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On the compositions of integral means with Borel
methods of summability

by R. JATTE (L6dz)

Introduction. In this paper the compositions of Borel methods
of summability of exponential and integral types with Cesaro methods
for functions have been investigated. Only series with real terms have
been considered. However, the results obtained may easily be extended
to the case of complex numbers.

I wish to thank here Doc. Dr L. Wlodarski for his valuable sug-
gestions and remarks concerning this paper.

Let us begin with the definitions of the methods in question.

[« =]

DEFINITION 1. We say that the series ) a, is summable to the
n=0

number s by the exponential method B,, (a > 0,y > 0), if the function

o
tm‘ +7

—_— Sp = Qg+ Qy 4 ... +a
e I'na+y+1) " " o™ *

(1) $(t) = aet

iy defined for any ¢ > 0 and if the limit lim s(?) = ¢ exists. Then we write

t—oo

briefly
(2) D an = 8(B,,).

n=0

o0
DEFINITION 2. A series Y a, is said to be summable to s by the
n=0

integral method B,, (a > 0,y > 0), if the function

+<]

(3) alt) = et Y

n=0

tna +y
a7y 7D ™

¢
is defined for any ¢ > 0 and if the limit lim [a(r)dr = s exists. Then we
{—o00
write briefly °
(4) D an = 8(B.,) .

n=0
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Putting in the above definitions « =1 and y =0 we obtain the
classical Borel methods (the exponential and the integral methods).
The exponential methods have been systematically investigated by
L. Wlodarski in his papers [11], [12], [14]. These methods, as L. Wlo-
darski has proved, are permanent, consistent with one another and also
with the Abel method. The consistency of the methods B,, has been
established independently of L. Wlodarski by D. Borwein in paper [2].
D. Borwein has also proved in [1] that the summability B,o of a series
implies its T-I,,o summability to the same number. It can be proved, by
an easy modification of Borwein’s argument, that the summability of
a series by an exponential method B,, with y > 0 implies its summability
to the same number by an integral method ﬁa,,.. The integral methods
have been investigated by many authors, for instance, by Borel, Hardy,
Mittag-Leffler, Good, Borwein. The methods §.,,,, are permanent and, as
I. J. Good has proved in [5], consistent with one another.

DEFINITION 3. A function f(f) is said to be limitable in infinity
to 1 by the Cesdaro method C, (r > 0), if the limit

»

(3) fim J (@ -t ()t ~ 1

I—00 e
exists, which may be briefly written as

(6) ¢,~limf(t) =1.

For symmetry we shall write also Cy—limf(t) = ! instead of limf(t) - I
t—00 t—o0
The methods C, are permanent; moreover, if C,—limf(t) =1 and ¢ > »,
{—co
then also C,—limf(?) = 1.
t—>00

In what follows we shall generalize the methods B,, and ﬁ.,,,. com-
posing them with the methods C,.

(o]
DEFINITION 4. A series ) a, is said to be swmmable by the method B,

n=0
to 8, if funection (1) is defined for ¢ > 0 and limitable to s by the method C,.
We shall write briefly
(7) Zaﬂ == S(B:,y .
ne=0
DEFINITION 3. A series  a, is said to be summable to s by the

n=0

1
method BT, if function (3) is defined for ¢ > 0 and if C,—lim [a(z)dr = s,
{—»00 0
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where the function a(t) is given by formula (3). We shall write briefly

(8) 2 an = s(BL,).

n=0

The methods B, and ﬁ’,‘,,, have thus been defined for a:>> 0, y >0
r=0.

G. Doetsch ([3]) has investigated the methods Big, i.e. the compo-
sitions of the classical Borel method of exponential type with Cesaro
methods. By putting in definitions 4 and 5 r = 0 we obtain the methods
B., and B,, described above. It immediately follows from the definition
of the methods Bj, and B., that they are permanent and also that the
summability of a series by the method Bj, (or by the method Bf,' )
implies its summability to the same number by the method BZ, (or BZ,)
provided ¢q > .

