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On the least principal fundamental solution of
a parabolic differential equation

by A. WéJicik (Katowice)

Abstract, This article is a continuation of paper [3], where the concept of a prin-
cipal fundamental solution of a second order parabolic equation was introduced.
In this paper, using a method due to Besala [2], we prove the existence of the least
principal fundamental solution.

The notion of the principal fundamental solution was introduced
in [3], where the existence and uniqueness of such a solution was proved
for a parabolic equation with bounded and smooth coefficients. The pur-
pose of this paper is to construct the principal fundamental solution of
a second order parabolic equation under assumptions which do not ensure
the uniqueness of this solution. The principal fundamental solution which
we construct is the least possible. The construction used here is based
on the method applied in papers [1], [2] and [3]. This result includes an
earlier result given in [3].

Denote by ¢ = (2,, ..., 2,) points of the Euclidean n-space E, (n > 1)
and by t points of the Euclidean space £ (E = E,).

We consider the differential equation:

” n
(1) I = 2 @y (by @) Ugg, + ij(t, @)Uy, +c(ty x)u—u; =0
6.7=1 j=1

for (¢, z) € B, ,,, where the coefficients a;, b;, ¢ are defined in £, , and
satisfy the following conditions (see [2]):

1. a;, b;, c are Hoélder continuous with respect to (¢,x) on every
compact subset of K, ., a; = a;, and for each ¢ ¢ £ there exist weak
derivatives (a;),,, (“if)m,-’ (bj)zj in ¥, fori,j =1,...,n.

Moreover, there is a constant 2 > 0 such that

2 a;(t, o) & > A& for (t,2) e B, , and £(&y,..., &) € B,.

t,J=1
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II. There exists & function k(t, 2) € C*(E, ) with Holder continuous

second order z-derivatives on every compact subset of ¥, ,, and such that
hit,z) >0 on E, , and

(2) Lh < —Kh,
(3) Lh+h| Y (05)50— 1’(5,-)2,] <o,
$,j=1 i=
where
(4) by = 207" Y ayh, +b;
i=1

for each ¢t € F and almost all € E,; K is a positive constant.
Observe that then
n

Dbt nh[ 3 (@gha— D) (B < 0

1,7=1 i=
for n €0, 1], as shown in [2].
DeFINITION. A function I'(¢, z,7,y) defined in D: —c0o<r<?

< 40, ¢,y E, is said to be a principal fundamental solution of (1)
if it satisfies the following conditions:

1° For any fixed (z,y)e H,,,, I'(t,z, 7,y) as a function of (¢, x)
has continuous derivatives I3, I, Pze:zj (2,7 =1,...,n) and satisfies
equation (1) in (7, 4 o0) X E,,.

2° For every bounded function f which is locally Holder continuous

(that means, Holder continuous on every compact subset of E,, ) we
have

i .
[ [ar [T, Nf(,9dy] = —f(t,@) for (t,0) € B,y

We begin by proving the existence of the principal fundamental
solution.

THEOREM 1. If Assumptions I, I are satisfied, then there exists a prin-

cipal fundamental solution I'(t,z, T,y) of equation (1) which satisfies the
tnequalilies:

(5) O I(t, 2, 7,9) < C(t—7) "2h(t, @) [h(z,y) in D,
6) [T, @, 7,Ph(z,9)dy<h(t,s) for —co<T<t< 400, 2€E,
Eﬂ-

(T) fr(tam,"a Y)[h(t, z)dr < 1[h(r,y) for —co<T<t<+o00,yck,
E

n

C being a positive constant depending only on n and A.
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Set #(t, 2) = »(t, 2)h(¢, z) into (1). We obtain for v the equation:

n n

(8) Lv = Z i Vayz; + 251’”:,-+5’”*"’: =0,
i,j=1 J=1

where 5; is given by (4) and ¢ = Lh/h. Evidently, if ¥(t, z, v, y) is a prin-

cipal fundamental solution of equation (8), then

rt, s, T, y) =y, 2, 7, y)h(t, 2)/h(7, y)
is a principal fundamental solution of (1).
Thus Theorem 1 is an immediate consequence of the following
THEOREM 2. If Assumptions I, 11 are satisfied, then there ewists

a principal fundamental solution v (i, z, t,y) of equation (8) which satis-
Jies the inequalities

9 0<y(t,:v,1:,y)<0(t—r)""’2 in D,

(10) f-y(t,m,r,y)dy<1 Jor —o<t<ti< 400, z€kl,,
Eﬂ

(11) fy(t,m,t,y)dw<1 Jor —o<tT<i< 400, yek,,
En

C being the same as in (5).

