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Introduction. The class 8* of starlike functions plays a very signi-
ficant role in the investigations conducted in the class 8 of mormalized
and univalent functions in the unit dise. Thus, it seems natural and useful
to introduce and analyze functions analogous to the starlike ones in the
class 8,, of normalized and univalent functions bounded by M in the unit
disc. The class 573‘” of quasi-starlike normalized functions seems to realize
such an analogy.

We now undertake to define precisely this class of functions.

Suppose that

(0) F()=¢0+... for [{[<1

denotes an arbitrary starlike function of S*. Further, let G({) be a star-
like function of the form

(1) G(l) = d for ¢l <1,

m
” (1 —O'kz)ﬂ"’
k=1

(2) o =¢%% and o; #0; wheni #j (i,j=1,...,m),

(‘2’) Zﬂk =2,

k=1

where ¢, (k =1,...,m) run over all real numbers, and g, run over all
positive numbers.

Finally, let M denote an arbitrary fixed number belonging to the
interval (1, oo).

Under the above notation the class of functions g(z) satisfying th
equation '

(3) F(g(2)) = %F(z) for 2| <1 (M >1)
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will be denoted by ®*; the subclass ¥ of the functions ¢(z) satisfying
the equation

1
(4) G(g(2) = EG(z) for |2| <1,

where @ ({) is a function determined by formula (1) will be denoted by G2.

Then the class S3;, mentioned at the beginning, consists of the nor-
malized functions g(z), i.e., of the functions Mg(z) = 2+ ..., where g(z)<G™.

The function of the classes G¥ and S~}“M will be called quasi-starlike and
normalized quasi-starlike, respectively. It is clear that the investigations
carried out in & and S3; are in fact equivalent.

- Moreover, one can easily prove that every function g(z), determined
by equation (3) or (4) is unambiguously determined by this equation,
being at the same time holomorphic and univalent in the unit dise. Taking
into consideration the compactnes of the class of starlike functions (0)
we can also easily show that the class of quasi-starlike functions and con-
sequently S’}‘W is compact; moreover, making use of the theorem on approx-
imation of a starlike function by starlike functions of form (1), we can
prove that the quasi-starlike functions can be approximated by functions

k
of the class ® and that the sum | GX (k =1, 2,...) is compact.

m=1

The present paper deals mainly with the examination of extremal
properties of the class & and consequently of S~L The results obtained
in the first part are analogous to those obtained by Hummel [4] and
Zamorski [5] in the class 8*; it seems attractive, however, to undertake
other, equally interesting investigations concerning the structure of this
class.

In this place the author would like to express his deepest gratitude
and cordinal thanks to Professor Zygmunt Charzynski for many valuable
suggestions and advice given during the author’s investigations concern-
ing the above problem. '

1. Extremal functions. We introduce the following notation:
(5) G() = L+b,07+...  for [{[< 1,
where G({) is any function which appears is (1) and (4),

(6) g(2) = a2 +az2*+... for |2|] <1,
(6) C(9)P = aPP+a® P . (p =1,2,...),
(7) a, = T+, (0 =2,3,...),

where g(z) is any function of the class G¥.
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Let V represent in the Euclidean space R,,_, a set of points whose
coordinates (s, ..., Ty, Yz, ..., ¥y) (N >2) are determined by means
of formula (7) by the first N —1 coefficients of (6).

Finally, let us be given in ™ a functional defined for every function
(6) of (3) by the formula

(8) H, = H(,, ..., Ty, y27""yN)=H(

0/2"—6_12 aN_EN
, . 0’ - ’
2 21

where H denote a real function of 2N —2 real variables, having contin-
uous partial derivatives of the first order which do not disappear simul-
taneously in a sufficiently large domain containing the set V.
We shall sufficiently prove the following result:
FUNDAMENTAL THEOREM 1. If the functional H, attains in GY its
extremal value for an extremal function (6) of (4), this function satisfies

under the notation (1), (5), (6), (6'), (7), (8) the following differential equa-
tions:

(9) =

g(2) 2(g(2)) 2(z)’
where
. N-1 g _
(10) 20) = 3 (5 +E2) + 4
p=1
N-1 9 _
(11) @) = ) (T: —%cp),
p=1
N-»
(10°) &, = Z @+ —na)H,,, (» =0,1,...,N—1),
n=1
N—» N—-p
(11,) Qp = ¢ (a'gi—g)—ag))ﬂk-q-p (P = 13 ceey -N_‘l);

