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of differential equations of order three
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In this paper we will consider the following four types of systems:

(1) @ +af+bd+f(w) =0,
(2) D+ f(#)+bd+ox = 0;

By = — 0%+ 03— f(@1)
(3) By = — B+ 0,

By = — omy+-bf (@,);
By = 03— f(21),
(4) By = — 01+ 2y,
By = — avy,
where a, b, ¢, are constants and fis 2 non-linear function such that f(0) = 0,
so that each of them admits the zero solution.

For each of those systems we give sufficient conditions for the global
asymptotic stability of the trivial solution. The corresponding four theo-
rems are stated in the next section and proved in the last section. They
are all obtained as an application of a result due to Hartman and Olech {6].
The latter is recalled, for the convenience of the reader, in Section 2.

Note that each of systems (1)-(4) can be written in the form

(5) & = Aw+Tkf(o), o= Lo, ),
where o, &, 0 are vectors, 4 is an » X n matrix and ¢, ) stands for the
scalar prodnct in R.

The stability of the trivial solution of (5) has been extensively studied
under the assumption that

(6) (f(o')/a)eI,
where I is an interval. The famous Aizerman conjecture states that the

trivial solution of (6) is globally asymptotically stable for each f-sat-
isfying (6) if I is equal to the so-called Hurvitz interval H for (B); this is
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the interval such that for each constant i e H the linear system obtained
from (58) by substituting f(o) = he is asymptotically stable.

Ag is well known now, this conjecture has been proved to be false
in general. An example was given first by Pliss [9] for an equation of the
form (2).

On the other hand, Jakubowicz, Kalman, Lurie and Popov have
proposed methods to determine I in (6) dependent on 4, % and ¢, but not
on f such that (5) is absolutely stable, i.e., asymptotically stable in the
large for each f satisfying (6). However, in general the interval I of abso-
lute stability obtained by those methods is properly contained in the
Hurvitz interval H for (5).

In this paper we work with a stronger assumption on f, namely that

(7) f'w)eI",

where I" is again an interval. Manifestly, condition (7) implies (6) with
I=1I" However, the results we obtain are also stronger in the gense
that in each of the cases considered the global stability is established under
(7) for f (and some other condition) with I* equal to the Hurvitz interval
but containing (in some of the cases considered properly) the interval
obtained by Popov’s method.

Several authors have studied the stability properties of systems (1)-(4)
(of [2]-[4] and [9]-[11]). The systems (1)-(4) were studied in [7] and [8]
but the proofs contain some mistakes. However, the results presented here
subsume those given in [7] and .[8].

In the remarks following the statements of the theorems we contrast
our results with those previously obtained by other authors.

1. Statements of the results. We will now state four theorems corre-
sponding to systems (1)-(4'1), respectively.

TEEOREM 1. Assume in (1) that @ >0 and b > 0, that f iz of class (',
and that

(8) f0)=0 and f(w)#0 if o> #0,
(9) [ 1f(s)lds = + oo,

(10) 0<f(0)<ab

and

(11) |f' ()| < ab  for each x.

Then x(t) = 0 is a globally asympiotioally stable solution of (1).
THEOREM 2. Let b >0, ¢ >0 and let f(0) =0, feC'. If

(12) F(u)y=e¢/b for each u
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and the inequality is strict for w = 0, then @(t) = 0 is a globally asympto-
tically stable solution of (2).

THEOREM 3. Assume in (3) that 0 >0, b >0 and o* > b that f is of
olass O', and that

(13) f0) =0 and f(&) ;é%w if 0 £0,
(14) 0<f(O) <+

and

(15) f(@)=0 for each ».

Then (1) = 0 i a globally asymptotically stable solution of (3).
THEOREM 4. Lot a > 0 and leét f(0) =0, fe O*. If

(16) f'wy=a for each v

and the inequality is strict for v = 0, then »(t) = 0 is a globally asympto-
tically stable solution of (4). '

Remark 1. The Hurvitz interval for (1)is H = (0, ab). Sedziwy [11]
showed (using Popov’s method [1]) that if f is continuous and satisfies (6)
with I = [e, ab), where ¢ > 0 but arbitrary, then the conclusion of the
theorem holds. From (8) and (11) it follows that f satifies (7) with I* = H,
but the class of functions f is more restrictive because of (11). Assumption
(10) is to guarantee that z(2) = 0 is locally asymptotically stable.

