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Abstract. In this paper we present a new condition on the Jacobian matrix of a differentiable
plane map T which entails the injectivity of T. This condition roughly speaking means that 7T is
monotone in two linearly independent directions.

Consider a class C! mapping T' R - R? of the reai plane R?,
(1) T: (x, y) = (P(x, y), Q(x, y)).

In this paper we present (in Theorem 1) a new condition on the derivative T of
T, i.e. on the Jacobian matrix

P P
2 =1 7|
@ [Ql Qz]

which entails the injectivity (univalence, or global one-to-one-ness) of the
mapping T. Such conditions have many applications (see e.g. [5], [8]-[12]) and
raise several unsolved problems (see especially [4], [6], [7], [9], [10] and the
references cited there). Many authors, including the present ones, have
previously written on this subject. See, e.g., [1]-[11] and the references cited
there.

Notation. We think of vectors in R? as column vectors and will frequently
write x = (x, y)' so that x, = (x,, y,)’ and x, = (x,, y,)' denote two (possibly
distinct) vectors in RZ.

THEOREM 1 (Main result). A class C' mapping T: R? — R? of the real plane
R? into itself is globally one-to-one provided that

(i) for each x in R?, det T'(x) # 0, and
(ii) there exist linearly independent vectors v, (i =1, 2) in R* such that
0¢ convex hull {T'(x)v;: xeR?}, i=1,2.

Before proving this theorem we note that it has the following consequence.
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COROLLARY 1. The C' mapping (1) with Jacobian matrix (2) is globally
one-to-one provided that detT and at least one of the four products
P,P,, P,Q,, O,P,, Q,Q, never vanishes on R®.

Proof of Corollary 1. Choose v, = e, =(1, 0) and v, = ¢, = (0, 1),
the standard basis vectors of R2 Then the convex sums (for j=1,2)

Z o, T'(x;)e; = (Z“ip (%), Za.’Q j(xi))‘

never vanish on R? provided that at least one of the four products P, P,, P,Q,,
Q,P,, 0,0, never vanishes on R?. It then follows that condition (ii) of Theorem
1 is satisfied. Since we were assuming condition (i), it now follows from
Theorem 1 that T is globally one-to-one. =

It is now obvious that Theorem 4 in [8] is contained in our Corollary
1 since it is assumed in [8] that detT’ > 0 on R?, trace T’ < 0 on R?, and (at
least) one of the two products P,Q, or P,Q, never vanishes on R’.

For the sake of comparison we state here another (different) theorem we
recently obtained in [6].

THEOREM 2 (see [6]). If T: R* —» R?* is a polynomial mapping satisfying
detT' >0 and trace T' <0 on R?, then T is globally one-to-one.

In our proof (see [6]) of Theorem 2 the hypothesis that T is a polynomial
‘mapping plays an essential role, while in our proof (below) of Theorem 1, we
require only that T is of class C!.

Proof of Theorem 1. Suppose that T is not globally one-to-one. Then
there exist points a, b, ¢, d in R? forming a parallelogram Z2(a, b, c, d),

V2

d/ e

i v,
Fig. 1
where

b=a+kyv,, c=b+k,v,,

with each k; > 0 and having the following property:
(3) T is one-to-one on the interior of 2, but T(a) = T(c) or T(b) = T(d).

Suppose T{(a) = T(c). From (3) and hypothesis (i), it follows that the image of
the two segments ab and bc (as well as cd and da) form closed curves and one
has to be inside the other. See Fig. 2.
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Tla)=Tlc)

Fig. 2

The straight line joining T'(a) with T(d) had to cross the outside boundary
of T(#) at some point p = T(x). Hence there is a point (vector) x in the
segment [a, b], or in the segment [b, c], such that

(4) T(x)—-T(a) = s(T(d)—T(a)) for some (real) s > 1.

