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Some remarks on an operator equation in a Banach space

by BoGpAN RzrEPECEI (Poznan)

Abstract. In this paper we give theorems on the existence of solutions of the
_equation 2 () = (¥ z)()in which # is an operator on the space of continuous functions
from an interval I to an infinitely dimensional Banach space E. Assuming that &
admits an approximation by a sequence of operators #; satisfying some regularity
conditions with respect to the so-called measure of non-compactness, we prove that if
the approximation is ‘‘good enough'’, then equation ( +) has a solution.

The results of this paper extend the results of papers [11], [12], [14], and [15].

Let E be an arbitrary Banach space with a norm ||-|| and let I = [0, a].
Denote by C(I, E) the space of all continuous functions from I into E with
the usual supremum norm |[|[|-[||. ,

In the present note we are concerned with the equation

(+) w(-) =(Fa)(),

where z(+) is an unknown function and #: C(I, E) - C(I, E) is known.

1. We shall deal with equation (+) using the method developed by
Ambrosetti [1] and Rzymowski [15] for the existence of a solution of
Cauchy problem for an ordinary difféerential equation in a Banach space.
This method is based on the properties of a set function a which can be
considered as a kind of “measure of non-compactness”.

DerFINITION (K. Kuratowski [9]; [10], Vol. I, p. 318). For any bound-
ed subset V of a space E we denote by a(V) the infimum of all ¢ > 0 such
that there exists a finite covering of V by sets of diameter < &.

The number a(V) is called the measure of non-compactness of the set V.
For properties of the function a see [3], [1], [4], (6] and [10]. In partic-
ular, for arbitrary bounded subsets 4, B, 4, (n =1, 2,...) of a Banach
space E, we have(!)

(a) if A < B,thena(4) < a(B);

(4) 4 denotes the closure of A, and conv (A4) the smallest convex set conta;ining A.
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(b) a(4 + B) < a(4)+ a(B);

(¢) a(g-A) = |q|-a(A) for real g;

(d) a(4) = a(4);

(e) a(convd) = a(4);

() a(4) =0 if and only if A is precompact;

(g) if A,,, = A4, for every » > 1 and if lim a(4,) = 0, then ﬂA
is & non-empty precompact subset of F. nvee n=1

The sot X < C(I, E) is said to be regular if it is bounded and all funec-
tions belonging to X are equicontinuous.
ForX <cC(I,E), V < E and tel we write

X(t) = {w(t): e X}, fX(s)ds = {fa:(s)ds: a:eX},

= {& e C(I, E): x[I] c V},

where z[I] denotes the image of I by the function z.

Let X « C(I, E) be a regular set. We shall repeatedly make use
of the following generalization of the Ascoli-Arzela Theorem, due to
Ambrosetti [1]: -

a(X) = a(|J{X(¥): teI}) =supla(X(#)): tel}.

Moreover, the following inequa.lities holds (Goebel and Rzymowski [5]):

(fX(s)ds) (X(s))ds for tel,

e (X (t) —e(X(8))| < W(X, {t—s]) for t,sel,

where W (X, -) denotes the common modulus of continuity forze X.
Let X, < C(I,E), X,,, c X,forn =1,2,...and let X, be a regu-
lar set. Then the following theorem holds:

1° lim a(X,,(t)) = g(t) uniformly on I, where g is a continuous func-
tion and lim a(X,) = sup{g(t): t e I}.
n—o0
2° If hm a(X, (t)) = 0 for each t € I, then ﬂX 8 a non-empty com-
=1
pact subset of C(I, E).

The proof of these theorems is similar to that given in [15]; it results
easily by the Goebel-Rzymowski inequality, Ambrosetti’s theorem and
properties (a)—(g).

2. Throughout this section we assume that %, is a non-empty regular
convex subset of C(I, E), #: ¥,—~ %, i8 a continuous operator and
Fio X, > % fori =1,2,...
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We shall now prove that, if the approximation of # by the opera-
tors #, is “good enough”, then equation ( 4) has a solution.

We introduce the following

DEFINITION. A continuous function #: I — FE is said to be a solution of
equation (+) if # € ¥, and z(t) = (F x)(1) for every t € I.

Let us denote

X, =conv(#[2,]) forn=0,1,2,...

By the theorem from Section 1 and by Schauder’s fixed point theorem,
we obtain

THEOREM. If lim a(Z,) = 0, then equation (+) has at least one solu-
tion. e

This theorem is a modified version of Rzymowski’s result [15],
Theorem 1 (cf. [2], [18]).