(12) Hn=H;:n(m21---7?/N)—7;H;;n(9327"-’yN) (n =2,...,N),

dg 0 ...0 1
(13) a=|" % 00 o,
B dyy oo dy 0
e = Db (=1,2,..,
k=1

(14) dy =1,
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and 3
g2 £{gx) 1 L)
(15) = =——=,
9(2) Z(g(2)) Z R(2)
where
- N-1 é:
(16) 20 = ) (4_5 - «f’pc’"),
p=0
3 N-1 1(2, -
(17) Z(L) = —— +Z,07) + 2,
p\&
=1 .
N-1
- 2,
(16°) dg)p = le—pa p=(1,..,N-1),
i=p
1\ 2
(16”) o =5 D 7
=1
1\ 1 _
(17" A= 5 T(@ldz‘i'@lzz);
=1

at the same time the numbers o, (k = 1, ..., m) of (1) are roots of the funciion
R(C) and double roots of the function Z(L).

Proof. Since the family ™ is compact, the existence of the extremal
funections is obvious because of the continuity of the funection (8).

We shall now proceed to derive equation (9) taking as a basis Lagran-
ge’s method of multipliers, applied by Charzyriski [1] to extremal problems
in the theory of complex functions.

We conjecture that function (6) of (4) belonging to G is extremal.

From relationships (1) and (5) it follows that the coefficients b, b,, ...
are functions of the parameters ¢,, ..., ¢, Bis.--5 Bn; simultaneously
from (4) it follows that between the coefficients of the functions (5) and
(6) the relationships '

| 1
(18) blaﬂ’—{-bzaf)—l—...+bka§c")—j[—bk=O (k=1,2,...; by =1)

hold. Consequently, as is easy to see, the value of the functional H, for
an arbitrary function (6) of (4) coincides with the value of the function
appearing on the right-hand side of formula (8) at the point P = (a,, ..., ay,
@1y ceoy PmyPry ey Bm) of 2 2N —242m dimensional Euclidean space,
provided the additional conditions (18) are satisfied for k¥ =2,..., V.

Applying the above-mentioned multipliers, we conclude that for
the point P = (@s, ..., 8y, $1y -y Pms B1y-++) f) connected by (1),
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(4) and (18) with function (6) realizing the extremum of H, in G2 the
equations

(19) sz a“"” b, r(‘;i + ZZ) 5=2,...,N),
o) ZNJ SN g 1 0bk+§ b, ;5 1= 0b\
(" 20%""1? o 2 g 1"075)‘0
t=1,...,m),
o) ZN(A SO 1 0 3 N1db Py o L ab,,)+ B
< \"<op M0, £ 0p " Mo,
t=1,...,m)
hold, where }:1, ceey iN, T are a non-trivial set of Lagrange’s multipliers.

Moreover, we shall show that v = 0. In fact, we assume that it is
not so and notice that it follows from relations (6’) that the coefficient
a) for 2 < j < p depends on the coefficients a,, ..., a,_,, only. It follows
directly from our assumption and the above remark that the last equa-
tion of the set (19), corresponding to 8 = N, is of the form }.Nbl = 0, and
so Ay = 0. '

It follows from the above formula and the preceding remark that
the last but one equation of the set (19), corresponding to s = N —1,
is of the form i’N—-lbl = 0, and so AAN_I = 0.

Repeating the above argumentation one shall easily find that all
the coefficients }:k (k =2,..., N) are zeros, i.e.,, the set of numbers
Ay eeny Ay, 7 is trivial.

Moreover, from the definition of numbers (2) we have the relations

ab; ab; b . 0b;

2 — g, —L —_ = — t=1,... i =1,2,...).
O, v da,’ Oy " 60, ( e M d 2re)

Next, if we use the above relations in equations (20) and divide the set
of equations (19)-(21) by , we shall obtain the set of equations

a"’ oH OH
(22) 242 (aas)+(aas) (5=2,..., ),

N k [
ab; 1 0b, - 9b; 1. _ b
(23) g(zk;ota_;agp_ﬂam 2 D “‘a‘,am*ﬁl"“‘a—t)_ o
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N k kK — 0
ob; . 1 ob, - ab; _; 1 - 0b,
(24) (A _’a(a)__,l + 4 _a(a)__zc—) +2, =0
kZ Y<iop " op o " M o)
t=1,...,m),
where
1 - .
(25) lk =?2.r: (k =1,...,.N).