Suppose x€[a, b]. Then for some A >0, x—a = iv,. We then apply to
both sides of (4) the (vector) mean value theorem of McLeod [2] to obtain

T(x)—T(a) = («T'(x,)+ BT (x,)) Av,
and
s(T(d)— T(a)) = s(T(d)— T(c)) = s(&T'(x,)+ BT (x,)d —¢)
= s(aT'(x,) + BT (X)) —k,v,).
Hence
MaT (x,)+ BT (x,))v, +ks(@T' (%) + BT (X,)v, =0,
which contradicts our hypothesis (ii). =

Our main result (Theorem 1 above) is true only in dimension two as the
following example borrowed from Ravindran [9] shows. He defines the
C!'-mapping of R?® into itself as '

G(x) = A~ 1F(Ax),

where
P -3 3
A= 1} § -3
I S
and
F(u, v, w) = (f,u, v), f,(4, v), fs(u, v, W),
where

Sfilu, v) = e*—p? 43, fru, v)= 4pe®” — 3,

fi(u, v, w) = (10+e*Ne’ +e ") (e' %" —e™ 10",
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Then F(0, 2,0) = F(©0, —2,0)=(0, 0, 0), so that G is not injective, even
though its Jacobian determinant is non-vanishing and each entry of the

Jacobian matrix G’ is positive everywhere. See also [2].)
Indeed,

(A) the determinant of the Jacobian matrix F’ is positive,

(B) the third coordinate of F’'W is positive for the vector W = (a, §,1) with
o, fel0, 1],

(C) 0 does not belong to the convex hull of {F'(u, v, w)W: (u, v, w)e R},

(D) there exist linearly independent vectors W,, i =1, 2, 3, in R?® such
that, for each i, 0 is not in the convex hull of {F'(u, v, w)W;: (u, v, w)e R*}. For
example, W, = («;, B;, 1) with a;, 8,€[0, 1], i = 1, 2, 3. Specifically, one could
choose (1,0, 1), (0, 1, 1), and (0, 0, 1).

It follows from this example that our main result (Theorem 1) is not true in
dimension three.

However, for arbitrary dimension n, we can state the following result
(weaker than our Theorem 1 when the dimension is two), which is also based
on McLeod’s Mean Value Theorem [3].

THEOREM 3. Let T* R" — R" denote a class C' mapping of n-dimensional
real (euclidean) space R" into itself. Then a sufficient condition for T to be
globally one-to-one is the following:

(1) for every pair of vectors a, b in R" with a # b, the difference b —a does
not belong to the null space of any n-term convex sum of the Jacobian T' taken
along the segment [a, b]. That is, Va, beR", with a # b,

5 [> 4T x)](b—a)#0 when a, >0, Yo, =1, and x,€[a, b].
k=1

The proof is immediate from McLeod’s Mean Value Theorem [3] which
allows us to express T(b) — T'(a) in the form of the left-hand side of (5).
Note that condition (iii) of Theorem 3 is stronger than the condition

(iv) Va,beR” and Vxel[a,b], T'(xb—a)#0 unless a=2>b,
which is equivalent to the classical condition
(v) VxeR", detT'(x)#0.

Recall that-(v) implies only that T is locally one-to-one, but is too weak to
imply global injectivity.

In [7] we have established that global injectivity for polynomial maps
T: R" - R", satisfying det T" # 0, is equivalent to the completeness of the
differential equation

X =[T'(x)""]a,
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for each vector a in R". This is related to the celebrated “Jacobian Conjecture”
of Keller.

Finally, we remark that the converse of Theorem 1 is not true, even for
polynomial mappings. The polynomial mapping

T(x, y) = (x+ @y +x?)?*, y+x?)

is bijective with a polynomial inverse, but does not satisfy condition (ii) of
Theorem 1.

Appendix. McLeod’s Mean Value Theorem. We state here, for the reader’s
convenience, a version of McLeod’s Mean Value Theorem as it can be
simplified for C' maps of R™ into R". See McLeod [3] for details and more
general statements.

THEOREM (McLeod [3]). For each class C! function F: R™ — R", and for
each pair of vectors a, b in R™ there exist vectors x,, ..., X, in the interval

[a, b] = {tb+(1—t)a: 0 <t < 1} and nonnegative real numbers c,, ..., ¢, such
that Y ¢, =1 and

F(b)—F(a) = Z o F (x, (b —a).
k=1

Here F’ denotes the Jacobian matrix of F, and it would suffice for the
domain F to be open convex. )
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