Remark 2. Note that H = (¢/b, oo) is the Hurvitz interval for equa-
tion (2). If we assume only (6) with I = (¢/b, N¥) for N big enough, then,
a8 shown by Pliss [9], equation (2) may admit a periodic solution, and
thus #(¢) = 0 cannot be globally asymptotically stable. If I = (0/b, b*/o+
+ 6/b—¢) in (6), then, as follows from [11], the conclusion of the theorem
holds. In our case f satisfied (7) with I* = H, but again we have the
additional condition on f, namely inequality (12). Notice also that the
strong inequality required in (12) for # = 0 means that local asymptotic
stability takes place.

Remark 3. The Hurvitz interval for (3) is I = (0, ¢/b). In paper [1]
the stability in the large is shown (by using Popov’s method) if f is con-
tinnous and satisfies (6) with I = (0, 1/0) for ¢2 > b, From (13) and (15)
it follows that f satisfies (7) with I* = H if ¢* > b. But again we have
a more restrictive assumption concerning the derivative of f. As in the
previous cases, we assume the local agymptotic stability of the zero solu-
tion (assumption (14)).

Remark 4. In the case of system (4), H = (a, o0). In paper [5]
it is proved that if f is of class ¢! and satisfies (7) with I* = (0, V) for N
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big enough, then the conclusion of Theorem 4 holds. From the assumption
f(0) = 0 and (16) it follows that f satisfies (7) with I* = [a, oo).

2. Theorem of P. Hartman and Cz. Olech. The proofs of our theorems
are based upon the following result (ef. [6]):

THEOREM A. Consider a system of n real differential equations
(i) b =fla) (0={(w),...,a,)¢ B"),

in whioh f(w) is of dlass C* on B" with values in B". Denote by J () the Jaco-
bian matric of f(®) and denote by H(w) = }(J-+J") the symmeirioc pari
of J(x).

Assume the following conditions:

1° f(0) =0, f(e) # 0 if » #0,

2° ¢ =0 48 a locally asymptotically stable solution of (i),

3° the eigenvalues A;(w) of H (%) satisfy the inequalities A;(x)- A;(w) <0,
1<i< j < n,

e f[mmnf(w)u]dr + oo (] = (znwi)””).

a: '=|'
Then o (t) = 0 is a globally asymptotwall'y stable solution of (i).

We shall also need certain simple algebraic lemmas, useful in checking-
agsumption 3° [7].

LEMMA 1. If a polynomial with a real coefficient
p(2) = o+ a, 2" '+ a 8"+ ... ta —10+ @y,
has n real roots @, @y, ..., %, and if

a; >0 fori=1,2,...,(n—1), a,>0,
then

o+3,<0 for 0<i<jgm
LuMMA 2. Let a polynomial of 3rd degree with a real coefficient
(ii) p(z) = 234 avi+bo+¢
have real 100ts ©,, &, Ty,
The roots of (ii) satisfy the inequalities

22, <0 fori=1,2,3
if and only if either of the following conditions hold:
L.a>04b=0,
2. >0, a®*+b20, c<ab if b0
LevMMA 3. Let a polynomial of 4ih degree with real coefficients
(iii) (@) = #*+ axd+ b+ v+ d

have real roots i, Ty, Ty, T4. »
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The roots of (iil) satisfy the inequalities
m,;—l—m,SO for 0<’l:<j-'<4.

if and only if either. of the following conditions hold:

1.a>0,0>04f ¢>0,

2.4>0,b>0, a®+40>0, (ab—20)?+0a® > 0, (o/a) (b—o/a)> d if
¢< 0.

3. Proofs of the results. Without any loss of generality we can put

b =1 in (1) and (2), because any other case can be reduced to this one
by a linear change of coordinates.