Then, considering the expression
1
26 G ——@
(26) (9(2)) — 5 6(2)
as a function of the independent variables as, ..., @y, @1y .ovy @y Pryvey fm
from (6), (4) and (1) and of a variable 2 from neighbourhood zero, and

keeping the remaining coefficients ay,,, ay,;,... of g(2) constant, for
example equal to those of the extremal function, we easily get

% 8ald
(27) Z""J -——{—( )} L =2,

i=

ob; o 19\ 01 & }
@ a3 R R A IR )
o o 1
(e (ool

i Big(2) 1 Bz
i {az" (1— P A s T G(z’)},=o

1 ( o*
=ﬂ¢ﬁ{azk((. w9 _ o )G(g(z)))} t=1,2,...,m)

1—09(?) 1—ow 2=0

1
O't"ic-'—
1
k

and, analogously,

(29) 6b (1')_ 1 gﬁ‘_

J 0, © M 0P,

ak
—{ ( (log —a9(2)) —log (1 —a,z)G(g(z)))} t=1,2,...,m).

2=0

Taking formulas (27)-(29) we can write the set (22)-(24) in the form

SR
o0 Daa(sFEee)) -m @-2..m,

k=2
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1 a* 0,9 (2) 0,2
k! & ( 02* (( 1—o0,9(2) 1 Utz') G(g(Z))))zﬂ -

{
#“1._1’:( a* ((16@@ B E‘f )@(g(z))))z=o} =0 (t=1,...,m),
{

k! "\ 0F \\1—0,5(2) 1—0;2
(1< [0 |
(32) Ig —ﬁlk (W ( — (log (1—a,g(z))—10g(1—a,z)) G(g(z))))z=0 —
1- (0 ~ . .
_ﬁl" (0_ (— (log (l—o,g(z))—log(l—cr,z))G(g(z))))z=o} +i =0

t=1,...,m),
where the following notation has been adopted:
G(L) = C+ b0 +6,8%+... for g <1,
g(2) = @,2+8,8+a,2° +... for |2 < 1,

_8H | oH
~ Oa, Oa,

(33) H, (s =2,...,N).

Now, we assume for an arbitrary holomorphic function
f(z) = ag+ay,2+... for |2]< 1

and for given numbers A,, ..., 4, of (25) the operator

(34) .K(f(Z)) = lgﬂz"l‘...‘["}bNaN
and, analogously,
(34) E(f(2) = Apay+...+Ayay.

Finally we introduce the function

N
: 1 H
(35) H*(—) = E'—;.
74 2
Using the above notation, we can write the set (30) in the form
(36) K(@(9()#) =H, (s =2,...,N);

moreover, for every function f,(2) of the form

fol2) = e, +e,2°+... for [2| <1
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we have
| Z 1 1 dz
60 EEWEe) = Dot =5 (B (2)ae T
N

= * - az
&1 21-:sz ( )f"(z)?’

where ¢ is a sufficiently small circumference with the centre zero.
In particular, if we put

[ o9 o\ Glg(e)
Jile) = (1—a,g(z) - 1_6,2) &9

[ _od@ oz \G@EE) |, _

Jie) = (1—Et§<z) B 1—E,z) Fae) T heo™
then (31) can be written, in view of (37), (
(38) E(&(9(2) ful)+E(@ (§()fi())
() a;g(z) Glg@) &= _ 1 (2] Glo) & _

2 2] 1—oz G'(g(2)) =
1 _,(1) 6,d(2) GlG) d 1 _*(1) oz Q(7(2)) do
—— | H'|— — = — H
27i 2] 1—o,§(2) G(7(2) 2 Zm 1—0,2G (g(z))
(t=1,...,m).

(37" E(F (7)) =

t=1,..,m)),

37’), in the form

1—o,9(2) G'(g(2)) 2  2miy

Now we consider the following function of the variable ¢

1o (1) gl G(gR) de
G 2O =) 1 ( )c—g(z) @(g) =

1 (1) : Glg) & 1 -*(1) e @) &
_ 2 (gt UL - o A Nl
t—z @ (9(z) 2 2ri J 2] 1—-23(2) G'(3(2) 2

27 2
[+

1 a1\ e Gg(e) de
+ 2mi y # ( )1 te G (g(2)) 2

The function #({) thus determined is holomorphic in the full plane except
the point 0, co. Hence, the Laurent expansion at the origin of thus func-
tion is of the form

(39") R(L) = ngcp, where 2, — 0.
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Next, taking into consideration (38) we have
(40) R(o) =0 (t=1,...,m).

Moreover, we introduce another function determined by the formula

‘ ¢ (@)t
L) =2 .
(41) (&) ) G0
One easily sees from (39) and the formula
G _ N1y 1+ad _
41’ = 2 = d, "
( ) G(C) k=1 ﬂk 1—6kC n=0 nC

that the function £ () is also holomorphic in the full plane except the
points 0 and oo, because the poles of (41’) and the roots of cancel each
other. Hence, the Laurent expansion at the origin of this function is of
the form

(41) 2(0) = 2 E,L7.

