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Asymptotic relationships between the solutions
of two systems of differential equations

by MirLo§ RAB (Brno)

Abstract. This paper is devoted to the study of the system (1) dz/dt = A(2)x +
+f(¢, 2) on an interval I = [{;, o), where A (f) is an » X% matrix and f(¢, z) is an
n-vector whose components f;,7 = 1, ..., n depend only on £, Tiys eeny w;q, 14 <...
< tq < ». Conditions are found leading to an equivalence between certain components
of solutions of the system (1) and certain components of solutions of the linear system
dy/dt = A (t)y. The main result is proved with use of the Schauder-Tychonoff fixed
point theorem; its application to the differential equation =" = a(t)z+ f(¢, z) yields
a result announced by T. G. Hallam in Ann. Polon. Math. 24 (1971), p. 195-300.

This paper is devoted to the study of the system

W o = AW+t

i
on an interval I = [¢,, oo), where A (t) is an % X #n matrix and f(¢, ) is an
n-vector whose components f;,¢ =1,..., n depend only on %, z;,...
ceey g 1<% <... <, <n. Conditions are found leading to an equi-
valence between certain components of solutions of the system (1) and
certain components of solutions of the linear system

dy
(2) - = A(t)y.

The basic assumptions that will be made about (1) are as follows:

(i) A (2) is continuous on I.

Under this assumption there exists to any constant vector ¢ and
toe I the unique solution of (2) defined on I and satisfying the initial
condition y(t,) = ¢. Let Y (f) = (y;(?)) be a fundamental matrix of (2),
Y-'(t) = (y*(t)). Here y*(t) = det[¥(1)]7'Y,,({), where Y,() is the
cofactor of Y5:(2).

Let 2;(t), 27 (t) be non-negative functions defined on I satisfying
here the inequalities

Tyij(t)l < zij(”)? '?/ij(t)} < zij (t); i)j = 17 ceey
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Let p be an integer 0 < p <n—g¢ and choose p integers i,,1, ..., %45
between 1 and n different to iy, ..., ¢, and denote

pl) = max 2;(t), & =15 ...y%,,
J=1 n

and by m(t) the (¢+p)-vector with the components u; (2),..., ti, +q(t).
(ii) The components f; of f are continuous on I xR, and salisfy the
inequality
[fe(ty 4y -y “"iq)l < @ty [2g ]y -0y |93iq|),
where w;(ty 71y ...y 7g) are continuous functions for teI,7;>0,j =1,...,q
and w;(t, 7y, ..., 7,) are non-decreasing for each fized te I.

Let A = {iy,...,%} and B = {1,...,n}\A. Suppose that there
exists a constant » > 1 such that

(iii) [ 2™(s)w;(s, xm(s))ds < oo for ked, j=1,...,m,
to

5 ¢
(iv) llt_fn i‘f((t)) fzj"(s)w,(s, xm(s))ds =0 for keB, j=1,...,n,
00 {

i == il’ evey iq+ﬂ'
THEOREM. Let conditions (i)—(iv) be satisfied. Then, to any -constant

”
vector ¢ = (Y1, ...y ¥a) SUch that D' |y;| < x, there exists a solution x = (1)
=1

of (1) whose i,-th component is defined on I and satisfies

n
(3) (0 — YU, 00| = olu, (), *=1,...,g+p.
j=1

This theorem will be proved with use of the Schauder-Tychonoff
fixed point theorem, which we are going to introduce in the following
form (see [1], p. 9):

SCHAUDER-TYCHONOFF THEOREM. Let F be the subset formed by those
n-vectors x(t)e C(I) such that |z(t)| < p(t) for all te I, where u(t) is a fixed
positive continuous function. '

Let T be a mapping of F into itself with the properties:

(i) T is continuous in the sense that if z,e F (n =1,2,...) and z, >
uniformly on every compact subinterval of I, then Tz, — Tz uniformly on
every compact subinterval of I;

(ii) the functions in the image set TF are equicontinuous and bounded
at every point of I.

Then the mapping T has at least one fized point in F.

Proof of Theorem. Without loss of generality we may subpose
iy =1,...,%,, = q+p. Consider the subset F c D, ,(I), the set of
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continuous (g4 p)-vectors Z(t) whose components £(f),i =1,...,q+p
satisfy the conditions

[E()] < mpy(t), tel.
For Ze F define T7 = ((Ta: )1y +++y (T%)g,,) by the equations

@) (T3 = Zy,;<t>y,+ f Zy,k(tw”‘(s)f,(s,w(s))ds -

tg =1
oo
t

keB
By virtue of (iii) and (iv) we can assume that ¢, is sufficiently large
so that

Y t)'yﬂc(s)fj(sa m(s))dsy t=1,...,94+p.