§ 1. Consistency theorems.
LEMMA 1. If the functions f(t) and g(t) arve continuous and if g(t) = 0,
Z?g(‘r)d‘r = K < oo, f(t)~At, a> 0, then f(t)xg(t)~KAt* (1),
Proof. Let us put f(f) = At*-+¢(t). Then
@) ==o(t’) and f(t)xg(t) = At"xg(t) +@(t)xy(?).
By the permanence of the Cesaro method C, we have

¢

lim:—a(At“*g(t)) = lim% (-7 g(r)dr
{—>o00 oo
0

L T
.= hmﬂ‘f(t—z)““dr ‘ g(o)do = AK .
t—oo t* .
0 0
Now let an e£>0 be given and let |p(t)| <e® for t> 1,
M= sup lp(t)|. Then we have again by the regularity of the C, method

lp(t) g ()] < J [p(r)g(t—1)dr J lp(z)lg(t 7)de

< MK ¢ f (t—7)g(r)dr~eKLl",
0

which, sinee & has been chosen arbitrarily, proves our theorem.
Lemma 1 implies the following theorem:

(*) By f(t) xg(t) we shall denote the convolution of the two functions f(f) and g(¢).
¢
i.e. the function defined by the formula h(t)= [ f(t—1t)g(z)dr.
]
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oo
THEOREM 1. If a series D an is swmmable to s by the method B,
A=0

then it is also summable to s by the method B;,.; (6 > 0).

o0
Proof. The summability of a series ) @, by a method B,, to s
n=0

implies
7—1 —?)1 t’lw+r tr
_ -t ~ .
1) = I‘(r)*“e < F('na+y+1)8" rr+rn)*-

Putting ¢(t) = ¢ ‘¢°7'/I'(8), and making use of the formula
e 'CIM(a+1)xe PII(B+1) =e Y M(a+p+2) for a,f>—1

and also of the commutativity and associativity of the convolution we
have by lemma 1

r—1 : t'n.a+y+d tr

fO+90 =T5* ™ £ Fma+y+3+0) "~ Ter+D"”

o9
which means that the series D a, is summable to s by the method B yis.
n=0

In the sequel we shall use the following lemmas:
o0
Lemma 2. If0< 6<1, >0, fe_‘"lf(t)ldr < oo for a certain ¢ > 0,
(1]

F*(8) = Fe“"f(t)dt, then
0
- —fl o Y ) R
9 | 1@rGeldr = {5 R "),
0

where L' denote a transform converse to the Laplace transform.
Formula (9) is a particular case of the Efros formula ([10]).

. a1l 8 . .
LeEmMA 3. The function @s4(t,7) = L I!Ee 's} is a real, continuous

and non-negative function for any t >0, v>0, §>0 and 0 < 6 <1, (Mi-
kusinski [9], Wlodarski [13].)

LeMMA 4. If f()~AYT(k,+1), g(t)~BU*'(k,-:-1), then f(t)*g(t)
~ ABF Y g, -k, 4 2). (Hardy [6], p. 99.)

Consider now the transform

" G120V [ th—t _ - LTE b
(10) W g/ 1) = tz(k ): (k—l)!*(" tfe ,%L ‘{g&” }f(t)dr)]
(]

for 0<6<1, >0and k=1,2,..
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It is easily seen that the operation Wi, is linear, i.e. that
(11) ufoﬁ{af b(], t} - a'Wﬂﬁ{f’ t}'l‘b“ B{qv t)

provided the right-hand side exists.

THEOREM 2. If f(t) is a function defined and continuous for v >0
and tf limf(r) = m (m may be finite or equal to - oco), then

7—00

lim Wes{f; 1} = m .
{—o00
Proof. Case 1% f(r) = m. Then we have
K GF1(2K) [ ot 1 ot
Wosif; 1} =m 25 (k—l)' J %! l{ B }dT

By lemma 2 and the well-known properties of the Laplace transform
we have

=8

) — 1 -—rsa - 1 1
(12) J k'L }df =L l{3/3+(k+1)o’(1__3—0)1:+1}
L_l 24 (n+k (n+L) g AT o
ﬁ+(k+1)0 < k P(n0+ﬁ+(k +1)6)

Let us notice now that

,w+/3+(L~L1)o 1 &
(13) (n -+ k) t

et - .
Z I'(n+B+(k+1)0) A

Indeed, it is enough to make use of the properties of the Euler I-function
and of the fact that for any real w we have

7w-| w

1 —{
}1.1206 24 F n6+w+1)

provided lims, =s (Wlodarski [14]). Since obviously *-1/(k—1)!~

MN—>00

~t=1)(k—1)!, we have by lemma 4 and (11), (12), (13) lim Wes{f; t} = m.
]

Case 2% limf(r) = 0. In this case we shall make use of an estimation

—>00

given by L. Wlodarski ([14]) for the function L~ { _"’Ol

(14) L“‘l - } < Ae ik,
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where 4 and B are some constants greater than zero. Estimation (14)
holds for t>1, >0, >0, 0 < 0 <1. Now let

(15) flr)l<e for +r>T, M= 0sup |[f(7)] .

