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A note on holomorphic mappings with two fixed points

by MAREK JARNICKI and P1OTR TWORZEWSKI (Krakow)
Zdzislaw Opial in memoriam

Abstract. Let X be a hyperbolic Riemann surface and let g, be X, a # b. We will prove that
the set of all holomorphic mappings f: X — X with f(a) = a, f(b) = b is a [inite cyclic subgroup of
the group of all holomorphic automorphisms of X.

Throughout the paper the following notation will be used:

D = {zeC: |z} < 1}, D, = D\{0},

P(r, R)={zeC: r<|z}] <R}, 0<r <R < +;

X — a Riemann surface;

9(X; a, b) — the set of all holomorphic mappings f: X — X such that
f@=a, f(b)y=>b (a, be X, a # b),

Aut(X) — the group of all holomorphic automorphisms of X;

f< — the n-th iterate of a mapping f: X - X, ie f* =id,,
f = f"Dof neN.

The main result is the following theorem.

THEOREM 1. Let X be a hyperbolic Riemann surface and let a, be X, a # b.
Then %(X; a, b) is a finite cyclic subgroup of Aut(X).

The proof will be based on the following elementary lemma.

LEMMA 1. Let @ # A < D, be a set with no accumulation points in D. Put
%(A):= {geO(D, D): g(0) =0, g(4) = A}. Then %(A) is a finite cyclic sub-
group of the group Auty(D) of all rotations of D.

Proof Observe that
(1 idp,e¥9(4), g,09,€9%(A), g,,9,€%(A).

Put ¢:=min{jw|: we A}, B:={weAd: |w =g}. It is clear that B is
non-empty and finite. By the Schwarz lemma,

lgw)l < [wl, weD, ge¥%(4),
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which implies that
(2) 4(A) = 4(B).

Hence, in view of the definition of B (using again the Schwarz lemma), we
conclude that 4(B) c Aut,(D) and that % (B) is finite. In consequence, in view
of (1) and (2), for every ge%(A) there exists n=n(g)e N such that
g~ ' = g~ 1> This shows that 4(A) is a finite subgroup of Aut,(D). In order to
prove that ¥(A) is also cyclic it is enough to observe that %(A4) is a subgroup of

{o-id )y ae\’ﬁ}, where n:= [] n(g). This completes the proof of the lemma.

ge9(A)

Proof of Theorem 1. Let p: D — X be a universal covering of X such
that p(0) = a (cf. [2], Chapter 3, §27). Put A:= p~!(b). Note that A4 satisfies all
the assumptions of Lemma 1. For fe 4(X; a, b) let f: D — D denote the lifting
of f such that f(0) = 0. It is clear that fe %(A4). In particular, in view of Lemma
1, for every fe 4(X; a, b) there exists n = n(f)e N such that (f<)” = f<™ = id,,
Consequently, /< = id,. This proves that 4(X; a, b) is a subgroup of Aut(X)
(note that if X is a bounded domain in C, then the inclusion 4(X; a, b) = Aut(X)
follows, for instance, from Satz 29, §6 in [1]). The mapping

4(X; a, b)oaf->fe%(A)

may be now regarded as a group monomorphism and therefore (again by
Lemma 1) we conclude that 4(X; a, b) is a finite cyclic subgroup of Aut(X). The
proof is finished.

Theorem 1 will be illustrated by examples.

ExampLE 1. If X is a simply connected hyperbolic Riemann surface, then
4(X; a, b) = {idy}, a, beX, a#b.

Proof. In this case p is biholomorphic and consequently #A4 = 1.
ExaMPLE 2. Let0 <r <R < 4+, X =P =P(r,R), a,beP, a # b. Then

{idp, z—>a?/z} iff ja| =./rR and b= —a,

4(P;a,b)=-.. :
(P: a, b) {{ldp} otherwise.

Proof. By standard arguments one can reduce the‘proof to the case where
R>1,r=1/R and 1/R < a < R. Define
p(z) = exp(Fi 'oF; '(z)), zeD,
where
F,(z):=tan(uz), —logR <Rez<logR, u:=mn/4logR),
F,(z):=(z—90)/(1-6z), zeD, §:=tan(uloga).

It is easily seen that p: D — X is a universal covering of P and that p(0) = a.
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Let A:= p~'(b) and let B be as in the proof of Lemma 1. One can prove that
# B < 2. Hence, either 4(A) = {idp} (and so %(P; a, b) = {idp}) or 4(4) =
{idp, —idp}. In the second case we get § = 0 and 9(P; q, b) = {id,, z— 1/z};
consequently a=1, b= —1.

ExaMpPLE 3. For every ne N there exist a hyperbolic Riemann surface
X and points a, be X, a # b, such that #%(X; a, b)=n.

Proof. In view of Examples 1, 2, we may assume that n> 3. Let
X:= C‘\\'ﬁ, a =0, b = co. Then, in virtue of the Picard theorem, 4(X; 0, oo)
< %(C; 0, o) and therefore, in view of Theorem 1, 4(X; 0, c0) = {aid,: ae{'/f}.

Remark 1.(a)If P=P(O,R),0 < R< +0,0r P = P(r,4+0),0 <r 4+ o0,
then 4(P; a, b) = {id,}, a, beP, a#b.

(b) If P=P(0, +o0) (P is a parabolic space) then {z—z?**1 keZ}
c %(P; 1, —1) and so neither 4(P; 1, —1) is finite nor 4(P; 1, — 1) < Aut(P).

Remark 2. Example 2 permits us to give an alternative method of the
proof of the following well-known theorem on biholomorphisms between
annuli (cf. [3], Theorem 14.22).

Let0<r;<R;< +o0, P;:=P(r, R), j=1, 2. Then P,, P, are biholo-
morphically equivalent iff r,/R, = r,/R,. Moreover, every biholomorphism
F: P,— P, is either of the form z—ar,z/r; or z—ar,R,/z, zeP,, |a| = 1.

Proof. We may assume that
(3) ri/R, < ry/R,.
Fix a biholomorphism F: P, —» P, and let a:= ./r,R,, b:= —a. The map-
ping

G(P,; a, b)af—FofoF~'e G(P,; F(a), F(b))
is an isomorphism. Hence, by Example 2,
) [F(@|=/r:R,, F(b)=—F(a).
Put
f(2):=aF(2)/F(a), zeP,.

Observe that, in view of (3), (4),

f(P,) = P(/r,r;R /R, /T \R\R,Jr)) = P,, f(a)=a, f(b)=b.

Thus fe%(P,; a, b) and therefore, by Example 2, fe Aut(P,) (in particular,
S(P) =P, and so r,/R,=r,/R;) and either f=idp, (F(z) = ar,z/r,) or
f(2) = a®/z (F(2) = ar,R,/2).
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