the
subscript in the denominator increased by 1, that is, 63 — 02. Repeating the
above argument the exponent decreases by 1 for each 6,, 2 < k < o1, while
the subscript k increases by 1. Thus we get

(4o-2/2)? 1 o-2 Ji=r
A>C [ do,0;"log— [[62"%*>2C [ log—0t*~+14p,
1-r C60k=3 1-r 00
where c¢=2% a>1 Since (c6)"!'2(2(1-7)""2 and log(l/ch) >
> Blog(1/(1—7)) for 1—r sufficiently small
Jl r
(10)  I(rv) > ClogL j 0= @*=e* g0 = C(1—r)~*~ 1”"log] !
If n is even take o = n/2. Repeating the above procedure, we get

(11 I(rv) = C(1—r)~"4,
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The lower bounds (10) and (11) for I(rv) for the domain R,(n) have the same
order as the upper bounds in [12].

4. Lower bound of I(rv) for the space R, (n). We proceed as for R,(n). By
formula (2.2) of [12]

n 2r

I(rv)=C ] | df,|1—re®|~+2  TT | —ei%,
k=1 0 1<j<k<n
Similarly as for (8), by (6) with o« =1
nf2° rf29-1 n/2
(12) I@)=C [ do, | db,-,... | do, H |1 —pe'fx|e—k=0+1)2
1-r 20, 20, k=1
If n is odd, take ¢ = (n+1)/2 which gives by (7)
n/2¢ nj20-1 n/2
(13) Iroy2C § dO, | db,-y... [ db, H 6"
1—-r 20, 202

> Clog-—l—"/j%” Aot -er2iz 5 C(l—r)"‘""”’“log—l—

l—r,-, 1—r
If n is even take o = (n+2)/2, which gives
(14) I(rv) > C(1—r)~"8,

The lower bounds for I(rv) for R;,(n) given by (13) and (14) have the same
order as the upper bounds in [12].

5. Bounds for I(rv) for the space R;;;(n). For Ry, (n)
-1
(15) I(rk,) = %ﬂdet(l +rkot) "%ds, a = 112— for n even and « = 4n for n odd
b

where k, is a skew-symmetric unitary matrix and 0 < r < 1. Let n be even.
Without loss of generality take

o= =(_{ o) (L1 o) #-4(_T o) tmmbn vimes)
By ([!1], p. 385)

|det(I+rD,t)| = |det(I—rtDy) = ] |1—re'??
k=1

since tD} is unitary and hence unitarily equivalent to a diagonal matrix
d=[e%,...,e"], where 01 =0, = ¢, (1 <k <m). Under the transfor-
mation v = tD, bob' = {v: v =tD} = UdU’, teb, U unitary}. By a calcu-
lation following ([6], p. 56) and using ([15], p. 60) the volume element of b’ is

ds, = C12 H e —el?*do, ...do, U.

1<j<k<m
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Then (15) with k, = D, equals

m 2n

=C 1—reteq~"~ Vg |ees — etou|*,
(16) 1(rDy) kl;ll g | l "1-.:;11&.
Upper bounds for the integral (16). The lemma in ([12], p. 374) with
a,=|1-re’|, a =2, p=n—1, gives

2n
16D < [ [ [1—reop*i=**dg,.
k=10

2n
It is well known that [|l1—re®%dp, =0((1-r)"®"") if g>1,

0
= O(log(1/(1-7)) if g=1 and =0(1) if g < L.
If n = 4u, u a positive integer, 4k—n—1<1for I £k <u and > 1 for
u+1 < k <m=2u This gives
2u 2n
17 IrD,) < C J] [ll=réo*i=*de, < C(1 L
k=u+l 0
fn=4u-2 4k—n—1=1fork=u, <lforl<k<u-—1and >1 for
u+1 <k <2u—1=m. This gives

1
(18) I(rD1) < C(l —T)_("z—4)la IOgT-_—r'

Lower bounds for the integral (16). As for R,(n) and R,(n) by (6)
with & = 4 (see (8) and (12))

®[29 n/29-1 w2 p
(19) I(D)=C | do, | de,-, | do, []11—reexste=b=on=1),
1-r 2pe 203 k=1

Choose o as the largest integer < (n+3)/4. If n/4 is an integer, o = n/4. If
(n+2)/4 is an integer, oc=(n+2)/4. The integrands in (19) are

L4
IT 11 —re®{~ @1 if ¢ = n/4 and ] [1—re'o|~@*=3 if ¢ = (n+2)/4. By (7)
k=1 k=1

these integrals are greater than or equal to

@) CIler™ " @=nd), C[lor*® (o=(n+2/4
k=1

kel

respectively. Integrate (20) with respect to ¢, (1 < k < 0—1). By the same
reasoning as in Part 3 we get

(21) IPD) = C(1—r)""® if u=n/4
and
(22) I{rD)) > C(1 —r)~»-%18 10,;L if  u=(n+2)4.