Next, replacing ¢ by ¢(z) in (41) we have

& (9(2)9(2)
G(g(2))

Now, if we take into consideration the relations

(42) Z(9(2) = 2(g(2)

1
(43) Glo(a) = 37 0),
, , 1
(43") G (g(2)g () = = & @

then equation (9) of an extremal function follows immediately from (41),
(42), (43) and (43’).

Another equation of an extremal function will be derived in a simi-
lar way. We shall use the following notation:

G
h(2) = —(log(lhoag(z»—log(l—o,z))Gf((%)T)) (t=1,...,m),
- _ _ . Gg
hy(2) = —(log(l—atﬁ(z))—log(l— o,z))-é,(é—((z))))- (t=1,...,m),

where the branches of the logarithm are egumal to 0 for 2z equals to 0.
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Then, relation (32) can be written in the form

(44)  E(& (9(2)) hy(2) + K (& (5(2)) e (2))

_ 1 «f1 G(g(z)) dz
= —2—7;&.!H ;) log (1 — 0,9(2)) TG@) =
1 «f1 Glg(z) de
+2_1cficfH (—z-)log(l— )G( @) =
1 [ .1 - _. .G d
_Et—@fH (—z-)log(l—o‘,g(z))ﬁ,%;
1 . G(7(2) dz _
—2—7;& H( )log( tz)—G (g(Z)) 2 +4 (=1,...,m).
Now, we consider the function
- 1 o1 1 G(g(2) dz
43) A == —z—)log(l—?g(z))m—z—
1 1\ Gg()) dz
o = z)log( tz)G(g(z) z
1 _. {1 ‘ d
1 _ (1 G(g(z)) dz

Hence and from (44) we have

(46) (@) =0 (t=1,...,m).

In addition, from (45) and (39) there follows the relation
. 1

(47) Z(0) = —?3?(5)-

It gives that o, are at least double roots of % ().
Moreover, we introduce the function determined by the formula

G (£)¢
Ga(?0)
and using relations (43) and (43'), by means of analogous argumenta-
tion, we obtain equation (15).

We shall now proceed to derive formulas for the function #({),
.2;(4‘), .éé(C) and % (¢). First we shall undertake to prove two lemmas.

(48) Z() = R(2)
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LEMMA 1. If G({) 48 a starlike function of the form (1), and the function
g(2) 18 a quasi-starlike function determined by equation (4), the second n-
tegral of (39)

(49) J(E) =

1 *(1) z Gg(2)) d=
- | B\ =) o — 5 —
2mi t—2G'(g(2) 2

18 equal to this part of the Laurent expansion at the origin of

1) 1 G(z)g'(Z))
c b

(50) ——resz=¢(H*(? T

which conlains the negative powers of the variable (.

Proof. In fact, since ¢ is a circunmference with the centre zero and
a sufficiently small radius », we have

2 1] 1
51 —|<1 for [¢| =7 and || < —
(51) lc 4 l F<
thus, integral (49) with respect to (43) and (43’) can be written in form
[= =] n d
(52) 5@ =af )T Y=
n=1 C %

for all the values of |{| > . It can be seen, however, from formula (51)
that function (49) depends only on the negative powers of {. On the other
hand, let C denote a circumference with the centre zero and radius E < 1
sufficiently close to unity. Then we have

¢

<1 for |2 =R and |{| < R.

Thus, the following integral analogous to (49) can be written in the form

(53)

1 fﬂ*(l) ¢ Glg)de 1 H*(%)G(z)g’(z) 1 dz

omi J 2/t—2Gg@) = 2mi) G & 2

It can be remarked that in the last integral there exist only non-nega-
tive powers of {.

Yet on the basis of the well-known theorem on residua an obvious
conclusion can be drawn

_1 1\ 2z Glg(2) dz L1y 1 G () (2)
G0 20 =55 ) H(z)g_zfr(g(—z))?—m%(ﬂ (="e0 )

for r< || < R,

which easily gives our lemma.
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LeMMA 2. If G(C) is a starlike function of form (1), the function g(z)
18 a quasi-starlike function determined by equation (4), and the function
g7 (w) i8 a function inverse to w = g(z), then the first iniegral of (39)

1 {1\ 9@ G(9(») d=z
£10) =— | H \glz)) @&
©9) ) )5 &g@) =

2
c
18 equal to that part of the Laurent expansion at the origin of

1 w  Gw) g (w)
g"(w)) t—w G (w) g“(w))’
which conlains the negative powers of the variable (.

Proof. First, let o denote the distance of the point w = 0 from the
boundary of the image of the unit disc under ¢(z), r a sufficiently small

positive number, and R a number sufficiently close to g. Further, assume
that y is the image of the circumference ¢ under ¢g(z). We then obtain

-4

(56) —res,_; (H* (

_ o 1\ w Gwg " (w)
®0 7 =55 f H (g*l(w))c—we'(w)g-ltw) aw
and hence
_ L e 1 \G0)gi @) Yt
©8) A1) = yf H (g_,(w)) G,(w)g_,(w); o for 12]> 7.