Proof. The proof is similar to that of Theorem 2 in Besala’s paper
[2], if we replace the sets 8,, = (0, T) X (|| < m) by D,, = (—m, m) X
X(le] < m).

Considering the sequence of Green’s functions y,, (¢, #, v, y) of (8)
in D,, we see that {y,,} is a non-decreasing sequence and satisfies the
inequalities:

f YmtyZ, 7, 9)dy <1 for lzj<m, —m<rT<i<m,
lvl<m »

fym(t,w,r,y)dm<1 for lyj<m, —m<r<ti<m,

|lzi<m
0< y(t, 2, 7,y)<C(—17)"" for [z|<m, g<m, —m<T<E< M.

Next, we show that y(¢,#,t,¥) = limy, (¢, z, v, y) is & principal fun-
m— 00

damental solution of equation (8). Applying the Schauder interior esti-
mates (see [5], Chapter 3, Section 2), we show that y(¢, #, 7, y) satisfies
(8) as a function of (¢, z) € (r, + o) x X, and has continuous derivatives
Yty VYay1 Vazje 10 Prove that condition 2° of the definition of the principal
fundamental solution is satisfied, consider the following Cauchy problem:

(12) In,, = f(t,a) for (t,a)¢€ Dy,
(13) Vp(t,2) =0 for (¢, x)€d,D,,
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where

D, = {(t = —m) X(lz] < m)p{(—m <t < m) X (o] = m)}
!
and f is & bounded and locally Holder continuous function.

It is well known that the unique solution of problem (12)-(13) is
given by

H
tm(t,®) = — [dv [ ya(t, 2,7, 9)f(z,9)dy

-m vi<m

Extending the domain of definition of y,,(¢, z, 7, ¥) by setting
Ym =0 for |z/=m or |yl=m or t>m or 1.:< —m,

we have y,, < y,,, in D. Hence, if f > 0, then

¢
- fdf f Ym(ty @, 7, Y)f(7, y)dy
-m  lyl<m
¢
= — f dr f 7m+1(t19797’y)f(77 y)dy,
—(m+1) lyl<m+1
i.e., {v,,} is non-increasing. By the inequalities

SPf

L( ,,.+—) i cupf<0  inD,,

supf
K

Uy + =0 for (¢,2)€d,D,,

and by the maximum principle, we obtain

supf
K

Thus the sequence {v,,} is convergent and bounded.
If f is any function, then f = f* —f~, where

<0m<0.

£+ (4, ) ={ for {(,2) e E, : f(¢, ) < 0},
fit,z) for {(t,z) e E, ,: f(t, z) > 0},

_ —f(t,2) for {(t,») e B, ,: f(, 2) < O},
@2 = l
for {(t, @) € Bpyy: f(t, 7) > 0},

and f+ >0, f~ > 0. Hence the functions

om(t, @) = — fdr [ vmlty 2,7, 9)f* (7, )y

-m lwi<m
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and
va(l, ) = — f dr [ yult, 2,7, 9)f (v, 9)dy

are convergent and bounded.
According to the Friedman—Schauder interior estimates there exists
a subsequence of {v,,} which converges to the function

v(t,2) = — fdf f?(t z, T, Y)f(r, y)dy

satisfying the equation I» = f.

The proof of the fact that y satisfies inequalities (9), (10), (11) is
technieally similar to the proof of Theorem 2 in [2], therefore we omit
the details.

Examples of equations satisfying Assumption IT can be found in
[3] and [4]. In these examples the existence of & is ensured by suitable
growth conditions imposed on the coefficients.

Now, if we define the principal fundamental solution as a function
satisfying 1°, 2° and

3 I't,z,7,9)=>0 forz,yecl,,, —co<t<t< F00,
then we have the following

THEOREM 3. If Assumptions I and IL are fulfilled, then

i@,z v,y) =y, z, v, y)b(t, ) [h(z, y)

18 the least princitpal fundamental solution of (1). I, is independent of h € H,
where H denotes the set of all functions satisfying Assumption IL.