We denote by C*(I) the space of all continuous functions mapping
the interval I into [0, oo) with the usual norm and natural partial order <.
Let us write fort e I

7.(1) = a(Z,(t)), g(t) = lim g,(?)

n—-o

and let
a; = sup{a((F —F,) [%,](?): t e I},

g (t) =g(t) fortel,
o) (t) = a;+(D,al)(t) for tel and k> 2,

where @, is an operator from the following

ASSUMPTION. Suppose that there exist operators &,: C*(I)— C*(I)
(#=1,2,...) such that

1° for an arbitrary non-empty subset % of %, we have a(#,[Z](?))
< (D;9)(t) for each t € I, where y(f) = a(Z(1));

2° if (y,), ¥, € 0t (I) is a non-increasing sequence convergent to ¥,,
then the sequence (®,y,) converges to P,y, as n — oo;

3° if g(t) < a;+(D,g)(t) for t eI, then g < ) for n > 1;

4° there exists lim z?(¢) fort e 1.

n—>m

The following theorem holds:
THEOREM 1. Let conditions 1°-4° be satisfied and let

infsuplima{9(¢) = 0.

i>1 tel n—oo

Then equation (+) has at least one solution.
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Proof. It is easy to verify that

F(X,] € F,(Z,)+(F —F)[2,]
and therefore

al# [Z,1(0) < dF,[2,](1) + a((F —F,) [%,)(1))

<
< a +(¢igu) (t)
<

t
for teI. Hence g¢,,,(t) < ¢,(?) < a;+(9D;g,)(?) for tel.
We have
limg,(f) = g(f) uniformly on I
n—00
and, consequently, g(t) < a;+ (®,;9)(t) fort € I. Hence g < 2z for i, n> 1.
This implies
g(t) < suplimz{’(t) for tel and i>1,
tel n—o0
which means that g(¢) = 0 for each t € I, and this proves our theorem.
It is easy to verify that if @, preserves the partial order and g(t) < a,+
+(®,9)(t) for t eI, then g = 2! < 2§ < ... Therefore, from the proof
of Theorem 1 it follows:
PROPOSITION. If conditions 1° and 2° are satisfied and if ®; preserves
the partial order, then g(t) <« (1), (z¥(t)) is a mnon-decreasing sequence
and lim z{)(t) = sup a{)(t) for each t e I.

n—o0 nz=1
THEOREM 2. Assume that there exist constants 0 < K; <1 (i =1,2,...)
such that a(F,;[F]) < K;-a(X) for every subset & of %,. If

inff{(1-K,)""-a;:4=1,2,...} =0,
then equation (H-) has at least one solution.
Proof. Let us put (P,7)(t) = K;-sup{z(t): tel} for zeC*(I).

Obviously, @, acts on C*(I), is monotone and satisfies condition 2°. For
X < %, and t e I, using the Ambrosetti theorem, we have

a(F:[2]1(t) < a(#,[Z]) < K,-supla(Z (?)): teI}.

Consequently, conditions 1°, 3° and 4° are satisfied.
It is easy to verify that

o (t) = a;+ K;-sup{g(?): te I},
n—2

29(t) = a,,.+a’..2 K;+ K} '-sup{g(t): tel} for n>2,
r=1

where lim z\(f) = (1—K,)"'-a, for teI and i>1. An application of
n—>o0

Theorem 1 completes the proof.
THEOREM 3. Let condition 1° be satisfied, let the operators @,
(1t =1,2,...) be linear and suppose that the speciral radius of each operator
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18 less than 1. If
inf sup@;(t) =0,

i>1 tel
where G, € C (I) is the solution ‘'of the equation
(++) x(t) = a;+ (P;z)(t),

then equation (+) has at least one solution.

Proof. The operators &; are monotone and satisfy condition 2°.
Then conditions 3° and 4° are also satisfied. Applying Theorem I1.2.2
from [7], p. 26, one can see that lim #{) = @,, where G, is the solution of

n—-00

equation (+ +4). An application of Theorem 1 completes the proof.

3. Now we are going to give some example of application of Theorems 1
. and 2 to the theory of differential equations. The results of this section
extend those of the previous works [11], [12] and [14].