1=r
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The order of the lower bounds given in (21) and (22) for R, (n even) agrees
with the order of the upper bounds (17) and (18) respectively.

6a. The case Ry, (n odd). By ([7], p. 1073) the closure of R, (r) can be
embedded into that of Ry, (n+1) and b, = b, (n) = b, , = by, (n+1).
The Szegd kernel of R, (n) is

(23)  S(zt)=1/V,det(I+zt)"* (zeRy,(n), teb, and V¥, = V(b,).

By ([7], p- 1073) any ¢, &b, can be written in the form ¢, = ( ::U U ’(‘))

t=U'DU, U an arbitrary unitary matrix and h = (0,...,0,€"), 0 <0 < 2n
Thus teb,. Also

(24) Vo=(1/2m) V5.
0 .
Let z, = (8 0). It is easy to check that z,eR;(n+1). Also

(25) det(I"* ! +2,T,) = det(I" +zt).

Hence, by (25), det(J"*! +z,¢,) is independent of U’/ and by (24) we get the
formula

1 f ds, 1 [ ds,,

Vas, det I"+Z_)|"/2 V1o, det(" ™1 +2,2)"?

0
Now set z=rv, where veb, O0<r<l and v,=<g 0);vl¢b,,+1,

(26)

v,€R;;;(n+1)—R;;;(n+1)—b(n+1). Let v, be an arbitrary point of b,,,.
Then

1 ds 1 ds
27 t f1
7 Ty el 7N AT P iS4 L
< sup 1 { ds,,

Va +1bpat IdCt(I"+ 14 r”ot-Ll)lnlz

vo&bn + 1

by the maximum principle.
The upper bound for R,;; (n odd) follows by (26) and (27) from the upper

bound for R"’(n"'l).
6b. The case R,(m < n). Here we wish to find the order of the integral

(28) [ 1S(rv, 1) ds,

bimin

where b, is the B-S boundary of R;(m <n) and veb,,.
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Upper bound for (28). We obtain a formula for (28) over the B-§
boundary b, of R,(n). Then use the upper bound given in Theorem 2. Let

) Im—zz* 0

0 Iﬂ'm
. v ,
positive definite. However, note that the point v, = (0) (veb,,) ¢b, since
"0
v, v} = ((I) 0) #1I"
Now det(I"—z,t}) = det(I™—zt*) so that by ([6], p. 94)

1 ds, 1 [ ds;,
@ g St = | e 2o~ Voo @ -, 007

bmn mn bm

Set z=rv (veb,,)z, =r, = r(g) By (29), the maximum principle and

Theorem 2
[ I1S(rv,0)l ds, < sup [ [S(ruy,t,)ds,,
bmn ugebp b
(30) S A(1—p)" if n is even,

< A(l'—-r)"""’”"‘log-l—-i—r if n is odd.

(A independent of r.)

Lower bound for (28). Since there is no minimum principle, it is not
possible to get a lower bound by this method. A determinantal inequality
due to Hua (Scientia Sinica, Notes 1, vol. XIV, No. 5 (1964)), viz, for
I-ww* >0, I—z2* >0,

det(I —ww*)det(I — zz*) < |det(I —wz)|* < det(I +ww*)det(I + zz*),
yields
1 S 1
|det(I"—rv, th)* = (1 +r)*

so that by (29)

1
(31) [ 1S(rv,0)|ds, > w

bmn

This completes the prool of Theorem 2.
4. Mapping theorems

L Let {U,} be a family of linear operators defined on a measurable set
b and depending on a parameter r, 0 <r< 1. We say that the family
{Us 0<r <1} maps L'(b) into L' (b) uniformly if
”Urflll < C”f”ls

where C is independent of f and r.
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For example, the family ({F (¢): 0<r<1} of ‘Section 1.1 maps
([ —mnn)) into I ([—mn,=]) uniformly.

Let D be a bounded circular domain in C¥ with 0e D, which is star-shaped
with respect to O and has a measurable B-S boundary b. Let K(z,w) be
a measurable funotion defined on Dx D~ with the properties:

(i) the slice function K, is hermitian symmetric on b x b;
(i) for each r, 0 <r <1, and veb,[|K,(v,1)ds, < B, < oo, where B, is
b

independent of wv.
Let T, be the operator defined as in Section 1 by

) (TN = !K(z, 0f()ds, (zeD, fe L'(b).