It follows directly from formula (58) that function (57) contains only
the mnegative powers of the wvariable (.
On the other hand, the integral of the form

1 H,( 1._) w_ G (w)g~" ()
Bmig  \g )l wq W) (w)

1 fH*( 1 )G(w)g“'(W) &

d f
2w ) -\ @ g W S

where C is a circumference with the centre zero and the radius R, con-
tains only the non-negative powers of the variable {. Similarly to the
preceding considerations we obtain the obvious relation

_ 1 of 1 w  Gw)g™" (w)
50 =5 [ (g-l(w))c'—we'(w)g-‘(w)d""

c
1 ) w G(w)g—"(w))
g7 ()] £ —w & (w)g~  (w) ]

—Tres,_; (H* (

which leads directly to Lemma 2.
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Moreover, we remark that the Laurent expansions at the origin
of the next integrals of (39)

§ | - 1 _o[1\ &z G(g(2) dz
(59) T =5 f H (_) 1—GTE) =

and
- 1 (1) Gk GGk) dz
(60) Gu0) = e [ B(2) O Sl &
27 2] 1—{G(z) G'(G(=) =
contain the positive powers of the variable { only.
Using the above lemmas we shall now undertake to calculate the

coefficients of the function Z({). From the definition of the function
Z({) by formula (41) and from (39), (49), (55), (59) and (60) it follows that

G'(0)¢ G'(2)¢
G(Z) Q)

Then, from the results obtained from Lemmas 1,2 and (41) it follows
that the terms with non-positive powers of { in the Laurent expansion
at the origin of the function #({) appear in the first part of the formula
(61) only. Moreover, we easily observe that these terms in the function
Z(¢) and

(61) L) = (= FO+ £1(0) — - +HF D) — F1(0)

1 Jo1\ e
—H*=)g H

(c)"’“)” (g-‘(c)) P
are equal.

Using the above notation we now for have the coefficients of the
cited terms the formulas

1 J 1 \wPtlgTV(w) 1 L1\,
©2) % =5m (gﬂ‘(w)) 7 (w) dw—znicﬂ(7)g (p)e”de

P 9n
y
p=0,1,...,N—-1)

and
(62") &, =0 for p>=N.
Relations (62), (62'), (6), (6"), (35) and the obvious relation

L L (g
2miy g~ (w) g Hw) ~ omi

immediately imply formulas (10°).

It still remains to observe that the coefficients at the terms with
positive powers of ¢ in (41”’) are conjugate to the corresponding coeffi-
cients at the negative powers of . Indeed, let us notice that it follows
from formula (39) that the function #({) on the circumference of the
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unit dise assumes imaginary values only and we can easily prove the
same for function (41’) except a finite number of points at which it has
the poles; from this statement and from the form of #({) it follows that
on the unit circumference this function assumes real values only, which
gives our observation.

We shall now proceed to calculate the coefficients of the function
Z(L), which according to formula (39) and to the adopted notation (49),
(85), (59), (60) is of the form

(63) R() = (£1(8)— F (&) —(£ () — £1(0))-
First, we notice that the function

_ G .
(64) O =g@ Zc for ¢ < 1

has the coefficients ¢, (» =1,2,...) determined by coefficients (14),
(14') of function (41’) in the formulas

do 01 - 1’

d101—|-d002 == 0,

dk_lcl+---+d00k = 0,

which lead directly to relations (13); moreover, from (64) we obtain

k n
65  zla@)gP@ = D (Y e}t (p=10,1,..).

n=p+1 k=p+1

If we now use Lemmas 1 and 2 and formula (64), then it will follow from
(63) that this part of the function £((), which contains the negative
powers of the variable  equals respectively that part of the expression

J 1 O ( 1 )
i el ,
(g*(:) )"(C) o 0) 7)xl)

which contains the negative powers of {. Hence we have

1 o 1 wPg " (w) 1 1 _

(p =1,...,.N—1)
and

(66) ’ 2,=0 forp>N
Relations (66) and (66’) immediatly imply as before formulas (11’).
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The second part of formula (11) for the function £({) is a consequence
of (39’) and of the fact that this function on circumference of the unit
disc assumes imaginary values only.