Proof of Theorem 1. Replace (1) by the equivalent system
(17) By = Wy, By =, B = —f(r)—v,— any.

The change of variables
(18) @o=1yy, @ =13V2p, o =—@B)y+3)v— 1V 2,
transforms (17) into the system
(19) g1 = 4V200, ¢ = —2fW)—4V20, I = —3V201+ V20— 0.

Since the transformation (18) is non-singular, to prove Theorem 1
it is enough to show that the trivial solution of (19) is globally asympto-
tically stable. For this purpose, we will demonstrate that the right-hand
sides of (19) satisfy the assumptions 1°-4° of Theorem A.

For |y,| small enough

F@)—f (0)yi+o0(¥1)-

From (10) it follows that the origin is locally asymptotically stable.
It is obvious that from (8) and (9) follow conditions 1° and 4°, respectively.
The examination of assumption 3° requires more lines.

Denote by J (¥, ¥z, ¥s) the Jacobian matrix of the right-hand side
of (19) and by J* the transpose of J.

A simple calculation gives

0 —f 0
H=3}J+IY=|—=f 0 0
0 0 —a-

and the characteristic equation of H is
(20) P+t al—(fPa—a(f) =0.

It is obvious that the coefficients of (20) satisfy the assumption of
Lemma 2 if

If (< a.
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Hence by (11) assumption 3° of Theorem- A also holds, which ends
the proof of Theorem 1.

Proof of Theorem 2. Instead of the equstion of (2), consider the
equivalent system

(21) Wy, = Wy, By =y, By = —00;—0y—f(2).
We will obtain the conclusion of Theorem 2 for the system
(22) By = 02,— 0y 2ay, Ry = R, — 0%, 23 = —2,—f(%),
which is obtained from (24) by the non-singular linear transformation
wy = (1/0)2,, Dy =2,—2;, By =2s.

From the assumptions ¢ >0, f(0) =0, f'(0) >¢ (b = 1) using the
same argument ag that applied before, we conclude that (22) satisties
assumptions 1°% 2° and 4° of Theorem A. It remaing to prove that 3° also
holds. The Hermitian H of the right-hand side of (22) is a diagonal matrix

H = Diag(e, —o, —f').

Since f'(u) > o, we see that. (22) also satisfies 3°. Thus Theorem A
ends the proof of Theorem 2.

Proof of Theorem 3. As previously, we will shew the conclusion
of Theorem. 3 for the system
¥y = —oy;+V1+by,—f(y1),
(23) Yo = —0Ya—Voi—by,, '
go = —V1+bys+Ve—bys— oy,
which is obtained from (3) by the non-singular linear transformation
By =91, @ =V1i+byy, @ = —by,+V(1+Db) (®—b)yy+ V14 by,

From the assumptions ¢ >0, b >0, ¢* >b, (13) and (14) one can
check, in the same way, as in the case of Theorem 1, that (23) satisties
assumptions 1°, 2° dnd 4° of Theorem A. Taking the symmetric part of
the Jacobian matrix of (23), we again obtain a diagonal matrix

H = Diag(—o—f', —0, —o).

From (16) and the form H it follows immediately that 3° is also
satisfied, which completes the proof of Theorem 3.

Proof of Theorem 4. Applying the non-singular linear transfor-
mation

m1 = wl; wz = wZ; ws = ale"l" a/Wa
to the system (4) we obtain:

(24) 'l:l)l = _f(.wl)-l—wa? "'Ua = —aQWy,— atW,, 'lbs —= —_w1+ ath_'_awa‘
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From the agsumptions ¢ >0, f(0) =0, f'(0) > 0 it follows directly
that the right-hand side of (24) satisfies 1°, 2° and 4° of Theorem A.
The Jacobian matrix of (24) has the form

—-f 0 1
J = 0 —a —al.
—1 a

Hence the Hermitian of J is a diagonal matrix
H = Diag(—f', —a, a)

and condition 3° of Theorem A follows from the assumed inequality
f'(u) = a. Thus Theorem A. ends the proof of Theorem 4.
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