‘We give a necessary and sufficient condition that the family of operators
{T: 0<r<1} maps L'(b) into L'(b) uniformly.

LEMMA. A necessary and sufficient condition that the family of operators
{T: 0<r <1}, given by (1), maps uniformly from L (b) to L'(b) is that

(2) sup esssup [|K(rv, 1) ds, < C < o0,
0fr<1 veb b

Proof. Condition (2) is sufficient. The inequality ||7,f]|, < C||f]l, follows
immediately: from Fubini’s theorem, the hermitian symmetry of K, (v, t) and (2).

Condition (2) is necessary. Assume for arbitrary fe L' (b) that

A) ITS1l < Cllf iy

where C is independent of f and r, and prove that (2) holds.
If ge L®(b), then by Fubini’s theorem, the hermitian symmetry of K, (v,)
and (3)

@ Iff @) ds, [ K, (v,0)g(8)ds) < llgll { ds,| [ K, (t,v) J (v) ds,|
b b b

where C independent of f, r and g. The linear functional given by

S,(f) = [f0)ds, [K.(v,t)g(t)ds, (feL'(b), ge L™ (b)
b b

is bounded, since by (4)

S
isi= sup S cpg,

irimo 11

where C is independent of g and r. The rest of the proof of condition (2) is
standard and the necessity of the lemma follows.

6 — Aunales Polonici Math. 521
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2. First mapping theorem. Apply the lemma to the domains R, Let
K, s(z,w)=S(z,w)R, 4(r) (z€D,, weD"),

where R, ; is defined by (1.4) with values y, é related to o, § in Theorems 1 and
2. K, satisfies properties (i) and (i) of Section I; (ii) follows since K, , is
continuous. By (1)

0 (TV, 1)@ = [S(z,0f (t)ds, Ry ()  (zeD)).
b

Then:

THEOREM 3. Let D be one of the classical domains R,(n,n), R, R, (n even)
or R, with B-S boundary b. The family of operators §,, = {T{y 0<r< 1},
T, f given by (5) maps uniformly from L' (b) to H' (D) if and only if either y > q,
& arbitrary or y=a, 8 > B. For R;(m <n) and Ry (n odd) the condition is
sufficient for the family §,, to map uniformly from L'(b) to H'(D).

Proof. Assume that either y > &, § arbitrary or y =&, 6 2 f§ and prove
that T¢) maps L' (b) uniformly into H*(D).
By Theorems 1 and 2 and the hermitian symmetry of S,(v,t)

B < [IS(rv,t)lds, R, p(r) < A.
b

Multiply by R, _, 45 (r). Since (1 —r)*/log?[1/(1 —r)] is bounded on 0 < r < 1 if
a> 0, b arbitrary or a=0, b > 0, we have

(6) BR,_,5-5(r) < [IS(rv, t) ds,R,;(r) S AR, _o5-5(r) < A.
b
Since TVf is holomorphic in z on D, we use the H! metric

IT% fllw = sup [UTY) f)(erv)lds,.

0<e<1 b

By (5), Fubini’s theorem and the monotonicity of the mean {1S(erv, 1) ds, in
b
e ([4), p. 523)

NT5s Mg < { |f ©) ds, [I1S(rv, t)ids, R, o(r) < A1/,
b

by (6), where 4 is independent of f and r. Thus the family §,, maps L (b)
uniformly into H(D) if y > «, & arbitrary or y =a, 6 > §.

Conversely assume that the family {,; maps L' (b) uniformly into H*(D)
for the domains R;(n,n), Ry, Ry (neven) and R,, and prove that either
y > a, & arbitrary or y = «, 6 > f. We give a proof by contradiction. Suppose
first that y < « and ¢ is arbitrary. In (6) take sup with respect to t, giving
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BR,_s-5(r) < sup [|S(ro, 1) ds, R, 5(r) < AR, g 4-p(r).

teb b
Hence
(7 sup sup [|S(rv, 1) ds, R, 5(r) =
0<€r<1 veb b
and by the Lemma the family §,; does not map L’ (b) uniformly into H*(D).
Thus y > a. Similarly if « = y and § < f§ (7) bolds and §, , does not map I (b)
uniformly into H* (D).