Next, we shall proceed to derive formula (17) for the function .é(t).
Using relation (47), (11) and the second relation of (39’) we have

(67) () 2 (5 +327) +2.

n=1
On the other hand, it follows from (46) and (72) that
N-1
1 —
(68) D (@, + Dy +1 = 0.
=P

Next, multiplying equalities (68) by the numbers 8, ..., f,, respectively,
and summing then, we obtain

2 ( Zﬂta,—}—g Zﬁ,a,)+2z_o

p=1 =1

hence and from (14) we obtain

(69) a_——z (2,4, D,d,),

formulas (67) and (69) immediately give .

Finally, in order to prove that formula (16) is true for the function
33(5) we notice that if equalities (68) are multiplied by the numbers
Byy ey dofn (K =1,...,m), respectively and summed, we obtain,
as in the preceding considerations, the relations

N-1

Z;9d+k+2 Qd,tp—{— L T+ Z—dek+zkd,,_o

p=1 p=1 p=k+1

k=1,.., N=1);

this and relations (69) and (48), by means of elementary calculations,
directly imply formula (16) for the function #(¢), which ends the proof
of the Fundamental Theorem 1.
Now we shall proceed to formulate and prove the following fact.
FUNDAMENTAL THEOREM 2. There exists a quasi-starlike function
g(2) which is extremal in the class ®™ with respect o the functional H, of
(8) and which belongs to a class G, where m < N —1.

6 —— Annales Polonici Mathematici XX VI
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Proof. Let H* denote, for example, the maximum of the functional
H,in ™ and let H; < H” denote an analogous maximum in the compact

k
subfamily |6 (k =1,2,...).
’ m=1

We observe first that Hy = Hy_, for k> N —1 and consequently
(70) supHjy = Hxy_,.
k

Indeed, at last it is sufflclent to prove that for £ > N —1 the functional H,

con51dered in the set U ®X attains its maximum for functions belonging
N— m=1
to U (571,'3 only.

m=1
Suppose this is not the case. Then we can find a function §(z) of
the class 6 (N —1 < m < k) realizing the above-mentioned maximum.
Hence and from Theorem 1 it follows that there exist m different numbers

o; of (2) which are double roots of the function 35(@‘) of (17), which is

impossible, because the function R (&) has at most 2N — 2 roots.
Secondly we observe that

(70" H*<HY_,.
Indeed, in the contrary case there would be a function g*(2) e & such that
H, >Hy_,.

Since every quasi starlike function can be approximated by functions
of the class Y, there exists a function g¢* (z)e(BM sufflclently close to
g" (2) and such that H,.> Hy_, and consequently H*o > Hy_,, which
contradicts (70). Relations (70), (70') give H* = Hy_,, which ends the
proof.

Starlike functions and quasi-starlike functions. In this part we shall
give the necessary and sufficient conditions for a quasi-starlike function
of a class Y to be a starlike function. The classes G are of special inter-
est here, as follows from the Fundamental Theorem 2 about the extremal
functions.

We shall deduce the following result.

" THEOREM 3. The wnecessary and sufficient condition for a function

w = g(2) of the class B generated by (4) to be starlike is that by the notation
and relations (2), (2') the following conditions be satisfied

2
(711) ﬂk=% (k =1,2,...,m),

(712) o, = ™ when m is an odd number (k = 1,2,...,m),
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HENREY
— m 2 y Pr—
(73) o, = ¢ , when m is an even number (k=1,2,...,m),

where @ is an arbitrary real number belonging to the open interval (0, 2w/m).

Formulas (72), (73) determine the numbers o), with an accuracy up to
an arbitrary rotation angle.

Proof. Suppose the function g¢(z) from (4) is starlike and observe
first that the corresponding starlike function o = G({) from (1) maps
the unit disc onto the full complex plane from which m semistraight lines
I, (k =1, ..., m)have been removed, the lines [, being radial in relation to 0
with certain arguments 0 < p, < ... < y,, < 2n. Then, for the sake of
convenience, put :

h(w) = T
and notice that by (4)
g(2) = G~ (n(@(2))).

Hence it easily follows that the function w = g(2) maps the unit
disc onto the same dise from which m arcs s, have been removed, the
arcs being the images of the segments

(74) P =hl)—=bL (k=1,...,m).

From the assumption made it also follows that the arcs s, are radial seg-
ments with certain arguments @, (¥ =1, ..., m).
Denote by

z=we™, << a®, F>0 EK=1,...,m)
the parametrical equations of the segments p;, and by
w=ye%, yP<y<y®, yW>0 (*k=1,...,m)

the parametrical equations of the segments s,.
Then it follows from the above remarks that the function

(75) y = Iy(w) = G (@e")e ™% (K =1,...,m)

maps real intervals [z\¥, )] onto real intervals [y, y{?] and conse-
quently is a real function of a real variable #. At the same time we can
easily notice that, by using formula (75), the function h,(x) can be pro-
longed to the inteval [0, #¥]. If we consider the fact that

G710) =0, G0 =1,

we shall see that the expansion of this function in a power series is of
the form

(75") h(w) = DdPa",  0<a<al,

n=1
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where

(75") imd® =0 (n=1,2,...,k=1,...,m).