By (14), (15) and lemma 3, we have for > 1

00
ttk —1 l "-1801
(16) 6[ (4 'ﬁf(T)L {sﬂe [d‘l’
k41 ~ 2
<5 eTM(Ae'® - B) +¢ e%l} ‘{ge ’B}d-c
T
Tk+1 ~ TR (1,
< A GTJ[(Aeuz—{-B)+efe %L 1{;50 ’oidt.
0
Consequently

A7) | Waplf; 1)

K41 1[ e k+1 :
< b tz(,?k)' (kt—l)' * Tk' e"M(Ae "? +Be™) —!—sWﬁ,{e; t}J ,

where e(z) = 1.
The first term on the right side of inequality (17) tends to zero
becanse of the regularity of the Cesaro method O, we have even

Th+1

k!

%,; [tk'l *

eTM(Ae—2 —+—Be-‘)] -0 as t—oco.

The second term tends to & because of case 1°
Hence it follows that Lim Wis{f; ¢} = 0.
{—>00

Case 3% limf(r '=m (m—finite). This case may immediately be

reduced to the preceding cases by considering the function ¢(z) = f(z) —m.
Case 4% limf(r) = - co. Let K> 0 be given. Let f(r) > K for
> 1T, M = sup |f(r)]. By lemma 3 and estimation (14) we have for
o<t<T
t>1

(18) f e’%j(w)L“{%ﬂe"’o i

~ cTE (1 . Tk+1
>Kf oL ’{Fe se}dr—MTeT(Ae"z—i—B).
T
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Thus we have

(19)  Wesif; 1)
Gk+1(2F) [ k2 Th+1
e |(k—1)! " k!

> KWise; 1) — MeT(de 2 = Be“)j .

The first term on the right-hand side of inequality (19) tends to K as
t—>oco, and the second tends to zero. Thus We,{f(r)} > K/2 for t suffi-
ciently large, which, since K is arbitrary, ends the proof.

Now we proceed to the proof of the following consistency theorem.

THEOREM 3. If the series ) an is summable to s by the method BE

a,y
n=0
and it is summable to § by the method B, ;, where 0 < 0 <1, 8> 0(y+
L k+4+1)—1, then s = 3.
Proof. Let us put
AN Traty
#|F—D1*Y Tmety+1)"

Let us take § = 46—0(y-+k+1)-+1. Obviously we have g> 0.

Wos{yn; 1}

OrE+1(2F) [ k-1 - *-1 pitaty YL -
T Tk [(k_]_)i ( f ((k 1)! xe P(na+y+1)L 8b }dt)]

Since

(20) ¥a(t) =

i ‘L’k-l . Tty etrk—l tﬂd"‘?
¢ ((‘k’~1)!*6 I’(na+y+1)) T k=1 *Tna+y+1)’

we receive by lemma 2 and the well-known pmpeltles of the Laplace-
transformation

‘ S 1 N R JETNEY S B 1
(31) W’J.ﬁ{wm t} - 12k [(k _l)i * (6 tL I{E : (so_l)k ’ 81L0u+0('/+1)})]

_0k+1(2k)! ( tk—l e_t t’nﬂa-’-ﬁ ) e—‘z ‘l"‘LII: 1 t'ﬂ—l
T T k—1)1"*° Tmoaro+1)" ( T'»0)]

Let us notice now that from the summability of series Z a, by

n=0

a method Bf, to s it immediately follows that the function

(22) D) =a D) sapall), Su =g+ Oyt .. +an
n=0 ‘

has in infinity a limit equal to s.
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Let us now put

T graty Y} )
(23) (p,.(t)—(e (k—l)!*F(na+y+1)s“)L 1{36 (-

We shall show that the integral

(e <]

(24) f [2 tpn('r)-l dr

n=0

exists and the equality

(25) f [Z oa(n)] dr = Z‘ ( Pnlt) dr

n=0 n=900
holds.
To this end it suffices to prove that

1° the integrals f |pa(T)|dT (n = 0,1, ...) converge,
0

©0
2° the series D ga(r) converges uniformly in any finite inter-

n=0
val [0, T},

3° D [ |pa(r)ldr < o0,

n=90 ¢
Since by lemmas 2 and 3 we have for any t> 0

- L1
JIw,.(r)ldr:ls,.lL {(1 ,)L:*L I{Wﬁ}

condition 1° is satisfied.

