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On Bazilevi¢c schlicht functions

by J. ZAMORSKI (Wroctaw)

I. E. Bazilevi¢ has proved that functions
1+ai

1) 1) = s f (p(s)—ai) o~ " fo(o)isar ) "

are a subclass of the class 8 of schlicht functions (1]. In the formula p(z)
=1+a2+...,]2] <1 belong to the class P of functions for which
rep(z) > 0; f.(2) belongs to the class S, of starlike schlicht functions;
a is any real number and m > 0. The powers appearing in the formula
are meant as principal values.

Let B be the class of functions denoted by formula (1). We can easily
see that the classes S, of the spiral functions of Spatek [5] and the class L
of linearly accessible (close-to-convex) functions (see M. Biernacki [2])
belong to the class B. In order to obtain the classes S, we have to put
Pp(2) = 2f,(2)/f«(2) into formula (1) and for class L we have to put a = 0,
m = 1. When we fix the numbers m and a in formula (1), we get some
subclass Bn, of the class B. Now, let f(2) belong to the class B,,. Of
course we can write

(2) f(2) =24a,*+..., Jpl<1.

Let ax = xx+4yx. We can regard as the n-th region of variability of
coefficients of the functions of the class B,, a set of all the points
(ax = 2x+yx, k=2,...,n) of n—1 dimensional complex space, the
coordinates of which can be the coefficients of the expansion (2) of any
functions of the class B,q.

Let E(a, ..., as:) be a real function of the class C, depending on
2n—2 real variables xx, yx defined in an open set comprising the n-th
region of variability of the coefficients of functions of the class B,
Moreover
(3) gradE # 0.

Tk Ve
The function E will be considered as a functional defined for the functions
of the class B, ,, namely
E(ay, ..., an) = E(f).

G¥
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THEOREM 1. Functions of the class By, for which any functional E(f)
obtains its extremal value always have the following form

' oy nl 1+ai
m
k8 k=1 ‘
n—1 n—1

where |ox| = |te] =1, fr > 0, 8> 0, kZ: B = kz; ok = 2.

The proof of the theorem is based on some auxiliary definitions and
lemmas. We denote by G the class of the functions defined by the for-
mula

4) g = (p(z)-—ai)exp{l raz fp,(sz—l ds} —=by+bz+.., |zl<1,

where p(2) =1+ a2 +1... and p(2) = 1+ y,24... belong to the class P.
Because ¢(z) # 0, we have from (4)

ot = gy + 17 [ 202

When differentiating, we have

g'(2) _ p'(2) 4 m_ py2)—1
g(z) pRR)—ai  1+a? z
and hence
2 kbyzk 2 axk = Z kakz"z bk +
k=0 k=0 k=0

+

e S S S,

k=0
where ¢, = 1 — ai. Making some further arrangements, we obtain from (5)

g-1 g—k—1

Szﬂj kbrog-i = 2 Z {(q Bags+ o 2 “”’2-""'}'
k=0

g=1 k=1 g=1 =0

Introducing the denotation
q—k—1

doi: = (§—Kk) ag—s+ 1+02 Z Qi Va—tk—jy

i=0
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and, regarding that from (4) b, = 1— a4, we have

dq'q_.l d'bq-2 b dﬂno
1 (1— Q) (1—(1-?:) dq..]_q_z ven dq.q,[)
(6) by = A0 —aif 0 (2—q)(1—ai) .. dg_so|-
0 0 dio

It follows from (6) that b, is a polynomial of the coefficients ax and yx,

k=1,..,q. Let E(g) = Eyb,,..., bs) be a functional defined for the
class Gpq.