Next, using the expansion (5) of the function G(£) and (75), (75’), we obtain
(76) (hy () €% -+ by (B (@) €O 4 ... = @™k, 0 <2< a;

~
hence from (75”) it follows that €' = L ¢ (k =1,...,m), and (76)
can be written in the form

(76) by (@) + by (e () €%+ ... = 2, 0<z<a;

the terms (k;(x))” being real it follows from relation (76’) that b,e™~"%
and so b, "™k (n =1,..., k =1,...,m) are real. That means that
the functions

(77) G(zek)e ™k (K —1,...,m)

have real coefficients.
We shall show now that the numbers ¢+ are the m-th degree roots
of unity with an accuracy up a constant factor e™.

Put
(17’) p=vy, w-y=9 (k=1,..,m)
and
(78)  G(2) = G(26") e~ — il (T8 & — ape.

[1(1—0,2)%
k=1

Function (78) obviously maps the unit disc onto the full plane from which

m semistraight lines [, have been removed, the lines being radial in rela-
tion to 0 with the arguments

0 =9 <9< ovr < P < 27

Then, according to the above information regarding (77) the functions

(79)  Gzek)e Tk = G(zevk)e vk (B =1,...,m)
have real coefficients and map the unit dise onto the full plane from which
m analogous semistraight lines have been removed, the lines lying symmet-

rically with respect to the real axis. These lines we obtain from I,,...,1,
by rotation about an angle — y,. o

To prove the above-mentioned property of numbers ¢ it suffices
to prove that

(80) ':’k-H—':”k =const (k =1,...,m)

under the convention ¢,,,, = v, + 2.
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Contrariwise suppose first that there exists such a number 1 < &k < m
that '

Vo1 — Ve < Pi— Pe_1 OF 29k > Y1+ P OF Py < 29— Y1 < Vi
Then, we conclude by the symmetry of functions (79) that for the argu-
ment y,,,— ¢, there exists a symmetrical argument w,— 1y, i.e. such
that 2ms — (.1 — ¥x) = ¥i— ¥k, Where 1<l<m and s are integers.
But on account of y,—2ms = Zq:ok—ﬁ)k“, according to what has been
said before, we would have

Y1 < Y1 — 278 < P,

which contradicts the obvious fact that numbers (77’) lie in the interval
[O 2m). The argument 18 similar if £ = 1 or ¥ = m, and analogously, when
Vir1— s > Ye— Yrp1- This yields (80) and clearly ¢ = 2n/m. At last
we have obtained

20’ o : on . 2(m—1)x
(80°) : _"Pl— ,"Pz—Tn‘7 '-°91Pm——m—'

Basing our considerations on the result obtained, we shall now pro-
ceed to find the general form of the numbers o, and .

First let us notice that according to what has been said above fune-
tion (79) have real coefficients and thus their singular points must lie
symmetrically with respect to the real axis, or which is the same, the
singular points

A

(80") o =W — e (5 =1,...,m)

of (78) must lie symmetrically with respect to the radial semistraight
lines with the directions

(81) &, ... 6.

In addition, comparing the order of magnitude of function (78) in the
neighbourhood of their arbitrary two different singular points from (80’')
which lie symmetrically with respect to the real axis, we observe that
the exponents assigned to them must be equal. To determine the position

of the singular points gk on the unit circumference we first prove that
no singular point of (80’') has the direction of I,, i.e.

(81" &, # 67 = 1.

In fact, let us assume that for certain k, we have o;, = 1. As easily
follows from the form of function (78), the anti-image of the semistraight
line 11 is an are which does not eontain any point (80'). Moreover, from
the symmetry of the function G( z) it follows that the points o, lie symmetri-
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cally with respect to the real axis. Hence, if m is even there exists a k,
such that &k1 = —1 too and the anti-image of il, by the symmetry of
function (78) is a symmetrical arc with respect to the real axis and this
arc must contain the point —1 or 4-1. On the other hand the antl -image
ofl does not contain any point of (80’') particularly O'k and crk So we
have obtained a contradiction. Next, we suppose that m is odd then
the anti-image of All is symmetrical arc with respect to the real axis, as
previously, and it must contain —1 or +1. On the other hand, this arc
does not contain 1 = &ko; consequently it contains —1, and therefore
—1 does not occur among the numbers -gk. Then, by joining the singular
points in pairs, we can write function (78) in the form

(81") Q(z) = i ¢

(1—2)™o [T (122008 (p+ ) +22)

k;&ko

From (81"') we see that the function é(z) has negative values for nega-
tive values of 2z, particulary for z = —1, which is impossible, because
the image of the point —1 lies on il, and so it is a positive number. Thus
we have obtained a contradiction and consequently relations (81'). If
we make use of (79) instead of (78) and we rotate the semistraight line

ik about the angle —v,, we shall show that generally
(81'"") O 6P, 62, L 6t (K =1,...,m).