Let B = {z e E: ||z—z, < r}. By (PC) we shall denote the problem
of finding the solution of the equation

@' (1) = (Fz)(?)
satisfying the condition
z(0) = @,

F being an operator from B to C(I, E), and the derivative being under-
stood in the strong sense(2). _ A

In the case when (Fz)(*) =f(-,:v(-)), where f: I X B— FE is known,
problem (PC) gets the form

(*) w'(t) =f(tv m(t))v :E(O) = @y.
As regards theorems on the existence of solutions and properties of the
set of solutions for problem (%), see [1], [2], [5], [15], [16], [17], [18] and
[19]; for problem (PC), see [11], [12], [13] and [14].

Suppose that F: B — C(I, E) is a bounded continuous operator.
Assume, moreover, that the operators F;: B—~>C(,E) (i =1,2,...)
are continuous and bounded with the same constant K and let L =
max (M, K),a-L < r, where M = sup{|||Fz|||: z € B).

Let Z, be the set of all € B such that x(0) = z, and |[z(t) —z(s)|
< L|t—s| for ¢, 8 € I. In this case the set %, is convex and regular. The
question of existence of solution for (PC) is equivalent to that of the
existence of a fixed point of the transformations

. ¢
(#2)(t) = @+ [ (Fa)(s)ds

(*) A function z: I — F is said to be a solution of problem (PC), if it is a differen-
tiable function on I such that z(0) = z,, z(t) e Bfort €I and (1) = (Fz)(f) fort e I.
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in theset &,. Now, in the set %, we define transformations #; (i =1, 2, ...)
by the formula

(Fa)(t) =zt [ (Fya)(a)ds.

Obviously, each #; maps %, into itself.
We have the following:

COROLLARY 1. Let there exist a constant k = 0 such that
aU{F:2)[I): ze VY <k-a(V) (1=1,2,..)
for every subset V of B and let a-k < 1. If

infsupa( f (F— F,)[.Q‘o](s)ds) =0,
i>1 tel

then there exists a solupion of problem (PC).
Pr:oof. It suffices to verify the assumptions of Theorem 2.

Let X < X,. For vector-valued functions the integral mean-value
theorem may be stated as follows:
4
fm(s)da et-conv({w(s): 0<<8<<1}).
0

Therefore, -

a(fF,-[ﬂ'](s)ds) <ta((J{Fa)Il: zeZ)Y) < a-k-a(U{e[I]l: 2 2})
' = a-k-supf{a(Z(t)): tel} =6 k-a(%)

and consequently a(#,[¥]) < K;-a(%), where K, = a-k for each i>1.
This ends the proof.

COROLLARY 2. Let the operators F; (¢ =1,2,...) map every regular
subset of B into a reqular set and suppose that there exist integrable functions
p;: I > [0, 0o) such that a(F;[Z](t)) < py()-a(Z (1)) for each teI and
for any regular subset I of B. If

a ¢
in.fexp(fp,(s)ds)-supa(f(F—F,) [ﬁ'o](s)ds) =0,
‘i>1 0 tel 0
then there exists a solution of problem (PC).

H
Proof. Letusput(P,z)(t) = fpi(s)w(s)ds for z € C*(I). Obviously, &,

acts on C*(I) and has the spectral radms equal zero ([8], p. 143).
T .’2‘0, then

af f F[er](s)ds) (Fi[ar](s»ds f Pi(s)-a (% (s))ds

*
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for tel. By virtue of Theorem 3 it is enough to prove only that
inf sup G;(t) = 0, where G; is the solution of the equation

i>1 tel
2(t) = supa( [ (F~F)[Z:)(r)dr) +(D,2) ().
We have

G;(t) = a;-exp f p:(s)ds) < a-exp f Pu(5)ds)

for t eI and ¢ > 1, where a; = sup af f (F— Ff)[.%‘o](r)dr) This completes
the proof.

Remark. Corollary 2 generalizes-Rzymowski’s result [15], Theorem 2,
which follows from it by putting (Fz)(:) =f(-,2(:)) and (Fz)(-)
= fi(*y #(+)), where f: I x B— E is a bounded continuous function and
fi IXB—>E (i =1,2,...) are commonly bounded uniformly contin-
uous functions such that off,(?, V)) < pi(t)-a(V) for teI and for any
subset V of B, p, being integrable functions.

The result of [15] can be obtained by the well-known Gronwall Lemma
[6]. By the proof of Theorem 3, we obtain the following version of Gron-
wall Lemma:

Denote by < the partial order in E generated by a cone 8 = E. Let a linear
continuous operator D act in S and let the spectral radius of D be less than 1.
Assume that there exist elemenis ¢ and y in E such that y < o+ @y. Then
Y < 2y, where 2, i8 the solution of the equation Pz+c = z.
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