EIM s

o0

¢
fz”‘(s)a;,(s, um(s))ds < e, %’%fzﬂ‘(s)w,(s, xm(s))ds< e for 1>t
¢ T a

where
n
e < jn~? (x-— Zl-y,-l).
i=1
Then we have

n

t n
(T@)] < D 2@yl + [ D) za(®)a™(s)wyls, %m(s))ds+

j=1 to j=1

+ f Vz,,,(t)z’k(s)w,(s, xm(s))ds < p,(t)2|y,|+y,(t)nze+ pi(tyn2e
¢ j—l
ked

n
= ws(®) [ ) lysl+2m2e] < sy ).
j=1
This inequality shows that TF < F.
Next we verify that the transformation 7 is continuous.
Let #, (n =1,2,...) and @ be in F with Z, converging uniformly
to # on every compact subinterval of I. Consider any interval of the
form [ty, T']. Let ¢ > 0 be given and choose ¢, > T such that

(5) sz”‘(s)w,(s,xm(s))ds< =
QA in K
ked
where

K = maxmaxz,(t), ¢=1,...,¢+p.
ked te[ty, T]
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Since f is continuous and the sequence {#,} converges uniformly to
@ on [t,,t,], there exists a positive constant N such that if #» > N, then

(6) 25 (8)|F(s, #n(8)) =Sy (s, 2(9))| < m
Using (5) and (6) we obtain
t n
T3, (0) —Ta@)| < [ D) 2a(t)e™(5) ) (s, Bn(8)) —Fs(s, &(5))] ds +

to J=l

keB
tl n oo N
+f Zzik(t)z”‘(s)lf,(s,53,,(3))—1‘,(3,:E(s))]ds+2fZz,,,(t)z"‘(s)w,(s, xm (8))ds
&5 @ £

<8+£+28—
4 T L TE¢

forn > N, te [ty, T).
Therefore, the mapping T is continuous on F. From (4) we obtain

(T3(1)); = Zyt,(t ‘V:'l‘zytk f y*(8)fi(s, % (s))ds +

=1 j-]_

+2?/zk(t y* () f;lt, B (1) — Zy,k f Y™ (8)f;(s, &(s))ds +
Jom1 jm=1
keB ked

4+ ) ya v, (1)
e

s0 that in view of $ a0y ()fle 50) = il ()
i1

(Tz(5))] < Zlyq t)||}’jl+2|@l¢k @l fz’ (8) oy (s, xm(s)}ds +

=1
keB

+Z Y5 (8] f 2% (8) wy(s, xm(s))ds + w,(t, xm(2)).
ked
For ¢ in any compact subinterval of I, the right-hand side of the above
inequality is bounded by a constant indenpendent of Z¢ F.
Thus TF is equicontinuous on every finite subinterval of I.
The Schauder-Tychonoff fixed point theorem implies that the
transformation T has a fixed point #, = &y(¢) in F.
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Putting x(f) = (%e(2), ¥(¢)), where

g(t) = (7lq+p+1(t), sy ﬂn(t))y

n t n
nt) = DO+ [ Y 9Oy (5)fils, &o(s))ds —
=

o0 n

— [ D ya®)y™()fils, Bo(s))ds, i=g+p+1,...,n
t j=1
ked

it is easy to see from (4) that (%) is a solution of (1).
To complete the proof of the theorem, relation (3) must be verified.
Using (4) with T# = 2 we obtain

n t n
2:0)— D v)yi| < [ D 2a®)2™(s) s, xm(s)1ds+
= =

oo N

+ [ ea®)(s)osls, xm()1ds, i =1,...,q+p.
t j=1
ked

Since the right-hand side of this inequality is o(uy(t)) by virtue of
(iii) and (iv), the proof is complete.

Remark 1. Suppose 2y(f) >0 on I for ke B, i =4;,..., %, and
write 2;(2)/ui(t) = y4(t). Then (iv) can be written in the form
zik(s)zj"(s)w,-[s, xm (8)]

pi(8)
for ke B; j =1,...,m;%1 = t,,.

14
(7) lim f vac(t) vz () ds =0
t—o00 f
L , iq+?.
Sufficient conditions for the validity of relation (7) may be found
in [2] or in [4].

Remark 2. The application of the above theorem to the differential
equation

(8) o = a(t)z+f(t, 2)
yields a result deduced by T. G. Hallam [3]:

Let y, = y,(1) and y, = y,(1) be solutions of the equation
(9) Yy’ =at)y (t1=1)

with the Wronskian of y, and y, equal to — 1. Suppose thal there exist positive
continuous functions y; = yi(t), © =1, 2, which satisfy the inequality
ly, ()] <%i(®) (6 =1,2; t=1,). In equation (8) we will assume that
f =f(@, x) is continuous on I X R. Furthermore, let f satisfy the imequality

If(t, 2}l < w(2, |z|),
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where w(t, r) is a continuous function defined for t > ty, r > 0 that i3 non-
decreasing in r for each fixed tel. Suppose that

[ 1 (8) (s, k3 (s))ds < oo
to

for some constant k >1; and that
¢
y@®) [ y7H8)YI () o(s; ky3(s)ds = 0(1) (¢ o),
to

where y (1) =y} (t)[y; (£)]7". Then there exists a solution x = x(t) of equation
(8) such that

|#(2) — g2 ()] = o[ys(t)].
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