Making use of the above results (81'), (81) we see that the singular
points (80"') of the function G(z) lie between the points (81), exactly one

point o;; of (80”’) being situated between two successive points ¢"2"¢—D/m
and ¢**™™ of (81) on the unit circumference, precisely. In the contrary
case the numbers of the points (80’') and directions (81) would be different.
Next putting

op, = €7 (0 << 2m/m),

we obtain by easy induction from the above-mentioned symmetry of the
singular points (80") Gy, &, In relation to the direction e“*™™ and
from the equality of the exponents B, and B, the formulas

i+ )

(82) O, =€ . =1,...,m) (Y,

(82") Biy=2/m (I=1,...,m)

() [#] denotes here an integer not larger than .
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and from the symmetry with respect to the direction ¢**™"™ of the
real axis the equality

Ok, = Okye

If m is even, the last equality is satisfied for every ¢e(0, 2x/m) and if m
is odd, it is satisfied for ¢ = n/m only. Hence and from (82), (82’), by
suitable nofation, we can easily obtain on view of (78’) formulas (71),
(72) and (73).

Now we shall show that the inverse theorem is also true. We assume
that conditions (71), (72) or (73) for G(z) of (1) are satisfied and we con-
sider the functions

. 2z
(83) Gy(2) = T—af
and
(84) Gy(2) = i 0 < ¢ < 2n/2).

1—2zcos¢ -+ 2*

We may easily find that these functions have real coefficients and that
the first of them maps the unit circumference onto a semistraight line
lying on the positive part of the real axis, while the second maps it onto
two semistraight lines lying on the real axis symmetricaly in relation to
the origin. Thus the corresponding functions g;(2) (j = 1, 2) generated
by equation (4) with functions (83) or (84) instead of (1) have real
coefficients and map the unit disc onto the unit disc without a segment
of the real axis in the first case and without two symmetrical segments
of the real axis in the second. Hence it immediately follows that g;(z)
( =1, 2) are starlike functions.

Then we observe that every function G'(z) of (1) for which conditions
(71), (72), or (73) are satisfied can be defined by the formula

I3
G(2) = VG;(2"),
where for odd m we take: j = 1 and 4 = m, while for even m we take:
j =2 and g = m/2. Thus G(z) is a u-symmetrical function. Moreover,

the corresponding quasi-starlike function g(2) is then defined by the
formula

s
g(2) = Vg;(2")
and thus is also u-symmetrical. Hence and from the remark made earlier
about the starlikeness of the function g;(2) the starlikeness of g(z) imme-
diately follows, which ends the proof.

Remark. Finding the conditions for an arbitrary function g(2)
of the class B to be starlike seems to be difficult, since we shall show
that having an arbitrary starlike function we can, by means of it, easily
find a quasi-starlike function which will at the same time be starlike and
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which does not belong to any class . In order to show this we take an
arbitrary holomorphic, univalent and starlike function F({) of (0) and
we let g(2) denote a quasi-starlike function determined by equation (3);
then

(1
(85) g() = F T k<1,

where z = F~'(w) is a function inverse to the function w = F(z). Next,
if r denotes the starlikeness radius of the function g(z), then the function

1
(86) g(rz) = F! (ﬂ F(rz)) for |z) < 1,
is starlike in the unit disc. Now we shall show that the starlike function
, 1
(867) 9:(2) = —-9(r2),  [2] <1,

is also quasi-starlike. From (86) and (86’) we have

(87) rg:(2) = F~! (%F(rz)),
87’ F 1 F(r
(87') (rg1(2)) = 2 F(r2).

On the other hand, the function

1
Fi(2) =~ F(r2)

is of course a starlike function, and taking into consideration (87'), we have

1
F1(91(z)) =EF1(Z)3 2| < 13

hence it immediately follows that the function g,(2) is quasi-starlike and
we can easily see that the function g,(2) is holomorphic in the closed
unit disc, and so it does not belong to any class G2/,

The above argumentation also shows that the class of quasi-starlike
functions contains quite a big subclass of starlike funetions. It raises
the natural question whether every starlike function bounded in the
unit dise and properly normalized is a quasi-starlike function. The answer
has not been found yet.
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