o0

Conditions 2° and 3° follow from the summability of the series ) a,
n=0

by the methods B,’,‘,,, and B',‘a,, and from some elementary properties
of power series.
From (22), (23) and (25) the formula

(26) Wes(®; 1) = a D saWoplyn; t)
k=0

can easily be deduced.
Making use of our previous results we have

27)  Wea{®; 1}

o

(2’6)! tk—l ~ nﬂa+n5 ) - \1 vik—1 tve—l l
= [((k—l)' be™! Zrnoa+a+1) et D Tl

v=90
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Since by hypothesis

1 > goate &
. -1 ~ —
(28) —1yi * % ;r(nea+a+1)“‘" AN
and
° - -1 -1
(29) oke—tZ(”T’““l ot
— k—1 JI'(»6) (k—1)!
(compare the proof of the theorem 2, case 1°), thus by lemma 4
(30) lim Wh{®; 1) = & .
{—00

In view of the regularity of the transformation Wi, we also have

(31) limWi,(®; 1)} = s
{—00

and thus & = s, which ends the proof.

From theorems 1 and 3 and the fundamental properties of the Cesaro
methods the following general consistency theorem follows.

THEOREM 4. If a series is summable to s by the method B, and if
it 18 summable to & by the method B} ,, where a; > 0,7, > 0,7; =0 (1 =1, 2),
then s = §.

REMARK. Theorem 4 enables us to consider a three-parameter family
of methods B;, as one method of summability of type (B); namely
a series is said to be summable by the method (B) if it is summable by
one of the methods B.,. Theorem 4 guarantees the unambiguity of such
a definition.

In the sequel we shall use the following lemmas.

-

LEMMA 5. If a continuous function f(t) is limitable by a method C,,
0 < r <1, then its Laplace transform

(32) F*s) = [ estf (vt
0
is defined for R(s) > 0, the limit lim sF*(s) exists and the equality
8—-0+
(33) lim sF*(s) = C,—limjf ()
80+ t—oo
holds.

LEMMA 6. If a continuous function f(1) is limitable by a wmethod C,,
r>1, and if Laplace transform (32) exists for R(s)> 0, then the limit
lHm sF*(s) exists and equality (33) holds. (G. Doetsch [4], p. 462).

—04
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THEOREM 5. If a series D an is summable to ¢ by a method B,
n=0

(0 <r <1) and sts transform by the Abel method exists,

(34) Ay =D at", <1

n=0

o0
then the series D an is summable by the Abel method to o, i.e.
n=0

(35) limA(t) = o .

(—1—

Proof. By our hypothesis the function

tﬂﬂ‘l’v

— et v
ft) =0 2 Ma 7D

Sn =Gyt a;+... -G

is defined for any ¢ > 0 and the generalized limit C,—lim f({) = ¢ exists.
i—>co

By lemma 5 transform (32) exists for B(s) > 0. Further we have

"o} N 8n — as N 5
(36) o) =as ; (s+1" (s 1™ g (641"

On substitution ¢ = 1/(s+1)" we receive

(37)  sF"(s) =b(t) D, ant", where b(t)—>1 as t->1—.

n=0

By lemma b5 the left-hand side of formula (37) tends to ¢ as s >0, and
thus the right tends to ¢ as t—1—, which implies (35).

Making use of lemma 6 in an analogous way the following theorem
may be proved.

THEOREM 6. If a series D) an s summable to ¢ by a method B,
n=0

(r > 1), the iniegral

(- ©o

[ e—(s+1)t
0

t7w+y

_——————— 8 dl
Lt P(na+y+1)8“

converges for B(s) > 0 and transform (34) exists, then the series is summable
to o by the Abel method.
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Since for bound series Abel transform (34) always exists, and since
the integral

(-]

i (s+1)¢ e
—{(s S —
of T L Taryrn Y

is finite for R(s) > 0, the following corollary follows from theorem 6.

COROLLARY. If a bounded series is summable by the method B, for
some r > 0, then it is also summable by the Abel method and consequently
by first means method.

DEFINITIONS 6. A summability method is said to be translative to
the right if the summability of the series a,+a,-+a,-t... implies the
summability of the series 0-+aq+a;+...