3. Second mapping theorem. Let D =R, R,, R,; or R,. Take
&, 0 <e< 1, and define the operator L} by

(LN = inf  [IS(ro,0)|1f () ds, R, 5()

1-axsr<1d
(veb, fe L' (b). The function L}*f is non-decreasing in ¢ as £—0. Hence the
limit exists as an extended real-valued function. Let

(8) L f = lm L} f.
&~0
Then: .

THEOREM 4. Let D be one of the classical domains Ry(n,n), R;;, Ry (n even)
or Ry, with B-S boundary b and fe L' (b). Then L'°f given by (8) is a bounded
operator from L (b) to L (b) if and only if either y > a, 8 arbitrary ory = a, 6 > p.
The condition is sufficient for R; (m < n) and Ry (n odd).

Proof. Assume that either y > «, § arbitrary or y =a, § > f and prove
that I*f maps I! (b) into. By a property of inf, Fubini’s theorem and Theorems
1 and 2 we have

{(LZ"’f)(v)dS., < Allflly Ry—a,5-5() < AllSll,

(A independent of e), since R,_, ;_4(r) is bounded. Hence by the monotone
convergence theorem

L™ 1y —I(L”f)(v)ds = lim [ (L?*f) (v)ds, < A|If ]I,

e=0b
if y > «,6 arbitrary or y =a,0 > f and A4 independent of r and e.
For the necessity of Theorem 4 assume that L** maps I (b) into L (b) and
prove that either y > a, & arbitrary or y =a, § > B. Assume that y <a,
d arbitrary. Take f= 1. Then feL (b) and by Theorems 1 and 2

(LZ’J 1) (D) = inf j IS(P'U, t)l dS,RT'J (T) P B inf Ry—u,d—ﬂ (r)’

1-esr<1 b 1-e<r<l1
where B is independent of f, r anld e. Since 1/(1—r) = 1/e
9 LDz inf logf” ‘ : / (1—-7*"7 (y <a, o arbitrary)

1-s<r<1

> (log 1/6)? ~%/e* ™Y
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for 1—r sufficiently small. By the monotonicity ‘of L1 in ¢ as -0
1/ .-
(10 1)) ds, > [(L241)(6)ds, > Blog "™~ /,,-a ,
b b

by (9). Thus if y < e, & arbitrafy the right side of (10)—co as e—07 so that
f(L*f)(v)ds, is not a bounded operator from L (b) to L (b) for all fe L' (b,
;imilarly if y = o, & < B. Hence either y > «, § arbitrary ory = o, 6 > f and the
necessity is proved.

4. Mapping theorem for p > 1. Let fe IZ(b), p > 1. Define the operator T, by

(T.)@) = [K,(z0)f()ds, (zeD),
]

where ¢ > g, >0 and

S , 1+0/N
(11) K,(zf) = —L(:-(?t)z)T

The constant ¢, depends on the complex dimension of the domain D and
constants, which come from the underlying Lie group theory in the Ha-
rish-Chandra realization of an irreducible bounded symmetric domain.

Fix rin (0,1) and set z = rv for veb. Then T, depends on r and we call the
operator T¢:

(12) (T ) (v) = [ K, (ro,0) f(t) ds,.
b
THEOREM 5. For the classical domains the operator T$ (¢ > o) given by (12)
is a bounded linear operator from I/(b) to H?(D) for p> 1 and
(13) ITS fll, < Allfll, (A independent of r).
Proof Fix r in [0,1) and note that
S(ro, e)* *™¥
K, (rv, = |
'l‘;l ,(TD t)l dsr .!; |S(rv, rv)lalN

since as noted in Section 1 for the classical domains S(rv,rv) = 1/V (1 —r)" for
all veb(6).

The bounds in Theorem 4.1 of [1] using our notation, are

ds, = C(1—r2 [|S(rv, )| **/N ds,,
b

(14) BS(z,z)"N £|S(z, O**tiNds, < A S(z, 2"V
for 0 > a4 If z=rv(veb) (14) becomes

B(1—-r¥)"" g {]S(rv, O *teNds, < A(1—r?)"",
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Thus
(15a) [IK,,(rv, t)ds, < A1—r?)"-(1-r?)"° < A,
b

where A is independent of r. By the hermitian symmetry and homogeneity of
K,, also,

(15b) [IK, (v, ) ds, < A.
b

By (15a) and (15b) and standard arguments we get our result.
The same theorem holds for the operator T given by

. B S(Z, t)1+a’N
(T@f)(2) = {Wf(t)ds, O<e<l),

where ||T® fll, < Clifll,, and lim T@ f exists in I?(b).
a1
In this case (7@ f)(z) is a holomorphic function of z and the mapping is
from I7(b) into HP(D),
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