Prootf. Let G(t, z, 7, ¥y) be any non-negative principal fundamental
solution of (1). Let f be a locally Holder continuous non-negative function
with compact support. Take m so large that suppf = D,,. By the proper-
ties of Green’s function (see [6], Chapter 3, Section 7) we have

4
lim [ dr fym(t 2,7, 9)~

¢, ﬂ-‘)-’(' ) >, lvi<m
(t.2)€0, Dy,

( f(,)y

< lim fdr fG(t 2,7, 9)f(z, y)dy.

o)1) "o
(. 2)edp Dy

Hence, by the maximum principle we obtain

- h(t,
for [ attimnngis

¢
Sy fmvas | drE{ G(ty 2,7, Y (v, 9)dy

—m lyl<m
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for (1, ) € D,. Thus, {y,} being a non-decreasing sequence of non-neg-
ative functions, we obtain by letting m— oo

4
t,
fd"" f?’(t L, T, Y) (( w)) f(z,y)d fdt fG(tvw17{y)f(71y)dy'
—00 —o0 E.n

It follows from the last inequality that

I, z,7,y) <@, 2, 7,9).
Putting consecutively I', and I3, for & we get

1’,, = I’h2 for h,, h, € H.

Thus F is independent of h € H and is the least principal fundamental
solutlon as asserted. From now on the least principal fundamental sol-
ution will be denoted simply by I

Similarly we can prove the following

THEOREM 4. Let Assumptions I, 11 be satisfied and let f (¢, x) be a

bounded mnon-negative and locally Holder continuous function defined
for t,x)eE,,,. Then

1
u(t, o) = [dr [I'(t,®,7,9)f(z,9)dy
- K,
18 the least non-negative solution of the equation
Lu = —f(t,a) for (t,2)€E,,,
Proof. It follows from the earlier considerations that

t
u(t, ») = fd‘r J.I'(t, z, T, Y)f(7, y)dy

n

is the solution of Lu = —f. Let us introduce the sequence:
‘ hit, )
Unltr @) = [ A5 [ yults 2,7, 9) 5 )Y
-m  l<m T Y
By the maximum principle we obtain
Un(ty ®) < 2(l,z) on D,,
where z(t, ) is an arbitrary non-negative solution of Lu = —f. Letting

m—> oo we get u(t, ) <z(t,x) for ({,2)e H, ;.
Let I'p p, (¢, @, v, y) denote the fundamental solution of the Cauchy

problem in {7,; T,] xE, for equation (1) constructed by Besala in [2].
Then we have:
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THEOREM b.

TTsz(t’wy"’y) =I't,z,7,y) for T,<v<it<T, v,yckE,.

Proof. Let yZ17: denote Green’s function of (8) in HLT2 — [T, T,] X
 (]2] < m) and let y,, denote Green’s function of (8) in D, . Take m so large
that [T,,T,] = (—m,m) and a locally Holder continuous function f
such that suppf < (T',, T,) X E, . Then, according to the well-known proper-
ties of Green’s function we have

1
L[- [a [ 25, e, 7,9, 9)dy+

o lul<m

¢
+ fd" f Ym(ly @, T, ) f(7, ?/)dy] =0
-m  lyl<m
for (¢, x) e HE1T2,

1

im [~ [ar [ yp7at, @, 0, 9)f(x, y)dy+
(¢, z)>(¢,7) T, lyl<m
{,2)eopHI1T2

¢
+ [dr [ yalty2, 1,9z, y)dy| = o,
—-m lyl<m
where
LHET2 = {(t =T,) X(le| < m)}V{(T, <t<T,) x(lz| = m)}.

By the maximum principle we obtain
Ty (t, 2,7, Y) = yu(t, @, 7,y) for T <t <t< Ty, |2 <m,lyl <m.
Taking m—oco we get
yOT2t, @, 7, y) =y, @, 7,y) for T'<v<t<T,, v,yekE,.
Consequently

Iyt @, 7,y) =1, 2,7,¥) for T)<v<i<T,, v,ye E,.
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