THEOREM 7. The methods B, are translative to the right.

Proof. Let

tm+r

C, hmae-‘ I"na+y+1) =8, Sp=0+0+..} 0.

We shall put
0 for n=0
38 An = ’
(38) 8 {s,._l for nn>1.
By hypothesis we have
r—1 G% tm+? tT

£
(39) 'O=10**" Z T t7+D " Tr+D)°

Let ¢(t) = ¢ *4°*/I'(a). Thus we have ¢(t) > 0, f ¢(r)dr = 1. By lemma 1
we have

(40) Pl ] (O~ prtys ®
Moreover, it is easily seen that

had jataty 1
(41) o(t)xf(t) = ae™* P(na+y+a+1)8”*F(r)

‘ naty !
(""— 2]’(na+7—1—1)8"+aa°e— I'(a +7+1)) ‘T

Since evidently

T, —t
;; [t * A6 W{—_l)] -0 as t >o0,
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by (40) and (41) we have

Y R
C,—limae—! 2 "——lm ’ s ]
. — 4 ——— S8y — 8§ .
T o & I'(na+y-+1) "

§ 2. Theorems on the multiplication of series. In the sequel
we shall use the following result of G. Doetsch ([3], p. 33).

LEMMA 7. Let f(t) and g(t) and their first derivatives be continuous

functions, $(0) =0, r,7r,=>0. If C, —limf(t) = A and C,,—lim [g(t)dt
{—>00

xr—00 0

= B, then Cyr41—lim(f(1) % g(t)) exists and is equal to AB.

e <] o0
THEOREM 8. If Y ay = A(BL,), > b, = B(B2,), then
n=90

ne=0

(==
D en = AB(BIL) (3).
n=0
Proof. In view of the additivity and regularity of the methods By,
we may assume, without restricting the generality of our considerations
that a, = 0. Then the functions

oo
- tna+y]

= qe! S —
j(t) ae £ I1(na+)’l+1)s‘n7

87], = ao%’al”e‘...—é'an

and

oo
t?l.(l + ye

b
<i Dna+y,+1) "

g(1) = ae™!

satisfy the conditions of lemma 7.
Moreover, by the properties of the convolution and the elementary
properties of power series we have

. (n—v)aty; va+yz
f(t) * g(t) = ae~! >72 8»—1;’)0( ! * ! )
Ll I'((n—v)a+y,+1) T'(ra+y,+1)

n=0 =0

it pratyitytl
= ae_t (4] + C —1‘ e 1€ -
£ P(na+?l+y2+2)( 0 1 T ﬂ)

Whence by lemma 7 it immediately follows that D ¢, = AB(Bi:I550).

a,y1+va+
n=0

oo o o0
() By Xe¢, we shall denote the Cauchy product of series ), @, and 2 b, ie.
n=gp n=9 n=o0

¢, =2a, b,
=0
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oo
THEOREM 9. If a series D an is summable to A by the method E’Z,,,

n=0
then it is also summable to A by the method Bioi,.

Proof. This theorem is an immediate corollary from theorem 8.

In fact, consider the series Z bn, in which b, =1, bp =0 for 2 > 1. It

=0

follows from the regularity of the method Bj, that Z b, = 1(B,).
n=0

Thus by theorem 8 we have

2% = A(B7Y).

n=0
But in our case ¢, = a,, which ends the proof.

The following general consistency theorem is an immediate corollary
from theorems 4 and 9.

THEOREM 10. If > a, = s(BL.,), Zaﬂ = 3(Ba;,,,), then s = a.
n=0

n=0

o0
THEOREM 11. If a series D a, is sumimnable to s by the method B,

n=0
then it is also swmmable to s by the method B, .

Proof. D. Borwein has proved this theorem for r = 0. Let us assume
then that » > 0. It may be easily verified that, if 2 ant"|D(na -7 +1)

n=0

[e ]
is an integral function, then ) s,t"*"7/I(na -y - 1) is an integral function.
n=0

The converse assertion is also true.
We have the following relation (3)

t 0

1,‘na+/
2 e
wr e "5‘ Tmaty+1) "%

0
( tZ 1za+? ) 1 f P
= \ae~ F(na——yJ—l) ( _+1—¢ 7 1le t)

Let us notice that

lim f dt j re~le~idr = I'(a+1).