LeMMA 1. Functions of the class Gpq for which the functional E,(g)
W(byy ooy bn), grad E # 0, oblains its extremal value always have the
the following form .

g(2) = (1’ az-}—z ﬁw::z)”(l Tk2) ”1:;-

where oy = |tel =1, &> 0, 8¢ > 0, Zﬂk_ 26,,=2

Proof. Let g(z) be a function giving the extremal valne to the
functional E,(g) and let functions p(z) and p,(2) be functions defining
this function according to formula (4). From the theorem of Carathé-
odory [3] there are functions r(z) and r,(2) of the class P which are of the
form

n+1 n+1l
r(z)—1+2 ﬂ"akz, o =¢€%, f[.>0), 2ﬂk=2,
k=1
(7) n+1 n+l.

L
Tl(z)—1+216ktkz y Tk = €%, o >0, 26k=2
k=1

and have the first »n coefficients equal to the first n coefficients of the
functions p(z) and p,(2). From (6) we infer that the first n coefficients
of functions

m [ rs)—1 ds}

9,(2) = (r(2)— ai) exp{ e p
0

are the same as the first »n coefficients of function g(z), and hence E\(g,)
= E\(g). E\(g,) is a function of 4n 4 4 real variables

E(Bry ooy Brrry Ory vny Ontay 81y eoey Sni1y Bry ooy Pota)
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n+1 n+1
connected with conditions D fr = ) 8r = 2. Since we assume that the
=1 P

function g¢(z) gives the extremum for the functional F,(g), the function
g.(2) also gives the extremum, i.e.

oF, o, , 0B, _ 0B,
(8) 3B 2, TE=0 55 =0 =

o8k
where A and p are Lagrange multipliers for the additional conditions.
Let bx = ux+tvx. Then
n n
B, _ \"oE, ou; \VoB, o
3'8‘; —7'=1 3%7- 3ﬂk oy 3’!7,' 3,31;’

+i=0, 0

(9)

similarly we calculate the derivatives of the remaining variables. We
note further that

00 n+1
o9 _ 2b; j— O e
Br — OB L ’I;l] (1 —mz) Tiver.
Let
n+41 m
[] a—uo)y *Fd=1+ez+...,
k=1
where
1+4a2
71 - _"l;,, 0 0
14 a2
1 m 2| ¥Ve Y1 -2 “ee 0 ntl1 A
10 o =5 (a) m ,w= ) bl
: Y Ve 7 . 0 e=1
Yk Vi1 Yik—2 4!
hence
ob -
S Dot e,
F=1 k j=1 =0
and thus
b _
(11) 5,3_:‘ = okt ol e+ ...+ orejoy .
In an analogous way
by .. .. . _
(12) g;‘—‘ Beliok+G—1)d e+ ...+ oreiy}
ob m () -1
(13) %—;=m{7"bo+,—.{—lbl+...+ub;-l},
ot 818 -
(14) L R ) MR SR

ob; 1+at
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Equations (8), after using formulas (9), (11), (12), (13), (14) and after
simple modifications, can be written as follows:

Ao} + Apad™ o+ Ay0i T 2008+ Ak T 4+ A =0,
(15) 2nAdzof '+ (2n— 1)A,,_1a2"-2+...+(n+1)Alak—2m oy '+
+n-1Ad0% *+.. 44y, =0,

Biti' + Bayti ' 4+ B — 2+ By .+ Ba =0,
(16) 2nBar an—1 +(2n— 1)Bn-1‘l’?¢"-2 +..+(n+1)Bzi— 2#”!:1.'1,:—1 +
k +("—1)Bﬂﬁ_2+m+5n-1 =0,
n-—
B o, . 0F,
Ak o Z ¢ (auk.,., -t 3Vk+’) !

" 10, [ oF o E=bom
__m 1 1. 1
Bk_1+0'2 k,_zobj(aUkH zaVlc+i)’

where b; and c; are expressed by formulas (6) and (10), in which we put
n+1 n+1

ax =j§ Biots i =’§ &) -

Let us study the group of equations (15). It follows from them that
the polynomial

Apo®+ A, 1021, 4 Ajo"T1— 240"+ Aon14..+ 4,

has double roots ox (!), and thus there can be n different numbers ox
at most. We obtain an analogical result concerning the numbers 7x from
the group of equations (16). Hence we see that functions (7) are of the
following form:

(17) r(2) _1+2 ﬂwk re) _1+Z SxTx?