Let us multiply in the sense of the convolution both sides of (42) by
t""Y/T'(r). Then, making use of lemma 1 and also of the properties of the

(®) The proof of a relation analogous to (42) is to be found in D. Bornwein’s
paper [1].
Annales Polonici Mathematici XIV 9
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convolution, we have
tr—l ! 201 tna+’,-
T ¥ -‘ (2 Z A TP R Y a,nd'r
I'(r) d P I'(na+y--1)

i ¢ \ gty 1 - st”
= = - R e R —— —1lg—1, ~ ————
(r(r)*"" r(na+r+1)”")*(r(a+1),f =)~ Ty

which means that the series is summmable to 8 by the method E:,,..

It follows from theorems 9 and 11 that the summability of a series
by one of the methods B,, implies its summability by some method ﬁ,’,',,,
and conversely. In this sense the range of all integral methods ﬁ:,., and
exponential methods B, is the same.

In theorems 8 and 9 the indices y and » behave similarly. It is quite
natural to ask whether the index y may also be regarded as an ‘ex-
ponent’’ of the superposition with the integral mean. We shall show
that in fact this is the case.

DErINITION 7. The function A (f) given by formula

¢
t dr
(43) o = [ f(Dew s
i8 called the convolution of the two functions f(t) and g(t) in the sense of
Dirichlet (%), which shall briefly be written

(44) h(t) =f(t)ng(?) .

The Dirichlet convolution, similarly as the Cauchy convolution, is com-
mutative, associative, distributive with respect to addition and homo-
geneous with respect to either factors. There is a close relation between
these two convolutions. Namely we have

(45) ft)ng(t) = F(3)xG(s),

where F(lnz) = f(2), G(lnx) = g(z), s = Int.
The following formula which will be used in the sequel, holds for
a>—-1, > -1

e (M) o (ny)’ o (Imp)™*
Fain) " To+1) =" Ta+p52) -

(46) t

(*) By analogy to the multiplication of series, the convolution of the two func-

¢
tions f(t) and g(t) given by [f(t—t)g(r)dz, will be called consequently the Cauchy
[

convolution.

(*) Formula (46) can easily be obtained from a well-known relation between the
Euler functions  and I
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Let us notice now that
t
, 1 17
(47) ?Ag(t)—?i‘ g(z)dr.
Thus multiplying a function ¢(t) by 1/t in the sense of the Dirichlet con-

volution we receive the first means method transform of the function g(t)

]
(our argument is obviously not influenced by considering the integral [
1

s
instead of [). Iterating k-times operation (47) we receive the transform
(1]

of the k-th Holder mean.
In view of the associativity of the Dirichlet convolution, this trans-
form may briefly be written in the form

(48) 1/t)5 ng(t)

where (1/t)% denotes the k-th power in the sense of the convolution of
the function 1/t. It may easily be proved by the method of induction that

(49) @k = meyYE—1), k=1,2,..
Writting
(50) 1/ & (nty/rg+1ye, B> -1

we generalize formula (49) for real exponents, similarly as in Mikusinski’s
operational calculus (compare [8], p. 59). Formula (50) enables us to
extend in a natural manner the Hoélder methods for functions to non-
integral indices. The Hoélder transform of order g > 0 for a function g¢(f)
is defined by the formula

(51) 1WA AgQ) .

If im[(1/t)% Ag(t)] =1, then the function ¢(t) is said to be limitable to I

{—00

by the method H;.

The composition of a method H, with a method Hg gives the
method H,,s;. This follows immediately from the properties of the con-
volution and from formula (46). The H, methods are equivalent to the
Cesaro methods C, for all a > 0 (K. Knopp [7]) (®).

(°) As a marginal note let us mention that the transform of a function g(2): Oa(t)

¢
= % J t—1)*"'g(z)dr, equivalent to the Cesdro transform of order a, may be expressed
1

-

in the form of the Dirichlet convolution. Namely we have Cq(?) = [% ( 1—- 1).:—1] A g(t).

9%
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Now returning to the Borel mmethods we shall notice that the transform
© -

a 7 _ (ot

t L I'ina+y+1)""

n

S’n.y(t) =

is equivalent to transform (1) and that

(52) (L/1YA A Ba(t) = Rayrsll) .

We may thus say that the method B,,.s is the result of composition
of the method B,, with the Hélder mean of order § ‘“‘on the level” Int.
Consequently, the index y in the Borel methods, similarly to the index »
in B;, may be regarded as the ‘“exponent” of superposition with the
integral mean.
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