1-— nz

On the basis of the paper of Carathéodory (3], we infer that if the functions
p(2) and p,(z) have the first n coefficients identical to the first n coef-
ficients of the functions r(z) and r,(z), then by (17) p(2) = 2(r) and p,(2)
= r,(2). This completes the proof of the lemma.

LEMMA 2. The n-th region of variability of the coefficient of functions
of the class B, i8¢ a homeomorphic map of the n—1 region of variability
of the coefficients of fumctions of the class Gpq.

Proof. We introduce the auxiliary functions

F(2) = 1—% f 81%4"g(s)d3 = szai(1+elz+ ie) y
0

(*) It can easily be proved that this polynomial cannot identically equal zero as
we have from the assumption grad E, # 0.
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‘where
(18) e 14+ ai

=-——k+m+kai ky k=1,...

Formula (18) gives the continuous and one-one correspondence between
the coefficients of the functions F(z) and ¢(z). Let us observe that

(19) F(2) = {F(2)}0 7™ = 24 ad® + ..
Let us write

¥ = (

%L
DM

i d d i
ekzk) , Zaﬁ!’zk = (Za;;z"'l) , j=1,..
Py

k= k=2

-,

k

il
-

Hence and from (19) we have

b

-1

(20) ar = (T o

-1

Ll
-

(21) ex

I
b=

1 (m/(ll-i— m’)) ad, .

1l
-

Hence again we see that between the coefficients of the functions f(z)
and F(z) there is a continuous and one-one correspondence, and this
completes the proof of lemma 2.

Now, let us start on the proof of theorem 1. From the assumptions
regarding the functional F(f) we infer that this functional has its extremal
value on the boundary of the n-th region of variability of the coefficients
of functions of the class B,, .. We infer from lemma 2 that there is a con-
tinuous and one-one correspondence between the boundary points of
the n-th region of variability of the coefficients of functions of the
class B, and the boundary points of the n—1 region of variability of
the coefficients of functions of the class B,,. To the boundary points
of the latter region correspond only functions of the form given in lemma 1
(we put n—1 instead of n). From the homeomorphism proved we obtain
the theorem.

THEOREM 2. Let N =[1/m]. Then for functions of class B,,, we have
lag| <n  for n=2,.,N+2.

Proof. On the basis of theorem proved previously [6]: for the function

fo(2) =2"(14 ez +...)

k-1
ool < 73 [ [ 12m +31,

i=0

there is an estimation
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and the sign of equality occurs for the functions
(22) A4, gl =1.

We can easily see that all the expansion coefficients of functions (22)
are positive when we put 7 = —1. Now let us consider the function

Py =m [ p(s)s”'M(s)ds = 2"(1+e2+...) .
(1]

Hence we get
m

k+m

exr = (Cx + aylr—1+ ... + ax);

50 ey is positive and obtains its maximal value when all the coefficients ci
and a; are positive and maximal. That is true for functions (22) with
n = —1 and for

The function

142
1—2°

f(2) = {F()}'™ =2+ a®+...

has its coefficients expressed by formulas (20) with the coefficients ef,
(we have to put a = 0). Numbers e‘,f’_l obtain their maximal and positive
values for the maximal and positive values of e, of which they are
composed. Thus they obtain the greatest values after substituting functions
(22), (23). From the assumption that N = [1/m] we have

(1/{”) >0 for 1—=1,.., N+1

and hence
n-1

an = Z (l/lm) Gg)_l ' n < N+2
I=1

obtains its maximal values for functions (22), (23). A simple calculation
gives us the theorem. As a consequence of theorem 2 we have

THEOREM 3. Let N = 1/m be a natural number. Then for functions
of class By, we have
lan) < m .

In order to prove this theorem it is enough to note that now

(1/{") >0 for 1=1,.,N+1
and

(1/{”) —0 for I>N42

and then repeat the proof of theorem 2. This theorem has been known
for m =1 (see [1]. [4]).
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